JPS6349340B2 - - Google Patents

Info

Publication number
JPS6349340B2
JPS6349340B2 JP16973982A JP16973982A JPS6349340B2 JP S6349340 B2 JPS6349340 B2 JP S6349340B2 JP 16973982 A JP16973982 A JP 16973982A JP 16973982 A JP16973982 A JP 16973982A JP S6349340 B2 JPS6349340 B2 JP S6349340B2
Authority
JP
Japan
Prior art keywords
anode
cathode
bulb
current
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16973982A
Other languages
Japanese (ja)
Other versions
JPS5960958A (en
Inventor
Mitsuo Arakawa
Toshihiro Yamamoto
Kazuya Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP16973982A priority Critical patent/JPS5960958A/en
Publication of JPS5960958A publication Critical patent/JPS5960958A/en
Publication of JPS6349340B2 publication Critical patent/JPS6349340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

【発明の詳細な説明】 本発明は低圧水銀灯装置に関するものである。[Detailed description of the invention] The present invention relates to a low pressure mercury lamp device.

従来の低圧水銀灯装置は螢光灯や殺菌灯、光化
学反応用などに用いられており、そのランプ電流
は0.4A程度が普通である。そして超高出力型と
いわれているものでも2A程度である。ところで
ランプ電流を2A以上にすれば発光部の単位長さ
当りのランプ電力が増すことから、相対的に該装
置を小型化したり放射スペクトル密度を上げるこ
とが可能になることから光反応の収率を上げたり
単位時間当りの殺菌処理量を増したり出来る可能
性を期待出来る。このため産業上の用途では、該
装置を大型化することなく、ランプ電流の大きな
低圧水銀灯装置が望まれている。ところが、従来
の低圧水銀灯装置においては、交流の大電流を流
そうとした場合、電極が陽極モードのとき電子衝
撃により電極温度が上昇し電極に塗布してある電
子放射性物質(通称エミツター)の消耗が激し
く、バルブの黒化や点灯不良を起し短寿命とな
る。これを防ぐため従来は補助陽極を設け、電子
衝撃を緩和しているものであるが、それでもラン
プ電流が2A程度を越えると緩和効果がなく、従
来の低圧水銀灯装置では、小型、長寿命を維持し
たうえで2A以上の大電流の流せる産業用の低圧
水銀灯装置は存在しなかつた。
Conventional low-pressure mercury lamp devices are used for fluorescent lamps, germicidal lamps, photochemical reactions, etc., and the lamp current is usually around 0.4A. And even what is said to be an ultra-high output type is only about 2A. By the way, if the lamp current is increased to 2A or more, the lamp power per unit length of the light emitting part increases, which makes it possible to relatively miniaturize the device and increase the radiation spectral density, thereby increasing the yield of the photoreaction. We can expect the possibility of increasing the sterilization capacity and the amount of sterilization per unit time. For this reason, in industrial applications, a low-pressure mercury lamp device that can provide a large lamp current without increasing the size of the device is desired. However, in conventional low-pressure mercury lamp devices, when a large alternating current is applied to the electrode, the electrode temperature rises due to electron bombardment when the electrode is in anode mode, causing consumption of the electron radioactive material (commonly known as emitter) coated on the electrode. This is severe, causing blackening of the bulb and poor lighting, resulting in a shortened lifespan. In order to prevent this, conventionally an auxiliary anode has been installed to alleviate the electron impact, but even so, it has no mitigation effect when the lamp current exceeds about 2A, and conventional low-pressure mercury lamp devices can maintain a small size and long life. However, there was no industrial low-pressure mercury lamp device that could carry a large current of 2A or more.

そこで本発明の目的は小型、長寿命を維持した
うえで、大電流の流せる低圧水銀灯装置を提供す
ることにあり、その低圧水銀灯装置は、陽極と陰
極とを組みにした「電極の組み」をバルブ内に2
組み設け、夫々の「電極の組み」において、陽極
は、半導体整流素子を中介することなく陰極に接
続されており、陽極は、陰極よりも前方に配置さ
れ、かつバルブの径方向において、バルブ断面積
の80%以下であつて5%以上の断面積を有し、バ
ルブの軸方向に5mm以上の長さを有し、バルブ内
には、少なくとも、点灯中の圧力で1mmHg以下
の水銀を含み、互に他の組みに属する陽極と陰極
とが放電して、これが交互に繰り返されて放電が
持続されることを特徴とするものである。
Therefore, an object of the present invention is to provide a low-pressure mercury lamp device that can flow a large current while maintaining a small size and long life. 2 in the valve
In each "electrode assembly," the anode is connected to the cathode without intervening a semiconductor rectifying element, and the anode is arranged in front of the cathode and in the radial direction of the bulb. It has a cross-sectional area of 80% or less of the area, 5% or more, and a length of 5 mm or more in the axial direction of the bulb, and the bulb contains at least 1 mmHg or less of mercury at a pressure during lighting. This is characterized in that the anodes and cathodes belonging to different sets discharge each other, and this is repeated alternately to sustain the discharge.

以下に図面を参照しながら本発明を具体的に説
明する。
The present invention will be specifically described below with reference to the drawings.

第1図は本発明の特徴を含む低圧水銀灯装置の
説明図であつて、1aと2aは夫々第1の組みに
属する直熱型の熱陰極と陽極、1bと2bは夫々
第2の組みに属する直熱型の熱陰極と陽極であつ
て、夫々の組みにおいて陽極は陰極の片側と接続
されている。夫々の組みの陽極は陰極の前方に配
置され、陽極の大きさは、バルブ6の径方向にお
ける遮へい率(断面積の比を%で表示した値)を
5〜80%とし、かつ放電経路軸方向においての長
さを5mm以上としている。この陽極と陰極の組み
が夫々バルブ6の両端部6a,6bに封着されて
いる。そしてバルブ6内には微量の水銀もしくは
水銀とアルゴンなどの希ガスが充填されている。
4は電流制限用のチヨークコイル、5はトランス
を示し二次巻線5a,5bは夫々第1、第2の組
みに属する直熱型熱陰極1a,1bの電源として
利用し、二次巻線5cが夫々の組みに属する陽極
2a,2bに接続されて放電発光に供するように
してある。一次巻線5dは商用電源、例えば交流
100Vもしくは200V電源7に接続される。
FIG. 1 is an explanatory diagram of a low-pressure mercury lamp device including the features of the present invention, in which 1a and 2a are a directly heated hot cathode and anode, respectively, belonging to the first set, and 1b and 2b are respectively belonging to the second set. A directly heated hot cathode and an anode, in which the anode is connected to one side of the cathode in each pair. The anode of each set is arranged in front of the cathode, and the size of the anode is such that the shielding rate (the ratio of cross-sectional area expressed in %) in the radial direction of the bulb 6 is 5 to 80%, and The length in the direction is 5 mm or more. This pair of anode and cathode is sealed to both ends 6a and 6b of the bulb 6, respectively. The inside of the bulb 6 is filled with a trace amount of mercury or a rare gas such as mercury and argon.
Reference numeral 4 indicates a current limiting current limiting coil; 5 indicates a transformer; secondary windings 5a and 5b are used as power sources for directly heated hot cathodes 1a and 1b belonging to the first and second sets, respectively; are connected to the anodes 2a and 2b belonging to each set, so as to provide discharge light emission. The primary winding 5d is a commercial power source, e.g.
Connected to 100V or 200V power supply 7.

上記低圧水銀灯装置において放電形成は次の様
になされる。
In the above-mentioned low-pressure mercury lamp device, discharge formation is performed as follows.

最初の交流半サイクルでは、矢印8で示すよう
に電流が流れ、次の交流半サイクルでは、矢印9
で示すように電流が流れる。これが交互に繰り返
されて放電が持続される。尚、電流の向きは、電
子の流れと逆の向きを採用している。
In the first AC half cycle, the current flows as shown by arrow 8, and in the next AC half cycle, the current flows as shown by arrow 9.
Current flows as shown in . This is repeated alternately to sustain the discharge. Note that the direction of the current is opposite to the flow of electrons.

つまり、放電は、互に他の組みに属する陽極と
陰極とが対になつて、交互に、同一放電媒体を通
して形成されている。
That is, a discharge is formed by pairs of anodes and cathodes belonging to different sets alternately passing through the same discharge medium.

上記低圧水銀灯装置の基本的長所を下記に列挙
する。
The basic advantages of the above low pressure mercury lamp device are listed below.

(1) 陽極と陰極とは、夫々設計思想が異なるの
で、本発明の場合は、陽極は陽極の設計思想に
のみ基いて、陰極は陰極の設計思想にのみ基い
て夫々設計できるので、結果として、大電流の
低圧水銀灯装置が提供できる。その他、使用寿
命の長い電極設計や、放電開始電圧の低い電極
設計が容易になる。
(1) Since the anode and cathode have different design concepts, in the case of the present invention, the anode can be designed only based on the design concept of the anode, and the cathode can be designed only based on the design concept of the cathode. , a large current, low pressure mercury lamp device can be provided. In addition, it becomes easier to design an electrode with a long service life and a low discharge starting voltage.

(2) アーク長の長い金属蒸気放電灯を、従来形式
の直流用放電灯として設計すると、金属イオン
が陰極側へ片寄り、発光ムラの発生をともなう
が、本発明の方式では、そのような欠点が解消
される。
(2) When a metal vapor discharge lamp with a long arc length is designed as a conventional DC discharge lamp, the metal ions are biased toward the cathode side, causing uneven light emission. Defects are eliminated.

上記長所は、次の設計例をみると更によく理解
できる。
The above advantages can be better understood by looking at the following design example.

バルブとして、内径10mmのオゾンレス石英を採
用し、アーク長を300mmとし、放電媒体としては
放電発光中の蒸気圧が6×10-3mmHgとなる水銀
と、アルゴンガスを0.3mmHg封入する。この場
合、低圧水銀灯の電圧は約59Vで、電流を4A流
して消費電力は約200Wとなつた。そして陰極と
してはタングステンフイラメントに、(BaSrCa)
BeO2(バリウムストロンチウムカルシウム3元ベ
リレイト)を塗布して、最も電子放射性の良い設
計となし、陽極としては、大電子流の衝撃に耐え
られるようにタングステンのロツドで構成し、丈
夫さを基本として設計している。したがつて、上
記低圧水銀灯装置は、従来の大きさに比べ、長さ
が6分の1程度に小型になつたばかりでなく、電
流値が著しく大きくすることができ、結果とし
て、紫外線放射も著しく増大せしめることができ
る。
The bulb is made of ozone-free quartz with an inner diameter of 10 mm, the arc length is 300 mm, and the discharge medium is mercury and 0.3 mmHg of argon gas, which has a vapor pressure of 6 x 10 -3 mmHg during discharge light emission. In this case, the voltage of the low-pressure mercury lamp was approximately 59V, the current was 4A, and the power consumption was approximately 200W. As a cathode, a tungsten filament (BaSrCa) is used.
The design is coated with BeO 2 (barium strontium calcium ternary berylate) to achieve the best electron emissivity, and the anode is made of tungsten rod to withstand the impact of large electron currents, with the basic concept of durability. I am designing. Therefore, the above-mentioned low-pressure mercury lamp device is not only smaller in length to about one-sixth of the conventional size, but also has a significantly larger current value, and as a result, ultraviolet radiation is significantly reduced. It can be increased.

低圧水銀灯において、電流値を増大させれば、
紫外線放射が増大することは既知であつたが小形
長寿命の低圧水銀灯装置は、従来の設計思想では
全く得られない。これは、現在市販の螢光灯、低
圧水銀灯、殺菌灯の電流値がすべて2A未満であ
ることを考えれば明らかである。
In a low-pressure mercury lamp, if the current value is increased,
Although it is known that ultraviolet radiation is increased, a compact, long-life, low-pressure mercury lamp device cannot be obtained using conventional design concepts. This is clear when considering that the current values of currently commercially available fluorescent lamps, low-pressure mercury lamps, and germicidal lamps are all less than 2A.

前記した従来の200W程度の殺菌灯と、上記の
低圧水銀灯装置との比較を、2537Åの1cm当りの
アーク長からの放射量で行うと、本発明では、放
射強度が数十倍にまで及ぶので、産業用に使用し
た場合の生産性の高さは、比較にならないぐらい
高い。
If we compare the conventional germicidal lamp of about 200W and the low-pressure mercury lamp device described above in terms of the amount of radiation from an arc length of 2537 Å per cm, the radiation intensity of the present invention is several tens of times higher. , the productivity when used for industrial purposes is incomparably high.

上記低圧水銀灯装置の設計例からも理解される
ように、 (3) 電流値が数十A程度で使用できる、小型、長
寿命の低圧水銀灯装置も容易に得られ従来の他
の技術と組み合せると、 (4) バルブの材質として、1849Åを良く透過する
石英ガラスとすれば、強力なオゾン発生用の低
圧水銀灯装置が得られる。
As can be understood from the above design example of a low-pressure mercury lamp device, (3) A small, long-life low-pressure mercury lamp device that can be used with a current value of about several tens of amperes can be easily obtained and can be combined with other conventional technologies. (4) If quartz glass, which transmits 1849 Å well, is used as the material for the bulb, a low-pressure mercury lamp device for powerful ozone generation can be obtained.

(5) バルブの材質として、オゾンレス石英ガラス
もしくは殺菌灯用硬質ガラスを選べば、オゾン
の発生のない強力な殺菌装置が得られる。
(5) If you choose ozone-free quartz glass or hard glass for germicidal lamps as the material for the bulb, you can obtain a powerful sterilizing device that does not generate ozone.

と言う長所がある。There are advantages to saying that.

石英ガラス、オゾンレス石英ガラス、殺菌灯用
ガラスはいずれも市販されていて、分光透過率特
性は、例えば、東芝レビユー(34巻5号第448頁)
ガラス工学ハンドブツク第670頁(朝倉書店昭和
48年6月20日 10版発行)にも記載されていると
ころのものである。上記材質の他、透光性セラミ
ツクチユーブ、例えば多結晶アルミナ(商品名ル
カロツクス)等も使える。
Quartz glass, ozone-free quartz glass, and germicidal lamp glass are all commercially available, and their spectral transmittance characteristics are described, for example, in Toshiba Review (Vol. 34, No. 5, p. 448).
Glass Engineering Handbook, page 670 (Asakura Shoten Showa)
(10th edition published June 20, 1948). In addition to the above-mentioned materials, translucent ceramic tubes such as polycrystalline alumina (trade name Lucarox) can also be used.

放電発光中の水銀蒸気圧の制御は、放電灯製作
時における水銀封入量で決めても良いし、バルブ
に水銀留めを設けておき、水銀留めの温度を所定
の一定値に保つことによつて達成しても良いし、
また、熱陰極としては傍熱型を使用しても良い。
これらはいづれも既知の方法が使用できる。更に
バルブ6の内面もしくは外面に螢光体を塗布して
強力な発光の得られる螢光灯として構成してもよ
い。
The mercury vapor pressure during discharge light emission can be determined by the amount of mercury filled in when manufacturing the discharge lamp, or by providing a mercury stopper in the bulb and keeping the temperature of the mercury stopper at a predetermined constant value. You can achieve it,
Moreover, an indirectly heated type may be used as the hot cathode.
Known methods can be used for all of these. Furthermore, a fluorescent lamp may be constructed by coating the inner or outer surface of the bulb 6 with a fluorescent substance to obtain strong light emission.

ところで上記設計例の低圧水銀灯装置におい
て、実用的に使用するには、夫々の組みにおける
陽極と陰極は前述した様に夫々設計思想が異なる
ので交流の半サイクルごとに電流の流れは完全に
陽極と陰極に流れ込む様にしなければならない。
そしてそれは夫々の電極の位置、形状及び寸法に
大きく依存する。第1の組みの電極を例にして説
明すると、第1の組みの電極が、第2の組みの電
極に対してプラス電位の半サイクルでは電流は完
全に陽極から流れねばならない。陰極から電流が
流れ出すということは、陰極に対し電子衝撃があ
るということを意味し、ランプ電流が本発明のラ
ンプのように大きいときは、陰極の温度が非常に
高くなる。そして(BaSrCa)BeO2の様なエミ
ツターは急激な蒸発を引き起して電極が著しく短
寿命となる。
By the way, in the low-pressure mercury lamp device of the above design example, for practical use, the anode and cathode in each set have different design concepts as described above, so the current flow must completely flow between the anode and the cathode every half cycle of AC. It must be made to flow into the cathode.
And it highly depends on the position, shape and dimensions of each electrode. Taking the first set of electrodes as an example, during a half cycle in which the first set of electrodes is at a positive potential with respect to the second set of electrodes, the current must flow completely from the anode. Current flowing out of the cathode means that there is an electron bombardment on the cathode, and when the lamp current is as large as in the lamp of the present invention, the temperature of the cathode becomes very high. And emitters such as (BaSrCa)BeO 2 cause rapid evaporation, significantly shortening the life of the electrode.

以上の事を防ぐためには結線位置3a,3bに
おいて、半導体整流素子のカソードを陽極に、ア
ノードを陰極に夫々接続する方法(特開昭56−
160755 発明者荒川外2名)があるが、本発明で
は上記半導体整流素子なしで陽極の位置と大きさ
を規定することにより同様の効果を得ようとする
ものであつて、第1の組みの電極が陽極モードの
とき電流が陽極から完全に流れるために、各種の
実験を行つた結果以下の条件が必要であることが
分つた。
In order to prevent the above-mentioned problem, there is a method of connecting the cathode of the semiconductor rectifying element to the anode and the anode to the cathode at the connection positions 3a and 3b (Japanese Unexamined Patent Application Publication No. 1983-1996-1).
160755 Inventor Arakawa et al.) However, the present invention attempts to obtain the same effect by specifying the position and size of the anode without using the semiconductor rectifying element. As a result of various experiments, it was found that the following conditions are necessary for the current to flow completely from the anode when the electrode is in the anode mode.

(1) 陽極は陰極の前に設置されねばならない。こ
れは、陽極、陰極とも結線位置3aで接続され
ているため同電位であり、放電経路前方から移
動してくる電子は最も近い電極に流れ込むため
である。
(1) The anode must be placed before the cathode. This is because both the anode and the cathode are connected at the connection position 3a, so they have the same potential, and the electrons moving from the front of the discharge path flow into the nearest electrode.

(2) 陽極はある一定以上の大きさを持つ必要があ
る。夫々の電極の組みにおいて、陽極モードの
とき陰極から電流が流れない。すなわち電子が
流れ込まない様にするには陽極はある一定以上
の大きさを持つ必要がある。それは第1図、第
2図においてバルブ径方向の断面における陽極
による放電経路に対する遮へい率すなわち、
(d/D)2が0.8(80%)以下で、0.05(5%)以
上、かつ陽極の放電経路の軸方向に長さlが5
mm以上必要である。陽極は通常は耐電子衝撃性
の高いタングステンを用いる。(d/D)2が0.8
を越えることは、陰極モードのとき、放電経路
を大きく絞ることになるので、放電抵抗を上げ
て点灯性を悪くする。逆に、(d/D)2が0.05
未満では、陽極モードのとき、全ての電子が陽
極に流れ込まずに陰極にも流れ込むため、陰極
が電子衝撃を受け、陰極が著しく損耗し、陰極
の寿命を短くする。また、放電状態において、
陽極は放電経路の軸方向に長さ1をもつがそれ
が充分でない場合、いわゆる電子の「しみ出
し」により陰極へ電子が到達してしまう。すな
わち、ある交流放電の半サイクルにおけるラン
プ電流をIl、陽極から流れる電流をIa、陰極か
ら流れる電流をIcとすれば Il=Ia+Ic にな
り陽極モードのときは Il=Ia 陰極モードの
ときはIl=Icになれば良い。陽極モードのとき
電子の「しみ出し」があるときは Ic≠0 に
なりIc/Ilがある割合になる。これを具体的に
説明すると、例えば、バルブ径 D=10mm 陽
極径 d=3.6mm アーク長を300mmとし放電媒
体として放電発光中の蒸気圧が6×10-3mmHg
となる水銀とアルゴンガスを0.3mmHg封入す
る。そして陽極の遮へい率が13%、ランプ電流
が5Aにおいて陽極の放電経路軸方向長さlを
変えながらIc/Ilを測定すると第3図の通りに
なつた。ランプ電流を2〜20Aまで変化させて
もそれぞれのlにおけるIc/Ilの割合はあまり
変化しなかつた。すなわち(d/D)2が0.8以
下で、かつ0.05以上においては、lが5mm以上
あれば電子の「しみ出し」により電極が陽極モ
ードのとき陰極から電流が流れる事がない。従
つて夫々の電極はその設計思想に基いて使用さ
れることになり大電流の低圧水銀灯装置が提供
できる。なを陰極モードの時はタングステンで
できた陽極と例えば(BaSrCa)BeO2を塗布
した陰極では構成されている物質の仕事函数が
大きく違うため陽極から電子が放射される事は
普通はない。
(2) The anode must have a certain size or more. In each electrode set, no current flows from the cathode when in anode mode. In other words, in order to prevent electrons from flowing in, the anode needs to have a certain size or more. In Figures 1 and 2, the shielding rate for the discharge path by the anode in the radial cross section of the bulb, ie,
(d/D) 2 is 0.8 (80%) or less, 0.05 (5%) or more, and the length l in the axial direction of the anode discharge path is 5
mm or more is required. Tungsten, which has high electron impact resistance, is usually used for the anode. (d/D) 2 is 0.8
Exceeding this will greatly narrow down the discharge path in the cathode mode, increasing the discharge resistance and impairing lighting performance. Conversely, (d/D) 2 is 0.05
If it is less than 100%, when in the anode mode, all the electrons do not flow into the anode but also into the cathode, which causes the cathode to be bombarded with electrons, causing significant wear and tear on the cathode and shortening the life of the cathode. Also, in the discharge state,
The anode has a length 1 in the axial direction of the discharge path, but if this length is not sufficient, electrons will reach the cathode due to so-called "seep" of electrons. In other words, if the lamp current in a half cycle of an AC discharge is Il, the current flowing from the anode is Ia, and the current flowing from the cathode is Ic, then Il = Ia + Ic, so in anode mode Il = Ia and in cathode mode Il = It would be good if it became IC. In anode mode, when electrons ``seep'', Ic≠0 and Ic/Il becomes a certain ratio. To explain this specifically, for example, bulb diameter D = 10 mm, anode diameter d = 3.6 mm, arc length 300 mm, and vapor pressure during discharge light emission as a discharge medium is 6 × 10 -3 mmHg.
Fill with 0.3mmHg of mercury and argon gas. When the shielding rate of the anode was 13% and the lamp current was 5 A, Ic/Il was measured while changing the axial length l of the discharge path of the anode, and the result was as shown in Fig. 3. Even when the lamp current was changed from 2 to 20 A, the ratio of Ic/Il at each l did not change much. That is, when (d/D) 2 is 0.8 or less and 0.05 or more, if l is 5 mm or more, no current will flow from the cathode when the electrode is in the anode mode due to "bleeding" of electrons. Therefore, each electrode is used based on its design concept, and a large current, low pressure mercury lamp device can be provided. When in cathode mode, electrons are not normally emitted from the anode because the work functions of the constituent materials are very different between an anode made of tungsten and a cathode coated with (BaSrCa)BeO 2 , for example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低圧水銀灯装置の要部の説明
図、第2図は第1図―線における断面図、第
3図はデータの説明図である。 1a,1b…陰極、2a,2b…陽極、4…チ
ヨークコイル、5…トランス、6…バルブ。
FIG. 1 is an explanatory diagram of the main parts of the low-pressure mercury lamp device of the present invention, FIG. 2 is a sectional view taken along the line shown in FIG. 1, and FIG. 3 is an explanatory diagram of data. 1a, 1b...cathode, 2a, 2b...anode, 4...chiyoke coil, 5...transformer, 6...valve.

Claims (1)

【特許請求の範囲】 1 陽極と陰極とを組みにした「電極の組み」を
バルブ内に2組み設け、 夫々の「電極の組み」において、陽極は半導体
整流素子を中介することなく陰極に接続されてお
り、 陽極は、陰極よりも前方に配置され、かつバル
ブの径方向において、バルブ断面積の80%以下で
あつて5%以上の断面積を有し、バルブの軸方向
に5mm以上に長さを有し、 バルブ内には、少なくとも、点灯中の圧力で1
mmHg以下の水銀を含み、 互に他の組みに属する陽極と陰極とが放電し
て、これが交互に繰り返されて放電が持続される
ことを特徴とする低圧水銀灯装置。
[Claims] 1. Two sets of "electrode sets" consisting of an anode and a cathode are provided in the bulb, and in each "electrode set", the anode is connected to the cathode without intervening a semiconductor rectifying element. The anode is located in front of the cathode, has a cross-sectional area of 80% or less and 5% or more of the bulb cross-sectional area in the radial direction of the bulb, and has a cross-sectional area of 5 mm or more in the axial direction of the bulb. It has a length, and the inside of the bulb has at least a pressure of 1
A low-pressure mercury lamp device containing mercury of less than mmHg and characterized in that an anode and a cathode belonging to different sets discharge each other, and this is repeated alternately to sustain the discharge.
JP16973982A 1982-09-30 1982-09-30 Low pressure mercury vapor lamp Granted JPS5960958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16973982A JPS5960958A (en) 1982-09-30 1982-09-30 Low pressure mercury vapor lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16973982A JPS5960958A (en) 1982-09-30 1982-09-30 Low pressure mercury vapor lamp

Publications (2)

Publication Number Publication Date
JPS5960958A JPS5960958A (en) 1984-04-07
JPS6349340B2 true JPS6349340B2 (en) 1988-10-04

Family

ID=15891943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16973982A Granted JPS5960958A (en) 1982-09-30 1982-09-30 Low pressure mercury vapor lamp

Country Status (1)

Country Link
JP (1) JPS5960958A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319749A (en) * 1986-07-14 1988-01-27 Toshiba Corp Low pressure discharge lamp device
US4902933A (en) * 1988-09-20 1990-02-20 General Electric Company High efficacy discharge lamp having large anodes

Also Published As

Publication number Publication date
JPS5960958A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
US3778662A (en) High intensity fluorescent lamp radiating ionic radiation within the range of 1,600{14 2,300 a.u.
US4879493A (en) Low-pressure discharge lamp
US2549355A (en) Fluorescent lamp
US4625149A (en) Metal vapor discharge lamp including an inner burner having tapered ends
US4904900A (en) Glow discharge lamp
US4962334A (en) Glow discharge lamp having wire anode
CA1162593A (en) Discharge lamp apparatus
JPS6349340B2 (en)
US4987342A (en) Self-ballasted glow discharge lamp having indirectly-heated cathode
US3558964A (en) High current thermionic hollow cathode lamp
US3317778A (en) Green radiation lamp for optical maser
US2034572A (en) Electric lamp and method of producing light
US2479164A (en) Electric glow discharge lamp
JP2006196370A (en) Ultraviolet light source lighting device and ultraviolet irradiation device
JPH05504438A (en) Glow discharge lamp with zero anode voltage drop
EP0569579B1 (en) Negative glow discharge lamp having wire anode
US6366020B1 (en) Universal operating DC ceramic metal halide lamp
US5049785A (en) Two contact, AC-operated negative glow fluorescent lamp
US3526803A (en) High-output fluorescent lamp with axial rod and amalgam mercury-vapor control means
JPH02267849A (en) Glow discharge lamp containing nitrogen
US3376457A (en) Electric discharge lamp with space charge relieving means
JP6086253B2 (en) Long arc type discharge lamp
US2235711A (en) Electric discharge lamp
KR860000636B1 (en) A fluorescent lamp
JPH0443965Y2 (en)