JPS6349326B2 - - Google Patents

Info

Publication number
JPS6349326B2
JPS6349326B2 JP54006894A JP689479A JPS6349326B2 JP S6349326 B2 JPS6349326 B2 JP S6349326B2 JP 54006894 A JP54006894 A JP 54006894A JP 689479 A JP689479 A JP 689479A JP S6349326 B2 JPS6349326 B2 JP S6349326B2
Authority
JP
Japan
Prior art keywords
wire
detection
submarine cable
cable
detection wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54006894A
Other languages
Japanese (ja)
Other versions
JPS55100610A (en
Inventor
Isao Nakahara
Shinji Takeshita
Yoshimasa Inoe
Eiji Itoga
Mikyuki Ono
Hajime Takehana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIKURA DENSEN KK
KYUSHU DENRYOKU KK
Original Assignee
FUJIKURA DENSEN KK
KYUSHU DENRYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIKURA DENSEN KK, KYUSHU DENRYOKU KK filed Critical FUJIKURA DENSEN KK
Priority to JP689479A priority Critical patent/JPS55100610A/en
Publication of JPS55100610A publication Critical patent/JPS55100610A/en
Publication of JPS6349326B2 publication Critical patent/JPS6349326B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、海底ケーブルがい装の損傷程度を監
視し、海底ケーブルの絶縁破壊事故あるいは断線
事故を未然に防ぐことができる海底ケーブル線路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submarine cable line that can monitor the degree of damage to submarine cable armor and prevent insulation breakdown or disconnection accidents of submarine cables.

一般に、海底ケーブルは、機械的外力、張力、
摩耗等に耐えるようがい装が施されているが、海
底ケーブルの布説方法、布設場所の環境等の条件
により、海底ケーブルがい装部が損傷し、大事故
に到るおそれがあつた。
In general, submarine cables are subject to mechanical external forces, tension,
Although the cable is equipped with a sheathing that can withstand wear and tear, there is a risk that the submarine cable sheathing could be damaged due to the method used to propagate the submarine cable, the environment at the location, and other conditions, leading to a major accident.

本発明は上述の点に鑑みなされたもので、海底
ケーブルがい装の損傷状態を監視し、海底ケーブ
ル本体が事故に到る以前にこれを検知し、事故を
未然に防止し得る海底ケーブル線路を提供するも
のである。
The present invention has been made in view of the above-mentioned points, and is a submarine cable line that can monitor the damage state of the submarine cable armor, detect it before an accident occurs to the submarine cable itself, and prevent accidents from occurring. This is what we provide.

次に本発明に係る海底ケーブル線路およびがい
装損傷検知方法を説明する。
Next, a submarine cable line and armor damage detection method according to the present invention will be explained.

第1図は、当該海底ケーブル線路の断面を示す
ものでケーブルがい装部に複数の検知線を等間隔
に配設させたものである。
FIG. 1 shows a cross section of the submarine cable line, in which a plurality of detection lines are arranged at equal intervals on the cable sheathing.

第3図は検知線の断線検知回路の原理を示すも
ので、検知線に断線があれば検知線の導体抵抗が
変化するため、あらかじめ平衡させておいたブリ
ツヂの平衡がくずれ、断線を検出する。
Figure 3 shows the principle of the detection wire disconnection detection circuit. If there is a disconnection in the detection wire, the conductor resistance of the detection wire changes, which upsets the balance of the bridge, which was balanced in advance, and detects the disconnection. .

海底ケーブルが気中等の導電性の媒体が存在し
ないところに布設されていれば、検知線の断線に
より、検知線の導体抵抗は極端に増加し、ブリツ
ヂのアンバランスは大きく現われるが、海底ケー
ブルが海中等の媒体が導電性の場所に布設される
と、検知線が断線しても検知線の導体抵抗は大き
く変化しない。ところが、このような場合でも導
電性媒体の分解電圧以下の低電圧で測定すると、
検知線の導体抵抗は大きく変化し、ブリツヂのア
ンバランスは大きく現われる。このように海中
(海水の分解電圧…約0.6V)においても検知線の
断線による検知線導体抵抗の変化を分解電圧以下
の低電圧で測定すれば検知線の断線を検知するこ
とができる。
If the submarine cable is installed in a place where there is no conductive medium such as the air, the conductor resistance of the detection wire will increase dramatically due to the disconnection of the detection wire, and the bridge will become unbalanced. If the medium is installed in a conductive location such as the ocean, the conductor resistance of the sensing wire will not change significantly even if the sensing wire is disconnected. However, even in this case, when measured at a low voltage below the decomposition voltage of the conductive medium,
The conductor resistance of the detection wire changes greatly, and bridge imbalance appears greatly. In this way, even under the sea (seawater decomposition voltage...approximately 0.6V), a break in the detection line can be detected by measuring the change in the resistance of the detection line conductor due to a break in the detection line at a low voltage below the decomposition voltage.

以下、図面により本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は海底ケーブル線路の断面を示すもの
で、外周は絶縁した複数本の線心1が束ねられ、
これら線心1の周囲には断面円形の座床2が設け
てある。この線心1に接近して座床2内には導電
性のリード線3が挿通してあり、線心1と座床2
の間には介在4が充満してある。この座床2内が
ケーブル線心部である。
Figure 1 shows a cross section of a submarine cable line, in which multiple insulated wire cores 1 are bundled around the outer periphery.
A seat floor 2 having a circular cross section is provided around these wire cores 1. A conductive lead wire 3 is inserted into the seat floor 2 close to the wire core 1, and the wire core 1 and the seat floor 2
The space between them is filled with interposition 4. The inside of this seat floor 2 is the cable core.

前記座床2の外周には複数本の鎧装鉄線5が連
接して設けてあり、この鎧装鉄線5の外側にはセ
パレータ6が巻回してある。
A plurality of armored iron wires 5 are connected and provided on the outer periphery of the seat floor 2, and a separator 6 is wound around the outer side of the armored iron wire 5.

このセパレータ6の外周には複数本の鎧装鉄線
7と複数本の検知線8が連続して設けられてお
り、検知線8は鎧装鉄線7の4本置きに配置され
ている。そして、鎧装鉄線7と検知線8の外周に
は防食層9が設けてある。これら、鎧装鉄線7、
検知線8、防食層9により海底ケーブルの鎧装部
が構成されている。
A plurality of armored iron wires 7 and a plurality of detection wires 8 are continuously provided on the outer periphery of this separator 6, and the detection wires 8 are arranged every fourth of the armored iron wires 7. A corrosion protection layer 9 is provided around the outer periphery of the armored iron wire 7 and the detection wire 8. These, armored iron wire 7,
The detection wire 8 and the anti-corrosion layer 9 constitute an armored portion of the submarine cable.

次に、第2図、第3図により本発明に係る前記
海底ケーブルの損耗検出の方法について説明す
る。
Next, a method for detecting wear and tear on the submarine cable according to the present invention will be explained with reference to FIGS. 2 and 3.

第2図は摩耗により、海底ケーブルの外周が損
耗した状態を示すもので、鎧装鉄線7の摩耗と同
時に検知線8も摩耗して断線した状態になつてい
る。
FIG. 2 shows a state in which the outer periphery of the submarine cable is worn out due to wear, and at the same time as the armored iron wire 7 is worn out, the detection wire 8 is also worn out and is in a disconnected state.

第3図は検知線8の断線検知回路を示すもの
で、リード線3の一端と検知線8の各一端は共通
して結線してあり、リード線3と検知線8の他端
は検知器10に接続してある。リード線3はブリ
ツヂ回路に接続してあり、検知線8がセレクタ1
1を介してブリツヂ回路に接続してある。このブ
リツヂ回路の一対には電流計12が、他の一対に
は電池13が接続してある。
FIG. 3 shows a disconnection detection circuit for the detection wire 8. One end of the lead wire 3 and one end of each of the detection wires 8 are connected in common, and the other ends of the lead wire 3 and the detection wire 8 are connected to the detector. It is connected to 10. The lead wire 3 is connected to the bridge circuit, and the detection wire 8 is connected to the selector 1.
1 to the bridge circuit. An ammeter 12 is connected to one pair of bridge circuits, and a battery 13 is connected to the other pair.

この場合、電池電圧は検知線の断線個所で海水
の分解電圧以下の電圧が印加される程度の低電圧
でなければならない。
In this case, the battery voltage must be low enough to apply a voltage below the seawater decomposition voltage at the point where the detection line is broken.

前述のリード線3と検知線8はループ状に結線
してあるため数十Ω程度の抵抗が生じることにな
り、抵抗R1の抵抗値を調整して電流計12の振
れを0に設定する。この後、セレクタ11により
各検知線8の一本づつについて、電流計12の変
動を測定する。
Since the aforementioned lead wire 3 and detection wire 8 are connected in a loop, a resistance of several tens of ohms will occur, so adjust the resistance value of resistor R 1 to set the deflection of ammeter 12 to 0. . Thereafter, the selector 11 measures the change in the ammeter 12 for each detection line 8 one by one.

検知線8が断線していなければ電流計12は0
を指す。もし、検知線8が断線していれば、検知
線8の断線部分は海水中に露出しているため、数
キロΩ程度の抵抗値となり、電流計12は大きく
振れ断線している検知線8が知れる。
If the detection wire 8 is not disconnected, the ammeter 12 will be 0.
refers to If the detection wire 8 is broken, the resistance of the detection wire 8 will be approximately several kiloohms because the broken part of the detection wire 8 is exposed in the seawater, and the ammeter 12 will swing significantly and the broken detection wire 8 can be known.

次に、第4図は検知線8の断線している部分の
標定をする標定回路を示すもので、リード線3と
断線している検知線8の他端には電流計14と可
変抵抗器15が接続してあり、可変抵抗器15の
接触子とアースの間には電池16が接続してあ
る。
Next, FIG. 4 shows a locating circuit for locating the disconnected part of the detection wire 8. The other end of the detection wire 8, which is disconnected from the lead wire 3, is equipped with an ammeter 14 and a variable resistor. 15 is connected, and a battery 16 is connected between the contact of the variable resistor 15 and the ground.

この回路では、リード線3、検知線8、可変抵
抗器15によりホイーストンブリツヂが形成され
たことになるため、可変抵抗器15の接触子を移
動して電流計14が0を指すよう調整する。
In this circuit, a Wheatstone bridge is formed by the lead wire 3, the detection wire 8, and the variable resistor 15, so move the contact of the variable resistor 15 so that the ammeter 14 points to 0. adjust.

検知線8の断線部Aには海水が接触しているた
め、可変抵抗器15の接触子の位置により断線部
Aは標定することができる。また、この標定はマ
ーレループ法、パルス法等によつても実施でき
る。
Since seawater is in contact with the disconnection part A of the detection line 8, the disconnection part A can be located by the position of the contact of the variable resistor 15. Further, this orientation can also be carried out by the Mahle loop method, pulse method, etc.

第5図は海底ケーブル線路の他の実施例を示す
もので、各検知線8の間には2本の鎧装鉄線7が
配置してある。
FIG. 5 shows another embodiment of the submarine cable line, in which two armored iron wires 7 are arranged between each detection wire 8.

第6図は海底ケーブル線路のさらに他の実施例
を示すもので、各検知線8の間には3本の鎧装鉄
線7が配置してある。
FIG. 6 shows yet another embodiment of the submarine cable line, in which three armored iron wires 7 are arranged between each detection wire 8.

ここで第5図の例では鎧装鉄線及び検知線が撚
られているため海底ケーブルの長さ方向のどの位
置で摩耗しても検出可能であることを示してい
る。
In the example shown in FIG. 5, since the armored iron wire and the detection wire are twisted, it is possible to detect wear at any position along the length of the submarine cable.

また、第6図の場合は鎧装鉄線の撚ピツチを
1300mmとすると長さ方向に50mm進んだ位置で鉄線
1本分隣に回転していることになるから、したが
つてケーブルを50mm巾で輪切りにしたものの断面
を透視してみると第5図のような位置関係になる
から摩耗巾が50mmであればケーブルの長さ方向の
どの位置で摩耗しても検出可能である。
In addition, in the case of Figure 6, the twist pitch of the armored iron wire is
If it is 1300mm, then it will rotate next to one iron wire at a position 50mm forward in the length direction, so if you look through the cross section of the cable cut into rings with a width of 50mm, you will see the result shown in Figure 5. Because of this positional relationship, if the wear width is 50 mm, wear can be detected at any position along the length of the cable.

同様にして第2図は摩耗巾が100mmでどの位置
でも検出可能である。
Similarly, in Fig. 2, the wear width is 100 mm and it can be detected at any position.

従つて検知線本数は検知出来る摩耗巾によつて
決る。
Therefore, the number of detection lines is determined by the wear width that can be detected.

本発明は上述の様に構成したため鎧装の損傷程
度、損傷場所を簡単にしかも確実に検知出来ると
共に鉄線損耗に対する残存寿命の推定が可能であ
ることから処置を計画的に施すことが可能であ
る。
Since the present invention is configured as described above, it is possible to easily and reliably detect the degree of damage to the armor and the location of the damage, and it is also possible to estimate the remaining lifespan of the steel wire against wear and tear, making it possible to take measures in a planned manner. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す海底ケーブル
線路の断面図、第2図は同上の海底ケーブルの摩
耗状態を示す説明図、第3図は同上の検知回路を
示す回路図、第4図は同上の標定回路を示す回路
図、第5図は本発明の海底ケーブル線路の他の実
施例を示す断面図、第6図はさらに他の実施例を
示す断面図である。 3…リード線、8…検知線。
Fig. 1 is a cross-sectional view of a submarine cable line showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the state of wear of the submarine cable shown above, Fig. 3 is a circuit diagram showing the detection circuit shown above, and Fig. 4 5 is a sectional view showing another embodiment of the submarine cable line of the present invention, and FIG. 6 is a sectional view showing still another embodiment. 3...Lead wire, 8...Detection wire.

Claims (1)

【特許請求の範囲】[Claims] 1 海底ケーブルがい装線周上に複数の検知線を
等間隔に配設し、ケーブル線心部にリード線を設
け、そのリード線と検知線の各一端を結線し、そ
のリード線の他端と各検知線の他端の間の導体抵
抗の変化を海水分解電圧以下の低電圧で測定する
ことによつてケーブルがい装の損傷状態を監視す
るようにしたことを特徴とするがい装損傷検知線
入り海底ケーブル線路。
1 A plurality of detection wires are arranged at equal intervals around the circumference of the submarine cable, a lead wire is provided at the core of the cable wire, one end of each of the lead wires and the detection wire is connected, and the other end of the lead wire is connected to the other end of the lead wire. and the other end of each detection wire at a low voltage below the seawater decomposition voltage to monitor the damage state of the cable sheathing. Submarine cable line with wire.
JP689479A 1979-01-23 1979-01-23 Cable with defective sheath detecting wire Granted JPS55100610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP689479A JPS55100610A (en) 1979-01-23 1979-01-23 Cable with defective sheath detecting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP689479A JPS55100610A (en) 1979-01-23 1979-01-23 Cable with defective sheath detecting wire

Publications (2)

Publication Number Publication Date
JPS55100610A JPS55100610A (en) 1980-07-31
JPS6349326B2 true JPS6349326B2 (en) 1988-10-04

Family

ID=11650925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP689479A Granted JPS55100610A (en) 1979-01-23 1979-01-23 Cable with defective sheath detecting wire

Country Status (1)

Country Link
JP (1) JPS55100610A (en)

Also Published As

Publication number Publication date
JPS55100610A (en) 1980-07-31

Similar Documents

Publication Publication Date Title
RU2686839C2 (en) Device and method for electromechanical cable overvoltage indicator
US4301399A (en) Monitoring of electrical insulation integrity
NO324585B1 (en) The error detection system
US3866162A (en) Geophone takeout assembly for seismic cables
US4972179A (en) Liquid leakage detection apparatus including wheatstone bridge
US4684293A (en) Cable for fastening structures and method of detecting damage to corrosion-preventive layer thereof
CA1256552A (en) Streamer cable with protective sheaths for conductor bundle
KR101201784B1 (en) Plastic pipe with wire for pipeline detection
JPS6349326B2 (en)
US6333898B1 (en) Seismic cables and a method for manufacturing such
Nishimoto et al. Development of 66 kV XLPE submarine cable using optical fiber as a mechanical-damage-detection-sensor
EP0113239B1 (en) An insulated pipe system
JP3107302B2 (en) DC solid power cable, DC solid power cable line, and method for monitoring DC solid power cable line
JP2018156824A (en) Cable, cable trouble orientation method and connection method of cable
WO2023144916A1 (en) Power cable monitoring system, and method for manufacturing sensor rope
JPH10125141A (en) Cable with deterioration judging function
CN111599517B (en) High-flame-retardant high-shielding torsion-resistant cable
JPH0340280B2 (en)
JPH0817260A (en) Iron wire armored cable line and its abnormality detecting method
JPS6119463Y2 (en)
JPH0231829B2 (en) KAITEIKEEBURUNOKENBYOTOKANCHISOCHI
JPH04249207A (en) Optical fiber sensor and cable using the same
JPH0573604U (en) External pressure sensor core and linear external pressure sensor using the same
JPH0340279B2 (en)
JPS6119462Y2 (en)