JPS6349148A - Method for measuring number of atomic nuclei - Google Patents

Method for measuring number of atomic nuclei

Info

Publication number
JPS6349148A
JPS6349148A JP61191228A JP19122886A JPS6349148A JP S6349148 A JPS6349148 A JP S6349148A JP 61191228 A JP61191228 A JP 61191228A JP 19122886 A JP19122886 A JP 19122886A JP S6349148 A JPS6349148 A JP S6349148A
Authority
JP
Japan
Prior art keywords
nuclear
magnetic resonance
detected
nuclear magnetic
nuclei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191228A
Other languages
Japanese (ja)
Other versions
JPH043217B2 (en
Inventor
徹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61191228A priority Critical patent/JPS6349148A/en
Publication of JPS6349148A publication Critical patent/JPS6349148A/en
Publication of JPH043217B2 publication Critical patent/JPH043217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、例えば人体の診断装置に利用さね1、核磁
気共鳴情報を被検体から得る方法に関し、特に励起した
原子核の核数を測定する方法に係わる。
Detailed Description of the Invention "Industrial Application Field" This invention relates to a method for obtaining nuclear magnetic resonance information from a subject, for example, in a diagnostic device for the human body, and in particular for measuring the number of excited atomic nuclei. It concerns the method of doing so.

「従来の技術」 従来において、被検体から特定の原子核の核磁気共鳴情
報の空間分布を得る技術は、確立されている。その空間
分布とは、単位体積当りの特定原子核の核数、即ち、濃
度の相対的な比較を表わすものであった。また、スペク
トロスコピー技術でも、多くの化学シフト情報は、得ら
れるが、そのスペクトルIPターンは、化学シフトが異
なる原子核の濃度についての相対的な比較を示している
にすぎなかった。
"Prior Art" Conventionally, a technique for obtaining the spatial distribution of nuclear magnetic resonance information of a specific atomic nucleus from a subject has been established. The spatial distribution represents the number of specific atomic nuclei per unit volume, that is, the relative comparison of concentrations. Furthermore, although a lot of chemical shift information can be obtained by spectroscopy technology, the spectral IP turn only shows a relative comparison of the concentrations of nuclei with different chemical shifts.

このように相対的な核数ではなく絶対的核数を測定する
ために、基準物質いわゆるファントムを被検体の検出部
分に同時に配し、検出部分と同一条件でその基準物質か
らの核磁気共鳴信号を検出し、これと検出部分からの核
磁気共鳴信号強度とを比較することにより被検体中の濃
度、つまり核数を求める方法が提案されている。この従
来の方法は、較正法が複雑で十分な精度が期待されず、
特に表面コイルを用いた測定においては磁場を被検出部
と基準物質とを同一条件にすることができないため広く
用いられなかった。
In this way, in order to measure the absolute number of nuclei rather than the relative number of nuclei, a reference material, a so-called phantom, is placed on the detection area of the specimen at the same time, and the nuclear magnetic resonance signal from the reference material is measured under the same conditions as the detection area. A method has been proposed in which the concentration in the specimen, that is, the number of nuclei, is determined by detecting the nuclear magnetic resonance signal and comparing this with the nuclear magnetic resonance signal intensity from the detected part. This conventional method has a complicated calibration method and is not expected to have sufficient accuracy.
Particularly in measurements using surface coils, it has not been widely used because the magnetic field cannot be set to the same conditions for the detected part and the reference material.

この発明の目的は核磁気共鳴信号からその原子核の核数
を測定する方法を提供することにある。
An object of the present invention is to provide a method for measuring the number of atomic nuclei from nuclear magnetic resonance signals.

「問題点を解決するための手段」 この発明によれば被検体に磁場を与えると共に高周波パ
ルスを与えてその被検体の被検出原子核スピンを励起し
、その励起により発生する核磁気共鳴信号を期間TsO
間受信し、その受信信号から上記被検体の選定された部
分の核磁気共鳴信号強度Sを算出する。その信号強度S
を用いて(1)式を演算して上記選定された部分の上記
被原子核の核数nを得る。
"Means for Solving the Problem" According to the present invention, a magnetic field is applied to an object and a high frequency pulse is applied to excite the nuclear spins of the object to be detected, and the nuclear magnetic resonance signal generated by the excitation is transmitted over a period of time. TsO
The nuclear magnetic resonance signal intensity S of the selected portion of the subject is calculated from the received signal. Its signal strength S
Using equation (1), the number n of the target nuclei in the selected portion is obtained.

へ Kは上記高周波パルスの電力Wが包絡電力の場合は定数
6であり、平均電力の場合は定数6×赴であり、Δtl
d上記高周波ノクルスのパルス幅、kはボルツマン定数
、 Tは被検体の絶対温度、 ■は被検出核スピン量子数、 Wはブランク定数を2πで割った値、 ω0は核磁気共鳴信号角周波数、 ■は上記選定された部分の体積、 Nは雑音である。
K is a constant 6 when the power W of the high-frequency pulse is an envelope power, and is a constant 6 x K when it is an average power, and Δtl
dThe pulse width of the above-mentioned high-frequency Noculus, k is the Boltzmann constant, T is the absolute temperature of the sample, ■ is the number of nuclear spin quantum numbers to be detected, W is the value obtained by dividing the blank constant by 2π, ω0 is the nuclear magnetic resonance signal angular frequency, (2) is the volume of the part selected above, and N is the noise.

以下先ず(1)式が得られる理由を説明する。First, the reason why formula (1) is obtained will be explained below.

被検体に主磁場を与えた時、その被検出原子核スビ/量
子数と磁化Mとの関係は(2)式で与えられることか知
られている(例えばA、AB弘GAM 、 ’ THE
 。
It is known that when a main magnetic field is applied to an object, the relationship between the detected atomic nucleus deviation/quantum number and magnetization M is given by equation (2) (for example, A, AB Hiro GAM, 'THE
.

PRINCIPLES OF NTJCLEARMAG
NETISM、 0XFORD UNIV。
PRINCIPLES OF NTJCLEARMAG
NETISM, 0XFORD UNIV.

RRESS、 P、 2 (1961) )。RRESS, P. 2 (1961)).

M = n r2Fr2I(I+1)B  /3kT 
        (2)n:単位体積当りの被検出原子
核数 γ:磁気回転比 丘ニブランク定数を2πで割った値 B:主磁場強度 k:ボルツマン定数 T:被検体の絶対温度。
M = n r2Fr2I(I+1)B /3kT
(2) n: Number of nuclei to be detected per unit volume γ: Value obtained by dividing the gyromagnetic bhikuni blank constant by 2π B: Main magnetic field strength k: Boltzmann constant T: Absolute temperature of the object.

一方、核磁気共鳴信号を受信されるコイルの両端に誘起
される電圧Sは、 S=ω。MBlv               (3
)となる。ここで、ω0は核磁気共鳴角周波数、B。
On the other hand, the voltage S induced across the coil receiving the nuclear magnetic resonance signal is S=ω. MBlv (3
). Here, ω0 is the nuclear magnetic resonance angular frequency, B.

は、コイルIAの電流を流した時に被検体の位置に生ず
る磁束密度、■は、被検体の選定された部分の体積であ
る。
is the magnetic flux density generated at the position of the subject when the current of the coil IA is applied, and ■ is the volume of the selected part of the subject.

被検体から被検出原子核の核磁気共鳴信号を発生させる
には、被検体に主磁場を与えると共に高周波ノにルスを
与え、その時の主磁場強度B0と、高周波・ぞルスの搬
送波角周波数ω。と、その高周波・ぞルスのノ?ルス幅
Δtとを選定して、被検出原子核スピンの方向を定常状
態から90度倒して、その原子核スピンの自由才差運動
を起させ、つまりその原子核スピンを励起し、その自由
才差運動により発生する自由誘導減衰信号、つまり核磁
気共鳴信号をコイルで受信する。この原子核スピンを励
起するだめの高周波・!ルスは90°RF A?ルスと
呼ばれている。
In order to generate a nuclear magnetic resonance signal of a detected atomic nucleus from a subject, a main magnetic field is applied to the subject and a radio frequency pulse is applied, and the main magnetic field strength B0 at that time and the carrier wave angular frequency ω of the radio frequency pulse are set. And that high frequency, Zorus no? By selecting the pulse width Δt, the direction of the detected nuclear spin is turned 90 degrees from the steady state to cause free precession of the nuclear spin, that is, the nuclear spin is excited, and the free precession causes The generated free induction decay signal, or nuclear magnetic resonance signal, is received by the coil. The high frequency that excites this nuclear spin! Luz is 90°RF A? It's called Luz.

この90°RF /#ルスをコイル(受信コイルト同一
の場合は)に流した時に発生する磁束密度B、。0は(
4)式となる。
The magnetic flux density B, which is generated when this 90°RF/#rus is passed through the coil (if the receiving coil is the same). 0 is (
4) Equation becomes.

B、。o(t)=B1×I(t)×了 この磁束密度B、。o(t)は、核スピンと同じ周波数
で回転する回転座標系での90°RFパルスの磁束密度
であり、lXTはコイルを流れる電流の時刻tに於ける
値である。(4)式の右辺の%は、コイルを流れる電流
1.つまシタ0°RFパルスの包絡線のうち、核スピン
と同じ回転成分のものは、全体の%であることを意味し
ている。
B. o(t)=B1×I(t)×this magnetic flux density B. o(t) is the magnetic flux density of a 90° RF pulse in a rotating coordinate system rotating at the same frequency as the nuclear spin, and lXT is the value of the current flowing through the coil at time t. % on the right side of equation (4) is the current flowing through the coil 1. This means that of the envelope of the 0° RF pulse, the rotational component that is the same as the nuclear spin accounts for % of the total.

また、この磁束密度B、。0には次の関係がある。Also, this magnetic flux density B. 0 has the following relationship.

但し、Δtは、90’ RF/J?ルスのA?ルス幅で
ある。
However, Δt is 90' RF/J? Luz's A? It is the width of the loop.

(4)式及び(5)式から(6)式が得られる。Equation (6) is obtained from equations (4) and (5).

一方、90°RFパルスの送信電力Wを、包絡線電力で
表わすと(7)式となる。
On the other hand, when the transmission power W of the 90° RF pulse is expressed by envelope power, it becomes equation (7).

ここで、Rはコイルの抵抗値である。Here, R is the resistance value of the coil.

また、コイルに誘起される雑音の大きさNは、N= 7
五T(8) であることが知られている。ここで 73は、核磁気共
鳴信号の受信期間の長さである。
In addition, the magnitude of noise N induced in the coil is N=7
It is known that 5T(8). Here, 73 is the length of the reception period of the nuclear magnetic resonance signal.

従って、(3)式と(6)乃至(8)式とより(9)式
が得られ01式を定義する。
Therefore, formula (9) is obtained from formula (3) and formulas (6) to (8), and formula 01 is defined.

90°RF Aルスの波形工(t)が定まれば、このα
は求まる。
Once the corrugation (t) of 90°RF A is determined, this α
is determined.

(2)式、(9)式、60式より、単位体積当りの原子
核数nはql)式として で表わされる。αη式右辺のS、W、Nは測定され、そ
の他は測定条件から求まり、従ってαめ式を演算するこ
とにより原子核数nを定量的に求めることができる。な
お90°RFパルスの電力Wとして平均電力を用いる場
合は(11)式の右辺に4を掛算すればよい。
From equations (2), (9), and 60, the number n of nuclei per unit volume is expressed as ql). S, W, and N on the right side of the αη formula are measured, and the others are determined from the measurement conditions. Therefore, by calculating the α formula, the number n of nuclei can be quantitatively determined. Note that when using the average power as the power W of the 90° RF pulse, the right side of equation (11) may be multiplied by 4.

受信信号強度Sが小さい場合は繰り返し測定し、その信
号強度の加算平均値を用いればよい。この場合その測定
繰り返し周間をtr、核スビ/の縦緩和時間をT0n繰
り返し回数をN、とすれば、この加算により信号はNr
倍となるが、雑音はへ倍とt:す、また核スピンが完全
に定常状態に戻る前に再び測定を開始することにもとづ
く補正をするため(6)式を<11)式に掛算する。
If the received signal strength S is small, it is sufficient to measure it repeatedly and use the average value of the signal strength. In this case, if the measurement repetition period is tr, and the longitudinal relaxation time of the nuclear stripe is T0n, then the number of repetitions is N, then this addition results in a signal of Nr.
However, the noise is multiplied by t:. Also, in order to make a correction based on starting the measurement again before the nuclear spin completely returns to the steady state, multiply equation (6) by equation <11). .

ここで、核スピンの横緩和時間T2は、叫よりも十分短
かいものとした。
Here, the transverse relaxation time T2 of the nuclear spin was set to be sufficiently shorter than the excitation.

核磁気共鳴診断装置(NMR−CT)においてはし11
えば被検体に2軸方向の主磁場を与え、z 4Nfiに
沿って磁場強度が漸次変化しているZ軸方向の磁場、い
わゆる傾斜磁場G2を与え、この状態で90°p、F/
Jルスを被検体に与えて、Z軸上のこれと直角な断面(
スライス面)における被検体の特定の原子核、例えばプ
ロトンのスピンを励起し、その後、y +(伯に沿って
強度が漸次変化しているZ軸方向の傾斜磁場Gyを短時
間与えた後、X軸に沿って強度が変化しているZ軸方向
の傾斜磁場Gxを与えて被検体より発生する核磁気共鳴
信号を一定周期で一定時間T3の間サンプリングし、上
記シーケンスを傾斜磁場Gyを変化させて所定回数行う
。このようにして得られた核磁気共鳴信号を検波した時
系列を2次元フーリエ変換して被検体の上記断面内の上
記特定の原子核の密度の相対分布を求めている。
Chopsticks 11 in nuclear magnetic resonance diagnostic equipment (NMR-CT)
For example, a main magnetic field in biaxial directions is applied to the subject, a magnetic field in the Z-axis direction whose magnetic field strength gradually changes along z4Nfi, a so-called gradient magnetic field G2, is applied, and in this state, 90°p, F/
Apply J rus to the subject and take a cross section perpendicular to this on the Z axis (
After exciting the spin of a specific atomic nucleus, such as a proton, in the specimen at the slice plane), and then applying a gradient magnetic field Gy in the Z-axis direction whose intensity gradually changes along y + (x), Applying a gradient magnetic field Gx in the Z-axis direction whose intensity changes along the axis, the nuclear magnetic resonance signal generated from the subject is sampled at a constant period for a constant time T3, and the above sequence is repeated by changing the gradient magnetic field Gy. The detection time series of the nuclear magnetic resonance signals thus obtained is subjected to two-dimensional Fourier transform to determine the relative distribution of the density of the specific atomic nuclei within the cross section of the object.

このような手法を用いて原子核密度の相対分布ではなく
原子核数の分布を求めるには前記(1υ式中の信号強度
Sとして、フーリエ変換後の各画素(ボクセル)の信号
強度を用い、体積Vはその画素(ボクセル)の体積を用
いる。原子核スピンの励起に用いる90°RF /Fル
スとしてがウスシアンt2 波形(包絡)のものを用いる場合はI(tl=eエリα
は90°RFパルスの波形から決まり、90°RFパル
スとして矩形波を用いる時はα=1となる。
In order to obtain the distribution of the number of atomic nuclei instead of the relative distribution of the nuclear density using such a method, the signal intensity of each pixel (voxel) after Fourier transform is used as the signal intensity S in the equation (1υ), and the volume V is the volume of the pixel (voxel).If the 90° RF /F pulse used for excitation of nuclear spins is of the Ussian t2 waveform (envelope), then I(tl = e area α
is determined from the waveform of the 90° RF pulse, and when a rectangular wave is used as the 90° RF pulse, α=1.

また前述の2次元画像情報として核数を演算するには、
例えばプロトンの場合、サンプリング期間T3は16ミ
リ秒程度であり、横縦和時間T2よυ小さく、一般にT
、 < 72であって、横縦和の影響が無視でき、各画
素の信号強度をそのままSとして用いることができる。
In addition, to calculate the number of nuclei as the two-dimensional image information mentioned above,
For example, in the case of protons, the sampling period T3 is about 16 milliseconds, which is smaller than the horizontal and vertical sum time T2, and generally T
, < 72, the influence of the horizontal and vertical sum can be ignored, and the signal strength of each pixel can be used as S as is.

また各画素は前記例では傾斜磁場G、を変化した回数だ
け、つまり一般に画像のライン数だけ信号が加算平均さ
れるため、この数が前記繰返し回数Nrとなる。
Further, in each pixel, signals are added and averaged the number of times the gradient magnetic field G is changed in the above example, that is, generally the number of lines of the image, so this number becomes the number of repetitions Nr.

雑音Nは例えば次のようにして求めることができる。つ
まシコイルと受信系とをインピーダンス整合を行ってお
き、そのコイルの代υに擬似インピーダンス素子、例え
ば50Ωで受信系とインピーダンス整合している時には
、5oΩの抵抗素子を接続し、信号強度測定と同じ測定
を行ないその測定データを2次元フーリエ変換して各画
素の雑音レベルを得る。このように測定することにより
コイルが受信する外来雑音の影響を避けることが出来る
。この時得られる雑音レベルは、受信系の雑音指数分だ
け大きくなっているので、予め雑音指数を測定しておき
補正しなければならない。さらに、その補正後の雑音レ
ベルは、例えばW、A。
For example, the noise N can be determined as follows. Impedance matching is performed between the coil and the receiving system, and a pseudo impedance element is connected to the coil, for example, when the impedance is matched with the receiving system with 50Ω, a 50Ω resistance element is connected, and the same as signal strength measurement is performed. Measurement is performed and the measured data is subjected to two-dimensional Fourier transform to obtain the noise level of each pixel. By measuring in this way, the influence of external noise received by the coil can be avoided. The noise level obtained at this time is increased by the noise figure of the receiving system, so the noise figure must be measured in advance and corrected. Furthermore, the noise level after the correction is, for example, W, A.

Edelstein、 etal、、 Med、Phy
s、11(2)、 180(1984)。
Edelstein, etal, Med, Phy.
s, 11(2), 180 (1984).

に詳しく記載されていることから理解されるように前記
0ジ式中で用いられている雑音の大きさNの1.25倍
であるから、このことも考煮して、Nを求める。
As can be understood from the detailed description in , the magnitude of noise N used in the above-mentioned Oji formula is 1.25 times, so N is determined by taking this into consideration as well.

励起・ぐルスの電力Wについては、次のようにして決め
ればよい。90°RF i?ルス電力を変化させ、信号
強度を測定し、これが最大となる時の90’RF・ぐル
スの電力を検出する。この時、コイルに供給される電力
が90°RF電力Wであるので、前記最大信号強度とな
る送信機の送信電力から、送信機及びコイル間の損失分
だけ差引いた値をWとすればよい。また、90°RF’
電力を測定する他の方法としては、小コイル(サーチコ
イル)を核スピン励起用コイルの近傍に配置し、被検体
を測定する前に、ファントム(基糸試料)を用いて、前
記のように、90°RF yFルスを求めておき、かつ
、サーチコイルにより、ファントム測定時の90°RF
・ぐルスの波高値を記録しておき、被検体測定の際の9
0°RF/Pルスの波高値を、ファントム測定時の90
°RF・?ルスの波高値と等しくなるように、RF電力
を調整して、90’RF電力を求めることも出来る。し
かし、この際には、サーチコイルと励起用コイルとの電
気的結合が十分小さいことが必要である。このことは、
サーチコイルの設定による雑音レベルの変化が測定精度
の範囲内にあるか否かで確認できる。
The excitation/gurus power W may be determined as follows. 90°RF i? The signal strength is measured by changing the signal strength, and the power of the 90'RF signal when the signal strength reaches the maximum is detected. At this time, the power supplied to the coil is 90° RF power W, so W may be the value obtained by subtracting the loss between the transmitter and the coil from the transmission power of the transmitter that gives the maximum signal strength. . Also, 90°RF'
Another method for measuring power is to place a small coil (search coil) near the nuclear spin excitation coil, and before measuring the object, use a phantom (base thread sample) to , 90°RF yF pulse is determined in advance, and the 90°RF
・Record the wave height of the glucose and use it as a reference when measuring the object.
The wave height value of 0°RF/P Luss was set to 90° during phantom measurement.
°RF・? It is also possible to obtain the 90' RF power by adjusting the RF power so that it is equal to the peak value of the pulse. However, in this case, it is necessary that the electrical coupling between the search coil and the excitation coil be sufficiently small. This means that
It can be confirmed whether the change in noise level due to search coil settings is within the measurement accuracy range.

例えば、二次元画像情報を得る際、スライス(被検体の
断面)選択によりスライスされた面内の核スピンの位相
が若干不揃いになる。この影響の補正は、予めファント
ムをスライス選択して測定するごとによ9行なうことが
出来る。
For example, when obtaining two-dimensional image information, the phase of nuclear spins within a sliced plane becomes slightly irregular due to the selection of a slice (a cross section of a subject). This influence can be corrected nine times each time a slice of the phantom is selected and measured in advance.

以上のようにして測定された値を用いて、α0式。Using the values measured as above, α0 formula.

I5a式により、被検体の選択した部分、つまり各画素
における特定の原子核の核数を定量的に求められる。
Using equation I5a, the number of specific atomic nuclei in a selected portion of the object, that is, in each pixel, can be quantitatively determined.

スペクトロスコピーを用いて被検体の選択した部分の特
定の原子核の核数を演算する場合は、−般に90°RF
/#ルスとしては矩形波が用いられ、従って、前述した
ようにα=1であり、体積Vは例えば特開昭59−10
7245号公報、W、P、 AVE 。
When spectroscopy is used to calculate the number of specific nuclei in a selected part of an object, - generally 90° RF
/# A rectangular wave is used as the pulse, therefore, as mentioned above, α=1, and the volume V is, for example, JP-A-59-10
Publication No. 7245, W, P, AVE.

et al、、 J、Magn、 Re5on、、 5
6.350(1984)などに示されている部分選択ス
ペクトロスコピー法により決めればよい。スペクトロス
コピーではT3〉T2とされることがあシ、この湯合は
横縦和時間T2の影響が無視できなくなり、この時は、
受信検波された核磁気共鳴信号をフーリエ変換し、その
特定原子核スピンと対応した複数のスペクトルの集合と
なった信号の積分値、つまり各スペクトルの強度を加算
した値を信号強度Sとすればよい。
et al, J, Magn, Re5on,, 5
6.350 (1984), etc., may be used. In spectroscopy, T3>T2 must be established, and in this case, the influence of the horizontal and vertical sum time T2 cannot be ignored, and at this time,
The received and detected nuclear magnetic resonance signal may be Fourier transformed, and the signal strength S may be the integral value of the signal that is a set of multiple spectra corresponding to the specific atomic nuclear spin, that is, the value that is the sum of the intensities of each spectrum. .

「発明の効果」 以上述べたようにこの発明によれば、核磁気共鳴イメー
ジング1及び核磁気共鳴スペクトロスコピーにより測定
される原子核を含むもの、即ち例えば、′Hを含むもの
は水、脂肪など、3’p ’k 含tr モのは、アデ
ノシン三すン酸、クレアチレリン酸。
"Effects of the Invention" As described above, according to the present invention, substances containing atomic nuclei measured by nuclear magnetic resonance imaging 1 and nuclear magnetic resonance spectroscopy, that is, substances containing 'H, such as water and fat, Those containing 3'p'k are adenosine trisonic acid and creatyrelic acid.

無機リンなど、Naを含むものは、Na+イオンなどの
被測定部分における核数、即ち濃度を求めることができ
る。
For substances containing Na, such as inorganic phosphorus, the number of nuclei, ie, the concentration, of Na + ions in the measured portion can be determined.

なお、従来において核磁気共鳴装置において、その装置
Sハかどこまで到達できるか、つまり装置の絶対評価を
行うことができなかったが、(1)式を変形すると、0
式となり、 KΔt(kT)2iv’i;i このa1式を演算することによシ、その装置を評価する
ことができる。つまり基準試料について見ればnは既知
であり、Wは装置により決まり、その他は測定条件で決
まるため、Ql k演算でき、その装置のS/Nを求め
ることができる。
It should be noted that in the past, in nuclear magnetic resonance apparatuses, it was not possible to perform an absolute evaluation of the device, that is, how far the device could reach S, but by modifying equation (1), 0
The equation is KΔt(kT)2iv'i;i By calculating this a1 equation, the device can be evaluated. In other words, when looking at the reference sample, n is known, W is determined by the device, and other things are determined by the measurement conditions, so Qlk can be calculated and the S/N of the device can be determined.

Claims (1)

【特許請求の範囲】[Claims] (1)被検体に磁場を与えると共に高周波パルスを与え
てその被検体の被検出原子核スピンを励起し、 その励起により発生する核磁気共鳴信号を期間T_Sの
間受信し、 その受信信号から上記被検体の選定された部分の核磁気
共鳴信号強度Sを算出し、 その信号強度Sを用いて次式を演算して上記選定された
部分の上記被検出原子核の核数を得る原子核数測定方法
。 {[KΔt(kT)3/2√α]/[π@n@^2I(
I+1)ω_O^2V√T_S]}×(S√W/N)K
は上記高周波パルスの電力Wが包絡電力の場合は6、平
均電力の場合は6×√2、 Δtは上記高周波パルスのパルス幅、 kはボルツマン定数、 Tは上記被検体の絶体温度、 ▲数式、化学式、表等があります▼ @n@はプランク定数を2πで割った値、 Iは上記被検出核スピン量子数、 ω_Oは上記核磁気共鳴信号角周波数、 Vは上記選定された部分の体積、 Nは雑音。
(1) Apply a magnetic field to the object and a high-frequency pulse to excite the nuclear spins to be detected in the object, receive the nuclear magnetic resonance signal generated by the excitation for a period T_S, and use the received signal to derive the nuclear spin of the object to be detected. A nuclear magnetic resonance signal intensity S of a selected portion of a specimen is calculated, and the following equation is calculated using the signal intensity S to obtain the number of nuclei to be detected in the selected portion. {[KΔt(kT)3/2√α]/[π@n@^2I(
I+1)ω_O^2V√T_S]}×(S√W/N)K
is 6 if the power W of the high-frequency pulse is the envelope power, 6×√2 if it is the average power, Δt is the pulse width of the high-frequency pulse, k is Boltzmann's constant, T is the absolute temperature of the object to be tested, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ @n@ is the value obtained by dividing Planck's constant by 2π, I is the above-mentioned detected nuclear spin quantum number, ω_O is the above-mentioned nuclear magnetic resonance signal angular frequency, and V is the above-mentioned selected part. Volume, N is noise.
JP61191228A 1986-08-15 1986-08-15 Method for measuring number of atomic nuclei Granted JPS6349148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191228A JPS6349148A (en) 1986-08-15 1986-08-15 Method for measuring number of atomic nuclei

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191228A JPS6349148A (en) 1986-08-15 1986-08-15 Method for measuring number of atomic nuclei

Publications (2)

Publication Number Publication Date
JPS6349148A true JPS6349148A (en) 1988-03-01
JPH043217B2 JPH043217B2 (en) 1992-01-22

Family

ID=16271027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191228A Granted JPS6349148A (en) 1986-08-15 1986-08-15 Method for measuring number of atomic nuclei

Country Status (1)

Country Link
JP (1) JPS6349148A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535294B2 (en) * 2008-01-30 2010-09-01 杉山 早実 Garlic component absorbing tea and method for producing the same
KR101346139B1 (en) * 2013-06-20 2013-12-31 (주)새롬바이오 Improved preparatoin method of black garlic and black onion using supersaturated salt solution and composion for improvement of lipid metabolism and liver function using them

Also Published As

Publication number Publication date
JPH043217B2 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US5539309A (en) Method and apparatus for sample monitoring
Poon et al. Practical T2 quantitation for clinical applications
Danielsen et al. Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites
US4254778A (en) Imaging systems
US4536712A (en) Method and apparatus for examination by nuclear magnetic resonance
JP3402916B2 (en) Method for adjusting shim of magnet apparatus of nuclear spin tomography apparatus and apparatus for implementing the method
JP4201993B2 (en) Apparatus and system for measurement and compensation of eddy currents induced during NMR imaging operations
Mitchell et al. A rapid measurement of T1/T2: the DECPMG sequence
JPH0350535B2 (en)
KR19980064809A (en) Measurement and compensation method to change the magnetic field introduced by vortex current in space and time
JPH03182231A (en) Method and instrument for deciding spatial change of magnetic field strength
JP4672826B2 (en) Method for detecting eddy currents in a nuclear spin resonance apparatus
EP0208483B1 (en) Method and apparatus for rapid nmr imaging
US6304084B1 (en) Method of improved magnetic resonance spectroscopic localization using spectral-spatial pulses
JPH0246826A (en) Capacity selective deciding method and device for magnetic resonance spectrum by selective polarization transfer pulse train
JPH04288136A (en) Method for high-speed correction of magnet
Bottomley et al. The dual-angle method for fast, sensitive T1 measurement in vivo with low-angle adiabatic pulses
US5451877A (en) Method for the compensation of eddy currents caused by gradients in a nuclear magnetic resonance apparatus
Henoumont et al. How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions
US20070241754A1 (en) Magnetic Resonance Imaging System and Magnetic Resonance Imaging Method
JP3808601B2 (en) Magnetic resonance diagnostic equipment
Gurney et al. A simple method for measuring B0 eddy currents
US5317262A (en) Single shot magnetic resonance method to measure diffusion, flow and/or motion
JPS6349148A (en) Method for measuring number of atomic nuclei
EP2378281A1 (en) A method to measure electron relaxation times T1 in EPR tomography and a system for applying the method