JPS6348920B2 - - Google Patents

Info

Publication number
JPS6348920B2
JPS6348920B2 JP10211278A JP10211278A JPS6348920B2 JP S6348920 B2 JPS6348920 B2 JP S6348920B2 JP 10211278 A JP10211278 A JP 10211278A JP 10211278 A JP10211278 A JP 10211278A JP S6348920 B2 JPS6348920 B2 JP S6348920B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal composition
frequency
straight
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10211278A
Other languages
Japanese (ja)
Other versions
JPS5529545A (en
Inventor
Sadao Kanbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10211278A priority Critical patent/JPS5529545A/en
Publication of JPS5529545A publication Critical patent/JPS5529545A/en
Publication of JPS6348920B2 publication Critical patent/JPS6348920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は液晶組成物に係わり、さらに詳しくは
誘電分散を利用した液晶表示素子に用いられる液
晶組成物に関する。 現在液晶表示素子は電卓や時計などのデジタル
表示に広く用いられている。この広く使用されて
いる液晶表示素子は初期の頃スタテイツク駆動さ
れていたが、最近ではダイナミツク駆動が主であ
る。 現在行われているダイナミツク駆動方式は電圧
平均化法とよばれる方式である。しかしこの方法
によるかぎり、現在一般に使用されている液晶組
成物では4桁駆動が限度である。このため多桁駆
動が必要とされるキヤラクターデイスプレイ、テ
レビ等への応用には問題があつた。 このような電圧平均化法に対する考えとして登
場したのが2周波法ダイナミツク駆動である。 (以下この方法を2F法と略称する。) この方式の特徴としては点灯時の電圧と非点灯
時の電圧の比が桁数だけでなく、駆動電圧、液晶
の誘電率に依存することがあげられる。これに対
して従来の電圧平均化法は桁数のみに依存した。
このため理論的には2F法の駆動桁数は、駆動電
圧、液晶の誘電率等を変えることにより増加させ
ることができる。 このような二周波法ダイナミツク駆動用の液晶
組成物に要求される条件としては、 (1) 室温付近で幅広い範囲で液晶状態を示すこと (2) 表示体としたときの応答速度の早いこと (3) 交差周波数が低いこと (4) 低周波側の誘電異方性△εLと高周波側の誘電
異方性|△εH|とがほぼ等しいこと の4つの条件を同時に満足するものが、二周波法
ダイナミツク駆動に適したものである。 前記(1)、(2)は一般的にすべての液晶組成物にあ
てはまることであるが、特に(3)、(4)は二周波法ダ
イナミツク駆動用液晶組成物に特有の重要な特性
として要求されるものであり、3の交差周波数fc
の高低が消費電力に大きく利いて来るもので、交
差周波数fcが高いと駆動電圧としてより高い周波
数のものが必要となるので、消費電力が大きくな
つて来るものである。 また(4)の低周波側又は高周波側の誘電異方性
は、低周波測又は高周波側の駆動電圧を左右する
ものであり、バランスがとれないと、夫々の駆動
電圧を変えねばならないため、電圧を夫々の駆動
電圧に応じて電源電圧レベルを揃える必要が生じ
るため、駆動回路を複雑にさせるものである。 一方、従来技術として二周波法ダイナミツク駆
動用液晶組成物の例が、Applied Physics
Letters、Vol.25、No.4、15 August1974 P186〜
188に、 と、 との、1:1の混合物を用いた例として記載され
ている。 これによれば、50HzVoltageのとき、低周波側
の誘電異方性△εL=6.2であり、10KHzVoltageの
とき高周波側の誘電異方性|△εH|=−2.2であ
る。 これでは、低周波側と高周波側の誘電異方性の
バランスがとれていなくて、前述のような問題点
を有している。 本発明は、このような問題点を解決して、交差
周波数を低く維持しつつ、よりバランスのとれた
液晶組成物を提供しようとするものである。 本発明の液晶組成物は下式で示される化合物群
を適当に組み合わせるか、あるいは他の液晶と組
み合わせることにより得ることができる。 (但し、R1は炭素数が5個、7個または8個の
直鎖アルキル基、R2は炭素数7個または8個の
直鎖アルキル基、R3は炭素数が2〜4個の直鎖
アルキル基、R4は炭素数が5個または6個の直
鎖アルキル基、R5は炭素数が6個の直鎖アルコ
キシ基もしくは炭素数が5個または7個の直鎖ア
ルキル基をそれぞれ示す。) これら化合物はいずれも2F法の表示素子に使
用される液晶としては必要不可欠な液晶であり次
のような性質を示す。1群の液晶性化合物は低周
波においては誘電異方性(△ε)が正であり、高
周波においては負となる。2群、3群の化合物は
いずれも低周波、高周波において△εは負とな
る。4群の化合物は低周波における△εの値が非
常に大きい液晶性化合物である。又、4群の化合
物群以外はいずれも低融点を示す。一方これらの
化合物の共通な特徴はいずれも分子の長さが長
く、交差周波数が低く、高周波における|△ε|
の値が大きいことである。これら化合物の特性を
表1に示す。
The present invention relates to a liquid crystal composition, and more particularly to a liquid crystal composition used in a liquid crystal display element utilizing dielectric dispersion. Currently, liquid crystal display elements are widely used in digital displays such as calculators and watches. This widely used liquid crystal display element was statically driven in its early days, but recently dynamically driven is the main method. The dynamic drive method currently in use is a method called the voltage averaging method. However, as long as this method is used, four-digit driving is the limit for liquid crystal compositions currently in general use. This has caused problems in application to character displays, televisions, etc. that require multi-digit driving. The two-frequency dynamic drive method was introduced as an idea for this voltage averaging method. (Hereinafter, this method will be abbreviated as the 2F method.) A feature of this method is that the ratio of the voltage when lighting and the voltage when not lighting depends not only on the number of digits but also on the driving voltage and the dielectric constant of the liquid crystal. It will be done. In contrast, conventional voltage averaging methods depend only on the number of digits.
Therefore, theoretically, the number of driving digits in the 2F method can be increased by changing the driving voltage, dielectric constant of the liquid crystal, etc. The conditions required for a liquid crystal composition for such a dual-frequency dynamic drive are: (1) It should exhibit a liquid crystal state over a wide range around room temperature, and (2) It should have a fast response speed when used as a display. 3) The crossover frequency is low; and (4) the dielectric anisotropy △ε L on the low frequency side and the dielectric anisotropy |△ε H | on the high frequency side are almost equal. This is suitable for dual-frequency dynamic drive. Although (1) and (2) above generally apply to all liquid crystal compositions, (3) and (4) in particular are required as important characteristics specific to liquid crystal compositions for dual-frequency dynamic drive. and the crossover frequency fc of 3
The level of fc has a large effect on power consumption, and if the crossover frequency fc is high, a higher frequency drive voltage is required, which increases power consumption. In addition, the dielectric anisotropy on the low frequency side or high frequency side in (4) influences the driving voltage on the low frequency measurement or high frequency side, and if the balance cannot be achieved, the respective driving voltages must be changed. Since it is necessary to equalize the power supply voltage level according to each drive voltage, the drive circuit becomes complicated. On the other hand, as a conventional technology, an example of a liquid crystal composition for dynamic drive using a dual frequency method is published by Applied Physics.
Letters, Vol.25, No.4, 15 August1974 P186~
188, and, An example using a 1:1 mixture of According to this, when the voltage is 50 Hz, the dielectric anisotropy on the low frequency side is Δε L =6.2, and when the voltage is 10 KHz, the dielectric anisotropy on the high frequency side is |Δε H |=−2.2. In this case, the dielectric anisotropy on the low frequency side and on the high frequency side is not balanced, resulting in the above-mentioned problems. The present invention aims to solve these problems and provide a more balanced liquid crystal composition while maintaining a low crossover frequency. The liquid crystal composition of the present invention can be obtained by appropriately combining the compound groups represented by the following formulas or by combining them with other liquid crystals. (However, R 1 is a straight chain alkyl group with 5, 7 or 8 carbon atoms, R 2 is a straight chain alkyl group with 7 or 8 carbon atoms, and R 3 is a straight chain alkyl group with 2 to 4 carbon atoms. Straight-chain alkyl group, R 4 is a straight-chain alkyl group with 5 or 6 carbon atoms, R 5 is a straight-chain alkoxy group with 6 carbon atoms or a straight-chain alkyl group with 5 or 7 carbon atoms. Each of these compounds is shown below.) All of these compounds are essential liquid crystals used in display elements using the 2F method, and exhibit the following properties. The dielectric anisotropy (Δε) of the first group of liquid crystal compounds is positive at low frequencies and negative at high frequencies. For the compounds of Groups 2 and 3, Δε is negative at both low and high frequencies. The compounds of Group 4 are liquid crystalline compounds that have a very large value of Δε at low frequencies. In addition, all compounds other than Group 4 exhibit low melting points. On the other hand, the common characteristics of all these compounds are long molecular length, low crossover frequency, and high frequency |△ε|
The value of is large. The properties of these compounds are shown in Table 1.

【表】【table】

【表】 表1に示した液晶性化合物を適当に混合、ある
いは表1に示した以外の他の液晶性化合物と混合
したところ非常に特性の良い液晶組成物か得られ
た。以下実施例により混合例および混合液晶の特
性を述べる。 実施例 1 表2に示す液晶組成物を調合したところ、この
液晶組成物は低温でグリース状になりはつきりし
た融点を示さなかつた。しかし0℃近辺において
ははつきり流動性を示した。透明点は100℃以上
あり実用上問題はなかつた。 この液晶の20℃における誘電異方性の大きさと
周波数の関係を示した図が第1図であるが、この
図より交差周波数は2KHz付近にあることがわか
る。これはFE型表示体に用いられる一般の液晶
が数百KHz以上あることからみると画期的なこと
である。又、△εLが+4.0と比較的大きく、△εH
−3.3で、バランスのとれたものであつた。
[Table] When the liquid crystal compounds shown in Table 1 were appropriately mixed or mixed with other liquid crystal compounds other than those shown in Table 1, a liquid crystal composition with very good characteristics was obtained. Mixing examples and characteristics of mixed liquid crystals will be described below with reference to Examples. Example 1 When a liquid crystal composition shown in Table 2 was prepared, the liquid crystal composition became grease-like at low temperatures and did not exhibit a significant melting point. However, at around 0°C, it showed a certain degree of fluidity. The clearing point was over 100°C, which caused no practical problems. Figure 1 is a diagram showing the relationship between the magnitude of dielectric anisotropy and frequency at 20°C for this liquid crystal, and it can be seen from this diagram that the crossover frequency is around 2KHz. This is revolutionary considering that the general liquid crystal used in FE type display has a frequency of several hundred KHz or more. Also, △ε L is relatively large at +4.0, and △ε H
-3.3, which was well balanced.

【表】 又、表3に示すような組成物をつくり、誘電異
方性及び交差周波数を測定した。
[Table] In addition, compositions as shown in Table 3 were prepared, and the dielectric anisotropy and crossover frequency were measured.

【表】 この結果△εL=4.0、△εH−3.3であり、この
ときの交差周波数は2.1KHzであつた。 このことから本発明の液晶組成物は高周波測と
低周波側の誘電異方性がほぼ等しく、また交差周
波数も極めて低いことがわかる。 実施例 2 表4に示す液晶組成物を調合したところ、この
液晶組成物の融点は実施例1の場合と同じ傾向で
あつた。又、透明点は105.5℃であつた。
[Table] The results were △ε L =4.0, △ε H −3.3, and the crossover frequency at this time was 2.1 KHz. This shows that the liquid crystal composition of the present invention has substantially the same dielectric anisotropy at high frequencies and at low frequencies, and also has an extremely low crossover frequency. Example 2 When a liquid crystal composition shown in Table 4 was prepared, the melting point of this liquid crystal composition had the same tendency as in Example 1. Moreover, the clearing point was 105.5°C.

【表】【table】

【表】 この誘電異方性を測定したところ、△εL=+
3.9、△εH−3.3であり、誘電異方性のバランス
が全く崩れていないことがわかつた。 この液晶組成物の交差周波数は実施例1の液晶
組成物の交差周波数より幾分低めであつた。 実施例 3 実施例2の液晶組成物に4−メトキシ−4′−n
−ブチル−アゾキシベンゼンを20重量パーセント
添加した液晶組成物を作り、実施例1と同様にし
て交差周波数を測定したところ、20℃において
6KHzであつた。これは粘性の低いアゾキシ系統
の液晶を添加したため、交差周波数があがつたも
のと思われる。 なお、この液晶組成物の誘電異方性は、△εL
+3.9であり、△εH−3.2であつた。 実施例 4 実施例2の液晶組成物に4−n−アミルシクロ
ヘキサン−1−カルボン酸−4′−メトキシフエニ
ルエステルを20重量パーセント添加した液晶組成
物を作り、実施例1と同様にして、交差周波数を
測定したところ、30℃において6KHzであつた。
誘電異方性の大きさは低周波、高周波両領域にお
いて、実施例1の液晶組成物とほとんど差がなか
つた。 実施例 5 実施例2の液晶組成物に4−n−アミルシクロ
ヘキサン−1−カルボン酸−4′−メトキシフエニ
ルエステルを15重量パーセント、4−(4−n−
アミルフエニル)安息香酸−4−n−ヘプチル−
2−シアノフエニルエステルを15重量パーセント
添加した液晶組成物を調合した。この液晶組成物
の透明点は99.5℃であつた。又この液晶組成物の
誘電異方性の大きさと周波数の関係を30℃におい
て調べたところ第2図に示すグラフが得られた。
これよりこの液晶組成物の交差周波数は4.2KHz
であることがわかる。又、高周波側における△ε
の値は実施例1の場合より小さくなつていること
がわかる。 実施例 6 実施例5の液晶組成物を液晶セルに充填し駆動
したところ25Vで64桁駆動できた。又、このセル
を使用し室温における寿命試験を行つたところ、
FE型表示素子に使用される液晶と同じ電流の増
加傾向を示した。これからこの液晶組成物は従来
のFE型表示素子に用いられる液晶と同程度の安
定性が保障される。 以上の通り本発明の二周波法ダイナミツク駆動
用液晶組成物によれば、 (1) 交差周波数fcが2KHzと非常に低い値を示し、
誘電異方性も低周波側で△εL=+4.0であり、
高周波側の|△εH|も、低周波側の誘電異方性
と余り差のないバランスのとれた液晶組成物を
提供できたので、電源電圧を2通りにする必要
がなく、したがつて駆動回路を複雑にしなくて
もよいものであり、また交差周波数が低いの
で、極度に高い周波数をかける必要がなく、し
たがつて消費電力も少なくて済み、液晶組成物
に対しても負荷が少ないので長寿命とすること
ができる。さらに他の特性を上げるために、他
の液晶化合物を加えても、交差周波数はほぼ4
〜6KHzの範囲に止めることができ、二周波の
多桁駆動に、より好適な液晶組成物となり、室
温付近で25V、64桁駆動を可能としたものであ
る。
[Table] When this dielectric anisotropy was measured, △ε L = +
3.9 and Δε H −3.3, indicating that the balance of dielectric anisotropy was not disrupted at all. The crossover frequency of this liquid crystal composition was somewhat lower than that of the liquid crystal composition of Example 1. Example 3 4-methoxy-4'-n was added to the liquid crystal composition of Example 2.
A liquid crystal composition containing 20% by weight of -butyl-azoxybenzene was prepared, and the crossover frequency was measured in the same manner as in Example 1.
It was 6KHz. This is thought to be due to the addition of azoxy-based liquid crystal with low viscosity, which increased the crossover frequency. Note that the dielectric anisotropy of this liquid crystal composition is △ε L =
+3.9, and △ε H -3.2. Example 4 A liquid crystal composition was prepared by adding 20 weight percent of 4-n-amylcyclohexane-1-carboxylic acid-4'-methoxyphenyl ester to the liquid crystal composition of Example 2, and in the same manner as in Example 1, When the cross frequency was measured, it was 6KHz at 30°C.
There was almost no difference in dielectric anisotropy from the liquid crystal composition of Example 1 in both low frequency and high frequency regions. Example 5 15 weight percent of 4-n-amylcyclohexane-1-carboxylic acid-4'-methoxyphenyl ester and 4-(4-n-
amylphenyl)benzoate-4-n-heptyl-
A liquid crystal composition containing 15% by weight of 2-cyanophenyl ester was prepared. The clearing point of this liquid crystal composition was 99.5°C. When the relationship between the magnitude of dielectric anisotropy and frequency of this liquid crystal composition was investigated at 30°C, the graph shown in FIG. 2 was obtained.
From this, the crossover frequency of this liquid crystal composition is 4.2KHz
It can be seen that it is. Also, △ε on the high frequency side
It can be seen that the value of is smaller than that of Example 1. Example 6 When a liquid crystal cell was filled with the liquid crystal composition of Example 5 and driven, it was possible to drive 64 digits at 25V. Also, when we conducted a lifespan test at room temperature using this cell, we found that
It showed the same increasing trend of current as the liquid crystal used in FE type display elements. From now on, this liquid crystal composition is guaranteed to have the same level of stability as the liquid crystal used in conventional FE type display elements. As described above, according to the liquid crystal composition for dual-frequency dynamic driving of the present invention, (1) the crossover frequency fc exhibits a very low value of 2KHz;
The dielectric anisotropy is also △ε L = +4.0 on the low frequency side,
Since we were able to provide a well-balanced liquid crystal composition with |△ε H | on the high frequency side that is not much different from the dielectric anisotropy on the low frequency side, there is no need to use two power supply voltages, and therefore There is no need to complicate the drive circuit, and since the crossover frequency is low, there is no need to apply an extremely high frequency, so power consumption is low, and there is little load on the liquid crystal composition. Therefore, it can have a long life. Even if other liquid crystal compounds are added to further improve other characteristics, the crossover frequency remains approximately 4.
The liquid crystal composition can be kept within the range of ~6KHz, making it a more suitable liquid crystal composition for dual-frequency, multi-digit driving, and enables 25V, 64-digit driving at around room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の液晶組成物の誘電異方性の
大きさと周波数の関係を示したグラフである。第
2図は実施例5の液晶組成物の誘電異方性の大き
さと周波数の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the magnitude of dielectric anisotropy and frequency of the liquid crystal composition of Example 1. FIG. 2 is a graph showing the relationship between the magnitude of dielectric anisotropy and frequency of the liquid crystal composition of Example 5.

Claims (1)

【特許請求の範囲】 1 少なくとも一般式が下式で表される4種類の
化合物からなることを特徴とする二周波法ダイナ
ミツク駆動用液晶組成物。 (但し、R1は炭素数が5個、7個または8個の
直鎖アルキル基、R2は炭素数7個または8個の
直鎖アルキル基、R3は炭素数が2〜4個の直鎖
アルキル基、R4は炭素数が5個または6個の直
鎖アルキル基、R5は炭素数が6個の直鎖アルコ
キシ基もしくは炭素数が5個または7個の直鎖ア
ルキル基をそれぞれ示す。)
[Scope of Claims] 1. A liquid crystal composition for dynamic drive using a dual frequency method, characterized in that it comprises at least four types of compounds whose general formulas are represented by the following formulas. (However, R 1 is a straight chain alkyl group with 5, 7 or 8 carbon atoms, R 2 is a straight chain alkyl group with 7 or 8 carbon atoms, and R 3 is a straight chain alkyl group with 2 to 4 carbon atoms. Straight-chain alkyl group, R 4 is a straight-chain alkyl group with 5 or 6 carbon atoms, R 5 is a straight-chain alkoxy group with 6 carbon atoms or a straight-chain alkyl group with 5 or 7 carbon atoms. (Indicated respectively.)
JP10211278A 1978-08-22 1978-08-22 Liquid crystal composition Granted JPS5529545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10211278A JPS5529545A (en) 1978-08-22 1978-08-22 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10211278A JPS5529545A (en) 1978-08-22 1978-08-22 Liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS5529545A JPS5529545A (en) 1980-03-01
JPS6348920B2 true JPS6348920B2 (en) 1988-10-03

Family

ID=14318710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10211278A Granted JPS5529545A (en) 1978-08-22 1978-08-22 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS5529545A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2967129D1 (en) * 1979-05-28 1984-08-30 Merck Patent Gmbh Liquid-crystal compositions
DE2933563A1 (en) * 1979-07-18 1981-02-05 Bbc Brown Boveri & Cie ANISOTROPE CONNECTIONS WITH NEGATIVE DK ANISOTROPY
FR2461697A1 (en) * 1979-07-20 1981-02-06 Suwa Seikosha Kk 2-CHLORO-4-ALCOHYLPHENYL 3-CYANO-4-ALCOXYBENZOATE AND USE THEREOF IN A LIQUID CRYSTAL COMPOSITION
DE3164750D1 (en) * 1980-10-13 1984-08-16 Secr Defence Brit Liquid crystal devices
JPS57179783A (en) * 1981-04-30 1982-11-05 Citizen Watch Co Ltd Attachment structure for windshielding glass of watch case
DE3221462A1 (en) * 1981-06-18 1983-01-05 F. Hoffmann-La Roche & Co AG, 4002 Basel LIQUID CRYSTAL MIXTURE
US4729639A (en) * 1982-03-29 1988-03-08 Tektronix, Inc. Dual frequency addressable liquid crystals and methods of use
JPH0794406B2 (en) * 1984-02-08 1995-10-11 チッソ株式会社 Liquid crystalline substituted biphenyl esters
JPS61210056A (en) * 1985-03-14 1986-09-18 Chisso Corp Halogen-containing optically active liquid crystal compound and liquid crystal composition

Also Published As

Publication number Publication date
JPS5529545A (en) 1980-03-01

Similar Documents

Publication Publication Date Title
EP0258868B1 (en) A nematic liquid crystal composition
KR100815554B1 (en) Nematic liquid-crystal medium, and electro-optical display containing same
JP4901011B2 (en) Liquid crystal medium and electro-optic display including the medium
EP0206228A2 (en) Ferroelectric chiral smetic liquid crystal composition and light switching element
US4846999A (en) Liquid crystal composition
JPS6348920B2 (en)
KR970008263B1 (en) Liquid crystal compositions
KR20050006630A (en) Nematic liquid crystal composition
JP3744940B2 (en) Liquid crystal composition and liquid crystal display element
EP1438371A1 (en) Nematic liquid crystal compound, and liquid crystal composition having high speed and high temperature comprising the same
JPS59219381A (en) Liquid crystal composition
US4003844A (en) Liquid crystal devices
EP0176039A2 (en) Liquid crystal composition
EP0033947B2 (en) Liquid crystal display element
JPH0232308B2 (en)
US4031028A (en) Nematic liquid crystal composition
JPH052717B2 (en)
JP4815671B2 (en) Liquid crystal composition
KR100853222B1 (en) Liquid crystal composition capable of operation low voltage and liquid crystal display using the same
JPH0359953B2 (en)
JP2623523B2 (en) Liquid crystal composition
JPH0726100B2 (en) Liquid crystal composition and liquid crystal display device
JPH0574639B2 (en)
KR810001494B1 (en) Liquid crystal composition
JPS633086A (en) Active matrix type liquid crystal display device