JPS6348893B2 - - Google Patents

Info

Publication number
JPS6348893B2
JPS6348893B2 JP10819882A JP10819882A JPS6348893B2 JP S6348893 B2 JPS6348893 B2 JP S6348893B2 JP 10819882 A JP10819882 A JP 10819882A JP 10819882 A JP10819882 A JP 10819882A JP S6348893 B2 JPS6348893 B2 JP S6348893B2
Authority
JP
Japan
Prior art keywords
weight
rubber
copolymer
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10819882A
Other languages
Japanese (ja)
Other versions
JPS58225149A (en
Inventor
Koichi Nakayama
Hajime Sakano
Ikuo Tsukino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Polycarbonate Ltd
Original Assignee
Sumika Polycarbonate Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Polycarbonate Ltd filed Critical Sumika Polycarbonate Ltd
Priority to JP10819882A priority Critical patent/JPS58225149A/en
Publication of JPS58225149A publication Critical patent/JPS58225149A/en
Publication of JPS6348893B2 publication Critical patent/JPS6348893B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本願発明は圧着加工性に優れた樹脂組成物に関
する。さらに詳しくは圧着加工における芯材との
接着性、芯材と圧着された複合体の寸法精度およ
び表面外観の優れたスキートツプシート用に適し
た樹脂組成物に関する。 ABS樹脂、AES樹脂、AAS樹脂で代表される
ゴム強化スチレン樹脂は、耐衝撃性、剛性および
耐熱性のバランスが良く、成形加工が容易であ
り、さらにメツキ性、塗装性等の二次加工性に優
れているため車輛、電気機器、雑貨関係に用いら
れるとともに、特に耐候性に優れるAES樹脂お
よびAAS樹脂は、スキー板、スノーボート等の
レジヤー製品用としても期待されている。 スキー板の場合、ゴム強化スチレン系樹脂のト
ツプシートは、エポキシ系等の接着剤を介して70
〜90℃熱プレスにて合板木板、アルミニウム板お
よびガラス繊維、炭素繊維等で強化されたFRP
シート等の芯材と圧着加工される。この圧着加工
の際の接着性とスキー板製品の寸法精度およびト
ツプシート表面の外観が商品価値に重要な要因と
なつている。 さらに、この寸法精度および表面外観に対して
材料の剛性の影響が大きく、現在のゴム強化スチ
レン系樹脂は、剛性が高ければ接着性に劣り使用
中トツプシートと芯材との剥離現象の原因とな
る。一方、接着性を重視すればスキー板製品の寸
法精度が劣り、さらにトツプシート表面に芯材の
凹凸が反映して外観不良となる。よつて、接着
性、寸法精度および表面外観のすべてを満足させ
る材料の開発が望まれていた。 本願発明者等は、上記問題点に鑑み鋭意研究を
重ねた結果、ゴム強化スチレン樹脂(A)にグリシジ
ルメタアクリレート系共重合体(B)を配合すること
により、基本的物性を損なわず、剛性が高く芯材
との接着性に優れるとともに寸法精度および表面
外観に優れるスキートツプシート用に適した樹脂
組成物が得られることを見出し、本願発明に到達
した。 すなわち、本願発明は、エチレン・プロピレン
系ゴムまたはアクリル系ゴム含有量が10〜35重量
%のゴム強化スチレン系樹脂(A)に対し、芳香族ビ
ニル系単量体、シアン化ビニル系単量体ならびに
アクリル酸エステル系単量体のうち一種または二
種以上の単量体95〜30重量%およびグリシジルメ
タアクリレート5〜70重量%からなる共重合体(B)
を配合したことを特徴とする芯材との接着性、寸
法精度および表面外観の優れた樹脂組成物を提供
するものである。 本願発明で用いられるゴム強化スチレン系樹脂
(A)としては、エチレン・プロピレン系ゴムまたは
アクリル系ゴムに芳香族ビニル系単量体、シアン
化ビニル系単量体ならびにアクリル酸エステル系
単量体のうち少なくとも二群より選ばれたおのお
の一種以上の単量体をグラフト重合して得たグラ
フト共重合体、またはこのグラフト共重合体と芳
香族ビニル系単量体、シアン化ビニル系単量体な
らびにアクリル酸エステル系単量体のうち少なく
とも二群よりおのおの一種以上の単量体を選んで
重合して得た共重合体との混合物を挙げることが
できる。 ゴム強化スチレン系樹脂を構成するエチレン・
プロピレン系ゴムとは、エチレンとプロピレンか
らなる二元共重合体(EPR)、エチレン、プロピ
レンおよび非共役ジエンからなる三元共重合体
(EPDM)などであり、一種または二種以上用い
られる。 三元共重合体(EPDM)における非共役ジエ
ンとしては、ジシクロペンタジエン、エチリデン
ノルボルネン、1.4−ヘキサジエン、1.4−シクロ
ヘプタジエン、1.5−シクロオクタジエン等が挙
げられる。 二元共重合体(EPR)および三元共重合体
(EPDM)におけるエチレンとプロピレンのモル
比は5:1から1:3の範囲であることが好まし
い。 また、三元共重合体(EPDM)においては非
共役ジエンの割合がヨウ素価に換算して2〜50の
範囲のものが好ましい。 また、アクリル系ゴムとは、ポリアクリル酸ア
ルキルエステルおよびアクリル酸アルキルエステ
ルを主成分とする他ビニルモノマー(架橋性モノ
マーを含む)との共重合体である。 ポリアクリル酸ブチル、アクリル酸ブチル−ア
クリロニトリル共重合体、アクリル酸ブチル−メ
タアクリル酸メチル共重合体等が挙げられる。 また、芳香族ビニル系単量体としてはスチレ
ン、α−メチルスチレン、ビニルトルエン、モノ
クロルスチレン等が挙げられ、シアン化ビニル系
単量体としては、アクリロニトリル、メタクリロ
ニトリル等が挙げられ、さらに、アクリル酸エス
テル系単量体としては、アクリル酸エチル、メタ
アクリル酸メチル等が挙げられる。それぞれ一種
または二種以上用いることができる。 エチレン・プロピレン系ゴムまたはアクリル系
ゴムに芳香族ビニル系単量体およびシアン化ビニ
ル系単量体をグラフトした重合体と、芳香族ビニ
ル系単量体とシアン化ビニル系単量体との共重合
体からなる一般的にAES樹脂またはAAS樹脂と
称されるものが物性ならびに価格面で好ましい。 ゴム強化スチレン系樹脂(A)を構成するエチレ
ン・プロピレン系ゴムまたはアクリル系ゴムの含
有量は、10〜35重量である。 本願発明で用いられるグリシジルメタアクリレ
ート系共重合体(B)は芳香族ビニル系単量体、シア
ン化ビニル系単量体ならびにアクリル酸エステル
系単量体のうち一種または二種以上の単量体95〜
30重量%およびグリシジルメタアクリレート5〜
70重量%からなる共重合体であり、好ましくは単
量体90〜50重量%およびグリシジルメタアクリレ
ート10〜50重量%からなる共重合体である。 芳香族ビニル系単量体としては、スチレン、α
−メチルスチレン、ビニルトルエン、モノクロル
スチレン等が挙げられ、シアン化ビニル系単量体
としては、アクリロニトリル、メタアクリロニト
リル等が挙げられ、またアクリル酸エステル系単
量体としては、アクリル酸エチル、メタアクリル
酸メチル等が挙げられ、それぞれ一種または二種
以上用いることができる。 ゴム強化スチレン系樹脂(A)に対するグリシジル
メタアクリレート系共重合体(B)の配合量には特に
制限はない最終樹脂組成物の機械的強度より重合
体(A)100重量部あたり0.01〜40重量部が好ましい。
0.01重量部未満では最終樹脂組成物の接着性が劣
り、また40重量部を越えると加工性が劣る傾向に
ある。さらに好ましくは0.1〜10重量部である。 ゴム強化スチレン系樹脂ならびにグリシジルメ
タアクリレート系共重合体の製造法には特に制限
はなく公知の方法で製造される。 ゴム強化スチレン系樹脂(A)とグリシジルメタア
クリレート系共重合体(B)との混合は、一般に用い
られている方法で混合することができ、混合に際
しては、必要に応じて公知の滑剤、安定剤、着色
剤、充填剤、可塑剤等を加えることができる。 以下に実施例をあげて本願発明を説明するが、
本願発明はこれらによつて何ら制限されるもので
はない。 なお表1中配合処方欄の数値は重量部を表わ
す。 また本願発明の樹脂組成物と混合可能なポリカ
ーボネート、PVC、ポリスルホン等の他樹脂を
混合することもできる。 実施例および比較例 エチレン−プロピレン−エチリデンノルボルネ
ン(EPDM)50重量部にスチレン35重量部およ
びアクリロニトリル15重量部をグラフト重合させ
た重合体に、別途製造されたアクリロニトリル30
重量部とスチレン70重量部との共重合体を混合し
て、表1のオレフイン系ゴム含有量の異なる
AES樹脂2種類を作成した。また、別途
EPDM15重量部、スチレン60重量部およびアク
リロニトリル25重量部をグラフト重合させてゴム
含有量15重量%のAES樹脂を作成した。 ポリアクリル酸ブチル40重量部にスチレン40重
量部およびアクリロニトリル20重量部をグラフト
重合させた重合体に、別途製造されたアクリロニ
トリル3重量部とスチレン70重量部との共重合体
を混合して、表1のアクリル系ゴム含有量の異な
るAAS樹脂2種類を作成した。 一方、グリシジルメタアクリレート、スチレ
ン、メタアクリル酸メチルおよびアクリロニトリ
ルを表1に示した割合にて、共重合させた共重合
体を作成した。 表1に示した配合処方の組成物をバンバリーミ
キサーにより190〜200℃の温度で5分間混練し試
料とした。 基本物性測定用試験片は5オンス射出成形機を
使用して220℃の成形温度で成形した。 また、接着性測定用平板1mm厚は熱プレスによ
り190℃の温度で圧縮成形した。 “接着性測定法” 接着剤としてチバガイギー社製アラルダイト
#136を使用し、上記接着性測定用平板とアルミ
平板を熱プレスにて圧着した。(熱プレス温度は
80℃、圧力は10Kg/cm2、10分間圧着) 判定は圧着品の樹脂シート側にカツターで切り
込みを入れ、そこから折り曲げた際の樹脂シート
の剥がれ程度に基づき行つた。 ◎:良 ×:不良 “基本物性測定法” アイゾツト衝撃強度および曲げ弾性率は
ASTM規格に準じて測定をおこない、流動性に
ついては高化式でおこなつた。
The present invention relates to a resin composition with excellent pressure bonding processability. More specifically, the present invention relates to a resin composition suitable for use in ski top sheets, which has excellent adhesion to a core material during crimping, dimensional accuracy of the composite material crimped to the core material, and excellent surface appearance. Rubber-reinforced styrene resins, represented by ABS resin, AES resin, and AAS resin, have a good balance of impact resistance, rigidity, and heat resistance, are easy to mold, and have secondary processing properties such as plating and painting properties. AES resin and AAS resin have excellent weather resistance and are therefore used in vehicles, electrical equipment, and miscellaneous goods, and are also expected to be used in leisure products such as skis and snowboards. In the case of skis, the top sheet of rubber-reinforced styrene resin is bonded to 70% by using an adhesive such as epoxy.
FRP reinforced with plywood wood board, aluminum board, glass fiber, carbon fiber, etc. in ~90℃ heat press
It is crimped to the core material of sheets, etc. The adhesion during this pressure bonding process, the dimensional accuracy of the ski product, and the appearance of the top sheet surface are important factors in the product value. Furthermore, the rigidity of the material has a large effect on dimensional accuracy and surface appearance, and if the current rubber-reinforced styrene resin has high rigidity, it has poor adhesion, which can cause the top sheet and core material to separate during use. . On the other hand, if emphasis is placed on adhesion, the dimensional accuracy of the ski product will be poor, and the unevenness of the core material will be reflected on the surface of the top sheet, resulting in poor appearance. Therefore, it has been desired to develop a material that satisfies all of adhesion, dimensional accuracy, and surface appearance. As a result of intensive research in view of the above problems, the inventors of the present application have found that by blending a glycidyl methacrylate copolymer (B) into a rubber-reinforced styrene resin (A), rigidity can be improved without impairing the basic physical properties. The present inventors have discovered that it is possible to obtain a resin composition suitable for use in ski top sheets, which has high adhesiveness to the core material, excellent dimensional accuracy and surface appearance, and has arrived at the present invention. That is, the present invention provides a rubber-reinforced styrenic resin (A) having an ethylene/propylene rubber or acrylic rubber content of 10 to 35% by weight, an aromatic vinyl monomer, a vinyl cyanide monomer, etc. and a copolymer (B) consisting of 95 to 30% by weight of one or more acrylic acid ester monomers and 5 to 70% by weight of glycidyl methacrylate.
The object of the present invention is to provide a resin composition having excellent adhesion to a core material, dimensional accuracy, and surface appearance. Rubber-reinforced styrenic resin used in the present invention
(A) is an ethylene-propylene rubber or an acrylic rubber, each of which is selected from at least two groups of aromatic vinyl monomers, vinyl cyanide monomers, and acrylic ester monomers. A graft copolymer obtained by graft polymerization of the above monomers, or this graft copolymer and at least an aromatic vinyl monomer, a vinyl cyanide monomer, or an acrylic acid ester monomer. Examples include a mixture with a copolymer obtained by polymerizing one or more monomers selected from each of the two groups. Ethylene, which makes up rubber-reinforced styrene resin
The propylene rubber includes a binary copolymer (EPR) consisting of ethylene and propylene, a ternary copolymer (EPDM) consisting of ethylene, propylene and a non-conjugated diene, etc., and one or more types thereof are used. Examples of the non-conjugated diene in the terpolymer (EPDM) include dicyclopentadiene, ethylidene norbornene, 1.4-hexadiene, 1.4-cycloheptadiene, and 1.5-cyclooctadiene. The molar ratio of ethylene to propylene in the binary copolymer (EPR) and terpolymer (EPDM) is preferably in the range of 5:1 to 1:3. Further, in the terpolymer (EPDM), it is preferable that the proportion of non-conjugated diene is in the range of 2 to 50 in terms of iodine value. Moreover, acrylic rubber is a copolymer of polyacrylic acid alkyl ester and acrylic acid alkyl ester as a main component with other vinyl monomers (including crosslinkable monomers). Examples include polybutyl acrylate, butyl acrylate-acrylonitrile copolymer, butyl acrylate-methyl methacrylate copolymer, and the like. Examples of aromatic vinyl monomers include styrene, α-methylstyrene, vinyltoluene, monochlorostyrene, etc.; examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, etc.; Examples of the acrylic ester monomer include ethyl acrylate, methyl methacrylate, and the like. One type or two or more types of each can be used. Polymers obtained by grafting aromatic vinyl monomers and vinyl cyanide monomers onto ethylene/propylene rubber or acrylic rubber, and co-products of aromatic vinyl monomers and vinyl cyanide monomers. Polymer resins generally called AES resins or AAS resins are preferred in terms of physical properties and cost. The content of the ethylene-propylene rubber or acrylic rubber constituting the rubber-reinforced styrene resin (A) is 10 to 35% by weight. The glycidyl methacrylate copolymer (B) used in the present invention is one or more monomers selected from aromatic vinyl monomers, vinyl cyanide monomers, and acrylic acid ester monomers. 95~
30% by weight and glycidyl methacrylate 5~
It is a copolymer consisting of 70% by weight, preferably a copolymer consisting of 90 to 50% by weight of monomer and 10 to 50% by weight of glycidyl methacrylate. Examples of aromatic vinyl monomers include styrene, α
- Examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, etc.; examples of acrylic acid ester monomers include ethyl acrylate, methacryl Examples include acid methyl, and one type or two or more types of each can be used. There is no particular restriction on the amount of glycidyl methacrylate copolymer (B) blended into the rubber-reinforced styrene resin (A). Based on the mechanical strength of the final resin composition, it should be 0.01 to 40 parts by weight per 100 parts by weight of the polymer (A). part is preferred.
If it is less than 0.01 part by weight, the adhesiveness of the final resin composition tends to be poor, and if it exceeds 40 parts by weight, processability tends to be poor. More preferably, it is 0.1 to 10 parts by weight. There are no particular restrictions on the method for producing the rubber-reinforced styrene resin and the glycidyl methacrylate copolymer, and they can be produced by known methods. The rubber-reinforced styrene resin (A) and the glycidyl methacrylate copolymer (B) can be mixed by a commonly used method. Agents, colorants, fillers, plasticizers, etc. can be added. The present invention will be explained below with reference to Examples.
The present invention is not limited to these in any way. The numerical values in the formulation column in Table 1 represent parts by weight. Further, other resins that can be mixed with the resin composition of the present invention, such as polycarbonate, PVC, and polysulfone, can also be mixed. Examples and Comparative Examples Separately produced acrylonitrile 30 was added to a polymer obtained by graft polymerizing 50 parts by weight of ethylene-propylene-ethylidene norbornene (EPDM) with 35 parts by weight of styrene and 15 parts by weight of acrylonitrile.
By mixing a copolymer of 70 parts by weight of styrene and 70 parts by weight of styrene, a copolymer with different olefin rubber contents as shown in Table 1 was prepared.
Two types of AES resin were created. Also, separately
An AES resin having a rubber content of 15% by weight was prepared by graft polymerization of 15 parts by weight of EPDM, 60 parts by weight of styrene, and 25 parts by weight of acrylonitrile. A separately produced copolymer of 3 parts by weight of acrylonitrile and 70 parts by weight of styrene was mixed with a polymer obtained by graft polymerizing 40 parts by weight of polybutyl acrylate with 40 parts by weight of styrene and 20 parts by weight of acrylonitrile. Two types of AAS resins with different acrylic rubber contents were created. On the other hand, a copolymer was prepared by copolymerizing glycidyl methacrylate, styrene, methyl methacrylate, and acrylonitrile in the proportions shown in Table 1. A sample was prepared by kneading a composition having the formulation shown in Table 1 at a temperature of 190 to 200° C. for 5 minutes using a Banbury mixer. Test pieces for measuring basic physical properties were molded using a 5-ounce injection molding machine at a molding temperature of 220°C. Further, a 1 mm thick flat plate for adhesion measurement was compression molded at a temperature of 190°C using a hot press. “Adhesiveness Measuring Method” Araldite #136 manufactured by Ciba Geigy was used as an adhesive, and the above flat plate for measuring adhesiveness and an aluminum flat plate were pressed together using a hot press. (The heat press temperature is
(80°C, pressure: 10 kg/cm 2 , 10 minutes of crimping) Judgment was made based on the degree of peeling of the resin sheet when a cut was made with a cutter on the resin sheet side of the crimped product and the resin sheet was bent from there. ◎: Good ×: Bad “Basic physical property measurement method” Izot impact strength and flexural modulus are
Measurements were made in accordance with ASTM standards, and fluidity was determined using the Koka formula.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレン・プロピレン系またはアクリル系ゴ
ム含有量が10〜35重量%のゴム強化スチレン系樹
脂(A)に対し、芳香族ビニル系単量体、シアン化ビ
ニル系単量体ならびにアクリル酸エステル系単量
体のうち一種または二種以上の単量体95〜30重量
%およびグリシジルメタアクリレート5〜70重量
%からなる共重合体(B)を配合したことを特徴とす
る樹脂組成物。 2 共重合体(B)の配合量がゴム強化スチレン系樹
脂(A)100重量部当り0.01〜40重量部である特許請
求の範囲第1項記載の樹脂組成物。
[Scope of Claims] 1. A rubber-reinforced styrenic resin (A) containing 10 to 35% by weight of ethylene/propylene or acrylic rubber, an aromatic vinyl monomer, and a cyanide vinyl monomer. and a copolymer (B) comprising 95 to 30% by weight of one or more acrylic acid ester monomers and 5 to 70% by weight of glycidyl methacrylate. Composition. 2. The resin composition according to claim 1, wherein the copolymer (B) is blended in an amount of 0.01 to 40 parts by weight per 100 parts by weight of the rubber-reinforced styrenic resin (A).
JP10819882A 1982-06-22 1982-06-22 Resin composition Granted JPS58225149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10819882A JPS58225149A (en) 1982-06-22 1982-06-22 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10819882A JPS58225149A (en) 1982-06-22 1982-06-22 Resin composition

Publications (2)

Publication Number Publication Date
JPS58225149A JPS58225149A (en) 1983-12-27
JPS6348893B2 true JPS6348893B2 (en) 1988-10-03

Family

ID=14478497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10819882A Granted JPS58225149A (en) 1982-06-22 1982-06-22 Resin composition

Country Status (1)

Country Link
JP (1) JPS58225149A (en)

Also Published As

Publication number Publication date
JPS58225149A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
KR0169731B1 (en) Low gloss aromatic polycarbonate, abs and san copolymer resin molding composition
JPS6355541B2 (en)
JPS60229946A (en) Thermoplastic forming composition
JP2005534775A (en) Thermoplastic composition having low gloss appearance
JPS6351451B2 (en)
US6395828B1 (en) Low gloss ASA resin
JPS6028864B2 (en) thermoplastic resin composition
JPS6348893B2 (en)
CA2079794A1 (en) Fibre-reinforced polymer composition
JPH0116269B2 (en)
JPS6028861B2 (en) resin composition
JP3131243B2 (en) Thermoplastic resin composition
US6982299B2 (en) Weatherable resin compositions having low gloss appearances
JPH0611836B2 (en) Thermoplastic resin composition
JPS6329897B2 (en)
JPS5930176B2 (en) composite resin composition
JPH0657051A (en) Thermoplastic resin composition
JPS6365222B2 (en)
JPH08157687A (en) Polyacetal-based resin composition
JPH0665444A (en) Modifying agent composition and thermoplastic resin composition using the same
JPH0336059B2 (en)
EP0582223B1 (en) Thermoplastic resin composition
JP3252499B2 (en) Thermoplastic resin composition
JPH0348223B2 (en)
JPS6261060B2 (en)