JPS634883B2 - - Google Patents

Info

Publication number
JPS634883B2
JPS634883B2 JP24875784A JP24875784A JPS634883B2 JP S634883 B2 JPS634883 B2 JP S634883B2 JP 24875784 A JP24875784 A JP 24875784A JP 24875784 A JP24875784 A JP 24875784A JP S634883 B2 JPS634883 B2 JP S634883B2
Authority
JP
Japan
Prior art keywords
silver
leaching
iron sulfide
sulfide concentrate
copper sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24875784A
Other languages
Japanese (ja)
Other versions
JPS61127834A (en
Inventor
Tetsuichi Kagawa
Maafuii Jatsuku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP24875784A priority Critical patent/JPS61127834A/en
Publication of JPS61127834A publication Critical patent/JPS61127834A/en
Publication of JPS634883B2 publication Critical patent/JPS634883B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の分野 本発明は、硫化鉄精鉱中に含まれる銀を回収す
る方法に関するものであり、特には青化法による
ことなく、廃ガス及び廃水処理上の問題をほとん
ど生じることのない、常温及び常圧プロセスでの
簡易な銀回収方法に関するものである。 発明の背景 銀の回収源の一つとして硫化鉄鉱がある。この
精鉱である硫化鉄精鉱から銀を回収する方法はこ
れまで専ら、硫酸焼鉱に冶金的手段を適用する技
術に依存していたが、硫酸原料としての販路が狭
められた結果、これ以外のルートで銀を回収する
必要性が生じている。 鉱石中の金、銀を浸出する方法としては、薄い
NaCN溶液で浸出を行う青化法を用いるのがごく
一般的であるが、鉱石中に硫黄が存在する場合に
青化法を適用すると液中にチオシアンイオン(−
CNS)が生成して、浸出剤の浪費と浸出率の低
下をもたらすので、青化法を適用する前に、比
選、浮選あるいは焙焼などにより硫黄を除去して
おかねばならない。しかしながら、硫化鉄精鉱中
の銀が硫化鉄鉱物自体の中に分布しており、比選
や浮選による脱硫法の適用は無意味であり、また
焙焼すれば廃ガスの処理に多額の経費を要する。
現在では、青化物の使用自体に周囲のコンセンサ
スが得られ難い状況にある。こうした理由のた
め、硫化鉄精鉱への青化法の適用はもはや考えら
れないと云つてよい。 青化法に代る方法として、硫化鉄精鉱をオート
クレーブにより湿式酸化した後、チオ尿素等の非
シアン系浸出剤を用いて銀を回収する方法が本発
明者等によつて提案されている。この方法は、銀
をほぼ完全に回収しうる点できわめて有益なもの
であるが、湿式酸化にオートクレーブを用いるこ
と及び湿式酸化で生じる硫酸鉄の処分に問題があ
る。そこで、状況によつては、銀回収率がたとえ
低下したとしても、もつと簡単な、設備コストの
安いそして廃水処理が非常に簡単なプロセスの開
発が求められることもある。 本発明は、プロセスの簡易化を主眼とした硫化
鉄精鉱からの銀の回収法の開発を目的とする。 発明の概要 そこで、本発明者等は、硫化鉄精鉱の主体をな
す黄鉄鉱を分解することなく非シアン系浸出剤を
作用させ、常温、常圧、中性PHのプロセス環境で
銀を浸出する方法を確立するべく検討を重ねた。 その結果、チオ硫酸ナトリウムと硫酸銅を反応
させることにより第二銅を第一銅に還元し、更に
第一銅錯体のラツセル塩(Na2S2O3・3Cu2S2O3
を生成させ、これに硫化銀と反応させて銀を浸出
する下記の反応を利用することを想到した。 2Cu(S2O33- 2+AgS→Ag(S2O33- 2 +Cu2S この反応は、常温、常圧及び中性PH領域で行い
うるので、プロセスの設備コストは非常に安く、
操作も簡易となる。非破壊プロセスであるので廃
水処理が非常に簡単となる。特別な廃ガス対策は
不要である。 斯くして、本発明は、硫化鉄精鉱にチオ硫酸ナ
トリウム及び硫酸銅を常温、常圧及び中性PH領域
で作用させて銀を浸出することを特徴とする硫化
鉄精鉱の銀の回収法を提供する。 発明の具体的説明 硫化鉄精鉱はその出所源に応じて様々の量の銀
を含有しているが、或る鉱山産の硫化鉄精鉱を例
にとると、Fe:40〜50%、S:45〜50%、Ag:
70〜130g/トンの組成を有している。こうした
硫化鉄精鉱は一般にD50(積算分布曲線の50%に
相当する粒子径で、この径以上と以下の粒子量が
同量である)=30〜50μmの粒寸を有している。 硫化鉄精鉱のパルプが浸出槽においてチオ硫酸
ナトリウム及び硫酸銅の存在下で常圧浸出を受け
る。浸出条件として、チオ硫酸ナトリウム濃度、
硫酸銅濃度、液温、パルプ濃度、PH値、浸出時間
等が対象とする硫化鉄精鉱及び使用浸出設備に応
じて銀浸出率を最大限とするよう選択されねばな
らない。 例えば、或る鉱山産の硫化鉄精鉱(Fe45%、
S50%、Ag110g/トン)に対して第1表の浸出
条件において初期PHを変えて浸出試験を行うと初
期PHと銀浸出率との間に第1図に示す関係が見ら
れる。
FIELD OF THE INVENTION The present invention relates to a method for recovering silver contained in iron sulfide concentrate, and in particular to a method for recovering silver contained in iron sulfide concentrate, and in particular, a method for recovering silver contained in iron sulfide concentrate, and in particular, a method for recovering silver contained in iron sulfide concentrates, and in particular, a method for recovering silver contained in iron sulfide concentrate. and a simple method for recovering silver in an atmospheric pressure process. Background of the Invention One of the sources of silver recovery is pyrite. Until now, the method for recovering silver from iron sulfide concentrate, which is iron sulfide concentrate, has relied exclusively on technology that applies metallurgical means to sulfuric acid burnt ore, but as a result of the narrowing of sales channels as a raw material for sulfuric acid, this There is a need to recover silver through other routes. As a method for leaching gold and silver in ore, thin
It is very common to use the cyanization method, which involves leaching with a NaCN solution, but if the cyanization method is applied when sulfur is present in the ore, thiocyan ions (−
Before applying the curing method, sulfur must be removed by selective selection, flotation, or roasting, since CNS) is formed, resulting in wasted leaching agent and reduced leaching rate. However, since the silver in iron sulfide concentrate is distributed within the iron sulfide mineral itself, it is meaningless to apply desulfurization methods such as selective selection or flotation, and roasting requires a large amount of waste gas treatment. Requires expenses.
At present, it is difficult to reach consensus on the use of cyanide itself. For these reasons, it can be said that the application of curing methods to iron sulfide concentrates is no longer considered. As an alternative to the cyanization method, the present inventors have proposed a method in which iron sulfide concentrate is wet oxidized in an autoclave and then silver is recovered using a non-cyanide leaching agent such as thiourea. . Although this process is extremely beneficial in that it allows almost complete recovery of silver, there are problems with the use of autoclaves for wet oxidation and the disposal of iron sulfate produced in wet oxidation. Therefore, depending on the situation, it may be necessary to develop a process that is simple, has low equipment costs, and has very simple wastewater treatment, even if the silver recovery rate is reduced. The purpose of the present invention is to develop a method for recovering silver from iron sulfide concentrate with a focus on simplifying the process. Summary of the Invention Therefore, the present inventors applied a non-cyanide leaching agent to leaching silver in a process environment of room temperature, normal pressure, and neutral PH without decomposing pyrite, which is the main component of iron sulfide concentrate. We conducted repeated studies to establish a method. As a result, by reacting sodium thiosulfate and copper sulfate, cupric was reduced to cuprous, and the cuprous complex Ratssel salt (Na 2 S 2 O 3 3Cu 2 S 2 O 3 ) was formed.
We have come up with the idea of using the following reaction in which silver is produced and reacted with silver sulfide to leach out silver. 2Cu(S 2 O 3 ) 3- 2 +AgS→Ag(S 2 O 3 ) 3- 2 +Cu 2 S This reaction can be carried out at room temperature, normal pressure, and in the neutral PH range, so the equipment cost of the process is very low. cheap,
It also becomes easier to operate. The non-destructive process makes wastewater treatment very simple. No special measures against waste gas are required. Thus, the present invention provides a method for recovering silver from iron sulfide concentrate, which is characterized by leaching silver by acting sodium thiosulfate and copper sulfate on iron sulfide concentrate at room temperature, normal pressure, and neutral pH range. provide law. Detailed Description of the Invention Iron sulfide concentrate contains various amounts of silver depending on its source, but taking iron sulfide concentrate from a certain mine as an example, Fe: 40-50%, S: 45-50%, Ag:
It has a composition of 70-130g/ton. Such iron sulfide concentrates generally have a particle size of D 50 (particle size corresponding to 50% of the integrated distribution curve, with equal amounts of particles above and below this size) = 30 to 50 μm. The pulp of iron sulfide concentrate is subjected to atmospheric leaching in the presence of sodium thiosulfate and copper sulfate in a leaching tank. The leaching conditions include sodium thiosulfate concentration,
Copper sulfate concentration, liquid temperature, pulp concentration, PH value, leaching time, etc. must be selected to maximize the silver leaching rate depending on the target iron sulfide concentrate and the leaching equipment used. For example, iron sulfide concentrate (Fe45%,
When a leaching test is carried out under the leaching conditions shown in Table 1 for (S50%, Ag 110 g/ton) by changing the initial PH, the relationship shown in Figure 1 can be seen between the initial PH and the silver leaching rate.

【表】 第1図は初期PHが中性領域(PH6.5〜7.5)にお
いて銀浸出率が最大値をとることを示している。 次に、同じ硫化鉄精鉱に対して第2表に示す浸
出条件で浸出試験を行うと、硫酸銅濃度と銀浸出
率との間に第2図に示す結果が得られる。
[Table] Figure 1 shows that the silver leaching rate reaches its maximum value when the initial pH is neutral (PH6.5 to 7.5). Next, when a leaching test is conducted on the same iron sulfide concentrate under the leaching conditions shown in Table 2, the results shown in FIG. 2 are obtained between the copper sulfate concentration and the silver leaching rate.

【表】 硫酸銅濃度はこの試験条件下では1g/にお
いて銀浸出率の顕著な増大を与えている。使用さ
れるチオ硫酸ナトリウム濃度(一般に5〜25g/
)に応じて最適濃度が選定されねばならない
が、硫酸銅添加量はチオ硫酸添加量の10〜20%程
度が好ましいと考えられる。 液温と銀浸出率との関係について先きと同じ精
鉱に対して第3表の浸出条件で試験を行つた結果
を第3図に示す。
Table: Copper sulfate concentration gives a significant increase in silver leaching rate at 1 g/g under this test condition. The sodium thiosulfate concentration used (generally 5-25 g/
) The optimum concentration must be selected depending on the amount of copper sulfate added, but it is considered preferable that the amount of copper sulfate added is about 10 to 20% of the amount of thiosulfate added. The relationship between liquid temperature and silver leaching rate was tested on the same concentrate as before under the leaching conditions shown in Table 3. The results are shown in Figure 3.

【表】 本方法においては液温が高くなる程かえつて銀
浸出率は低下することがわかる。この理由のた
め、本方法は浸出を常温で実施するのであり、そ
れがプロセス簡易化及びコスト減の一助となつて
いる。 以上、幾つかの例を示したが、この他パルプ濃
度、撹拌条件等も使用設備において最大の銀浸出
率を与えるよう選定する必要がある。これらの選
定は当業者にとつて容易に為しうる事項である。 実施例 先きに示したのと同じ硫化鉄精鉱に対して第4
表に示す条件で浸出試験を実施した結果30%の銀
浸出率を実現できた。
[Table] It can be seen that in this method, the silver leaching rate decreases as the liquid temperature increases. For this reason, the method performs leaching at ambient temperatures, which helps simplify the process and reduce costs. Although some examples have been shown above, it is necessary to select other factors such as pulp concentration and stirring conditions so as to give the maximum silver leaching rate in the equipment used. These selections can be easily made by those skilled in the art. Example For the same iron sulfide concentrate as shown above, the fourth
As a result of conducting a leaching test under the conditions shown in the table, a silver leaching rate of 30% was achieved.

【表】 発明の効果 本方法は、常温、常圧、中性PH領域で簡易に低
コストで銀回収を行うことが出来、廃水及び廃ガ
ス対策も特別に対策を要しないので、特定の状況
下での銀回収法として或いは別の銀回収プロセス
と併用して非常に有益である。
[Table] Effects of the invention This method can easily recover silver at low cost at room temperature, normal pressure, and neutral pH range, and does not require any special measures against wastewater or waste gas, so it is suitable for specific situations. It is very useful as a silver recovery method or in conjunction with another silver recovery process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は初期PHと銀浸出率の関係を示す図面で
ある。第2図は硫酸銅濃度と銀浸出率の関係を示
す図面である。第3図は液温と銀浸出率の関係を
示す図面である。
FIG. 1 is a diagram showing the relationship between initial pH and silver leaching rate. FIG. 2 is a drawing showing the relationship between copper sulfate concentration and silver leaching rate. FIG. 3 is a drawing showing the relationship between liquid temperature and silver leaching rate.

Claims (1)

【特許請求の範囲】[Claims] 1 硫化鉄精鉱にチオ硫酸ナトリウム及び硫酸銅
を常温、常圧及び中性PH領域で作用させて銀を浸
出することを特徴とする硫化鉄精鉱の銀の回収
法。
1. A method for recovering silver from iron sulfide concentrate, which is characterized by leaching silver by applying sodium thiosulfate and copper sulfate to iron sulfide concentrate at room temperature, normal pressure, and a neutral PH range.
JP24875784A 1984-11-27 1984-11-27 Recovery of mercury in iron sulfide concentrate Granted JPS61127834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24875784A JPS61127834A (en) 1984-11-27 1984-11-27 Recovery of mercury in iron sulfide concentrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24875784A JPS61127834A (en) 1984-11-27 1984-11-27 Recovery of mercury in iron sulfide concentrate

Publications (2)

Publication Number Publication Date
JPS61127834A JPS61127834A (en) 1986-06-16
JPS634883B2 true JPS634883B2 (en) 1988-02-01

Family

ID=17182922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24875784A Granted JPS61127834A (en) 1984-11-27 1984-11-27 Recovery of mercury in iron sulfide concentrate

Country Status (1)

Country Link
JP (1) JPS61127834A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ456299A0 (en) * 1999-12-09 2000-01-13 Geo2 Limited Recovery of precious metals
US6660059B2 (en) 2000-05-19 2003-12-09 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials
US7722840B2 (en) 2002-11-15 2010-05-25 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials
PE20171794A1 (en) 2010-12-07 2017-12-28 Barrick Gold Corp METHODS AND SYSTEM FOR LEACHING WITH THOSULFATE A MATERIAL CONTAINING GOLD AND / OR SILVER IN RESIN CIRCUITS THAT INCLUDE PARALLEL AND COUNTERCURRENT CURRENTS
AR086933A1 (en) 2011-06-15 2014-01-29 Barrick Gold Corp METHOD FOR RECOVERING PRECIOUS METALS AND COPPER OF LIXIVIATE SOLUTIONS
US10161016B2 (en) 2013-05-29 2018-12-25 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores

Also Published As

Publication number Publication date
JPS61127834A (en) 1986-06-16

Similar Documents

Publication Publication Date Title
YU89285A (en) Process for leaching sulphur from sulphide materials, containing zinc and iron
US4138248A (en) Recovery of elemental sulfur and metal values from tailings from copper recovery processes
SE8207053D0 (en) PROCEDURE FOR PREPARING COMPLEX SULFIDIC ORE CONCENTRATES
Parga et al. Pressure cyanide leaching for precious metals recovery
Lorenzen et al. The mechanism of leaching of gold from refractory ores
JPS634883B2 (en)
ES8205435A1 (en) Process for the separation of gold and silver from complex sulfide ores and concentrates
US3544306A (en) Concentration of copper from copper ores,concentrates and solutions
US5397380A (en) Method for processing complex metal sulphide materials
Szczygiel et al. The direct reduction of sulfide minerals for the recovery of precious metals
CN100365139C (en) Method for producing concentrates
Van Meersbergen et al. The electrochemical dissolution of gold in bromine medium
EP0061468A1 (en) Recovery of silver from ores and concentrates.
US3930847A (en) Recovery of copper by cementation
Deschenes et al. A preliminary techno-economic evaluation of the extraction of gold from a chalcopyrite concentrate using thourea
AU608333B2 (en) Selective extraction of uranium
Tiwari et al. Leaching of high-solids, attritor-ground chalcopyrite concentrate by in situ generated ferric sulfate solution
JPS61127833A (en) Recovery of mercury in iron sulfide concentrate
Ilyas et al. Thiourea leaching of gold
ES2137871A1 (en) Hydrometallurgical process for the improvement of polymetallic pyrite minerals
US134457A (en) Improvement in reducing lead ores and collecting precious metals
US814836A (en) Process of copper separation.
US1438869A (en) Leaching copper and like ores
US447344A (en) Process of preparing ores for amalgamation
US904838A (en) Process of treating metalliferous ores.