JPS63485A - Radiation cooling film - Google Patents

Radiation cooling film

Info

Publication number
JPS63485A
JPS63485A JP14229986A JP14229986A JPS63485A JP S63485 A JPS63485 A JP S63485A JP 14229986 A JP14229986 A JP 14229986A JP 14229986 A JP14229986 A JP 14229986A JP S63485 A JPS63485 A JP S63485A
Authority
JP
Japan
Prior art keywords
phosphate
molybdate
film
thin
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14229986A
Other languages
Japanese (ja)
Inventor
Takayasu Fujioka
藤岡 敬恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP14229986A priority Critical patent/JPS63485A/en
Publication of JPS63485A publication Critical patent/JPS63485A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To obtain a radiation cooling film having high cooling capacity by forming a thin phosphate film and a thin molybdate film on an Al substrate in arbitrary order. CONSTITUTION:A thin phosphate film and a thin molybdate film are formed on an Al substrate in arbitrary order. Zinc phosphate, calcium phosphate, potassium phosphate or nickel phosphate may be used as the phosphate but zinc phosphate is preferably used. Calcium molybdate, barium molybdate or iron molybdate may be used as the molybdate but calcium molybdate is preferably used. The thin films are formed to 30-70mum thickness by vacuum deposition, plasma polymn., sputtering or other method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射冷却膜に関する。更に詳しくは、赤外領
域において8〜13μmの波長光を吸収し、他の領域の
波長光をカットすることにより放射冷却せしめるように
した放射冷却膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation cooling film. More specifically, the present invention relates to a radiative cooling film that absorbs light with a wavelength of 8 to 13 μm in the infrared region and cuts light with wavelengths in other regions to perform radiative cooling.

〔従来の技術〕および〔発明が解決しようとする問題点
〕各種物体および大気のそれぞれの熱放射は、0.3〜
50μm(300に前後における放射スペクトル)の波
長領域においてはほぼ一致しているが、この範囲内の波
長の内8〜13μmの領域では、大気からの放射量が著
しく減少している。
[Prior art] and [Problems to be solved by the invention] The thermal radiation of various objects and the atmosphere is 0.3 to
In the wavelength region of 50 μm (emission spectrum around 300 μm), they almost match, but within this range, in the wavelength region of 8 to 13 μm, the amount of radiation from the atmosphere is significantly reduced.

そこで、この領域以外の波長光をカットするように工夫
すれば、物体からの熱放射が大気からのそれを上廻り、
しかも一般に大気の方が低温なので物体は冷却されるこ
とになる。
Therefore, if we devised a way to cut out the wavelengths of light outside of this range, the heat radiation from the object would exceed that from the atmosphere.
Moreover, the atmosphere is generally cooler, so objects are cooled down.

特開昭60−86173号公報には、かかる考え方に基
く被覆組成物が提案されており、この被覆組成物は、 
CoCr、O,、K、So、、 Si3N4.に2so
、、SiO□、A Q 2Sin、などの無機材料、フ
ッ化ビニル−フッ化ビニリデン共重合体、ポリプロピレ
ンオキサイド、ポリ(塩化三フッ化エチレン)、ポリ(
四フッ化エチレン)などの有機材料およびルチル型酸化
チタンから構成されている。
JP-A-60-86173 proposes a coating composition based on this idea, and this coating composition has the following characteristics:
CoCr, O, K, So, Si3N4. ni2so
, , SiO
It is composed of organic materials such as (tetrafluoroethylene) and rutile-type titanium oxide.

しかしながら、この被覆組成物で用いられているフッ素
化ポリマーは8〜10μmの波長光の一部に吸収しない
領域があり、放射冷却能になお改善されなければならな
い余地のあることが判明した。
However, it has been found that the fluorinated polymer used in this coating composition has a region in which it does not absorb a portion of light with a wavelength of 8 to 10 μm, and there is still room for improvement in the radiation cooling ability.

本発明者は、フッ素化ポリマーを用いた場合よりも高い
放射冷却能を示すような放射冷却膜を求めて種々検討の
結果、アルミニウム基質上にリン酸塩およびモリブデン
酸塩の薄膜を形成させることにより、かかる課題が効果
的に解決されることを見出した。
As a result of various studies in search of a radiative cooling film that exhibits a higher radiative cooling ability than when using a fluorinated polymer, the present inventor has discovered that a thin film of phosphate and molybdate can be formed on an aluminum substrate. It has been found that this problem can be effectively solved.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明は放射冷却膜に係り、この放射冷却膜は
、アルミニウム基質上にリン酸塩およびモリブデン酸塩
の薄膜を任意の順序で形成せしめてなる。
Accordingly, the present invention relates to a radiative cooling film comprising thin films of phosphate and molybdate formed in any order on an aluminum substrate.

リン酸塩としては、例えばリン酸亜鉛、リン酸カルシウ
ム、リン酸カリウム、リン酸ニッケル、リン酸鉄などが
用いられ、好ましくはリン酸亜鉛が用いられる。また、
モリブデン酸塩としては。
As the phosphate, for example, zinc phosphate, calcium phosphate, potassium phosphate, nickel phosphate, iron phosphate, etc. are used, and zinc phosphate is preferably used. Also,
As a molybdate.

例えばモリブデン酸カルシウム、例えばモリブデン酸バ
リウム、モリブデン酸鉄などが用いられ。
For example, calcium molybdate, barium molybdate, iron molybdate, etc. are used.

好i−シ<はモリブデン酸カルシウムが用いられる。Preferably, calcium molybdate is used.

これらのリン酸塩およびモリブデン酸塩は、厚さ約30
〜70μm、好ましくは約5oμm程度のアルミニウム
基質上に、真空蒸着法、プラズマ重合法、スパッタリン
グ法などにより、やはり約3o〜70μm、好ましくは
約50μm程度の厚さでそれぞれ薄膜層を形成させる。
These phosphates and molybdates have a thickness of about 30
A thin film layer is formed on an aluminum substrate having a thickness of about 30 to 70 μm, preferably about 50 μm, by a vacuum evaporation method, a plasma polymerization method, a sputtering method, etc. on an aluminum substrate having a thickness of about 30 to 70 μm, preferably about 50 μm.

形成される薄膜の順序は任意であるが、大気中の酸素や
水分などの影響を考えたとき、リン酸塩およびモリブデ
ン酸塩の順序で薄膜をそれぞれ形成させ1表面側をモリ
ブデン酸塩薄膜層とした方が冷却能の低下がより抑制さ
れる。
The order in which the thin films are formed is arbitrary, but considering the influence of oxygen and moisture in the atmosphere, thin films are formed in the order of phosphate and molybdate, and one surface is covered with a molybdate thin film layer. In this case, the decrease in cooling capacity is more suppressed.

〔作用〕および〔発明の効果〕 本発明に係る放射冷却膜は、モリブデン酸塩薄膜層にお
いて10〜13μmの波長光を吸収し、またリン酸塩薄
膜層において8〜10μmの波長光を吸収し、更にアル
ミニウム基板層において入射光を全反射するので、大気
から放射される8〜13μmの波長光を選択的にむらな
く吸収させ、他の領域の波長光を殆んど吸収しないため
、冷却能の高い放射冷却膜が得られることになる。
[Function] and [Effects of the Invention] The radiation cooling film according to the present invention absorbs wavelength light of 10 to 13 μm in the molybdate thin film layer, and absorbs wavelength light of 8 to 10 μm in the phosphate thin film layer. Furthermore, since the aluminum substrate layer totally reflects the incident light, it selectively and evenly absorbs light with a wavelength of 8 to 13 μm emitted from the atmosphere, and hardly absorbs light with wavelengths in other regions, which improves cooling performance. This results in a radiation cooling film with high radiative cooling.

Claims (1)

【特許請求の範囲】 1、アルミニウム基質上にリン酸塩およびモリブデン酸
塩の薄膜を任意の順序で形成せしめてなる放射冷却膜。 2、リン酸塩およびモリブデン酸塩の順序で薄膜を形成
させた特許請求の範囲第1項記載の放射冷却膜。 3、各薄膜層を約30〜70μmの厚さで形成された特
許請求の範囲第1項または第2項記載の放射冷却膜。
[Claims] 1. A radiant cooling film comprising thin films of phosphate and molybdate formed in any order on an aluminum substrate. 2. The radiation cooling film according to claim 1, wherein the thin film is formed in the order of phosphate and molybdate. 3. The radiation cooling film according to claim 1 or 2, wherein each thin film layer is formed to have a thickness of about 30 to 70 μm.
JP14229986A 1986-06-18 1986-06-18 Radiation cooling film Pending JPS63485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14229986A JPS63485A (en) 1986-06-18 1986-06-18 Radiation cooling film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14229986A JPS63485A (en) 1986-06-18 1986-06-18 Radiation cooling film

Publications (1)

Publication Number Publication Date
JPS63485A true JPS63485A (en) 1988-01-05

Family

ID=15312147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14229986A Pending JPS63485A (en) 1986-06-18 1986-06-18 Radiation cooling film

Country Status (1)

Country Link
JP (1) JPS63485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928593A1 (en) * 1988-08-29 1990-03-15 Suzuki Motor Co TRANSMISSION DEVICE FOR A VEHICLE
JPH03117885A (en) * 1989-09-28 1991-05-20 Hoshino Sansho:Kk Modification of electric furnace slag
WO2005010103A3 (en) * 2003-07-29 2005-04-07 Dmitry Vyacheslavov Romanovsky Anticorrosive pigment
WO2021017524A1 (en) * 2019-07-30 2021-02-04 南京工业大学 Infrared selective radiation cooling nano-functional composition and preparation method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928593A1 (en) * 1988-08-29 1990-03-15 Suzuki Motor Co TRANSMISSION DEVICE FOR A VEHICLE
DE3928593C2 (en) * 1988-08-29 1996-03-07 Suzuki Motor Co Switching device for a vehicle transmission
JPH03117885A (en) * 1989-09-28 1991-05-20 Hoshino Sansho:Kk Modification of electric furnace slag
WO2005010103A3 (en) * 2003-07-29 2005-04-07 Dmitry Vyacheslavov Romanovsky Anticorrosive pigment
EA008800B1 (en) * 2003-07-29 2007-08-31 Дмитрий Вячеславович Романовский Anticorrosive pigment
WO2021017524A1 (en) * 2019-07-30 2021-02-04 南京工业大学 Infrared selective radiation cooling nano-functional composition and preparation method therefor
US20220274882A1 (en) * 2019-07-30 2022-09-01 Nanjing Tech University Infrared selective radiation cooling nano-functional composition and preparation method thereof
JP2022542325A (en) * 2019-07-30 2022-09-30 南京工▲業▼大学 Infrared selective nano-functional composition for radiative cooling and method of making same

Similar Documents

Publication Publication Date Title
US4345000A (en) Transparent electrically conductive film
KR101918425B1 (en) Infrared-reflecting film
US7192623B2 (en) Thin layer of hafnium oxide and deposit process
JP2007298661A (en) Antireflection film for infrared light
JPS63485A (en) Radiation cooling film
JPS585855B2 (en) semi-reflective glass
JPH10228868A (en) Method for improving luminous efficiency of plasma display
US2427592A (en) Thorium compound protective coatings for reflecting surfaces
Cole et al. The use of ion beam sputtered optical coatings as protective overcoats
US3493289A (en) Coated optical devices
JP3102959B2 (en) High durability thin film
JP2015505900A (en) Yttrium oxide coated optical element with improved mid-infrared performance
Shakoury et al. Ion assisted deposition of magnesium fluoride films at low temperature
JPS6296901A (en) Synthetic resin lens
JPH0469883B2 (en)
Heaney et al. Spinel (AI 2 O 3: MgO): refractive-index variations and lack of stoichiometry in evaporated films
JP2928784B2 (en) Multilayer reflector
JPH03188263A (en) Metal oxide coated plastics
JP2926939B2 (en) Packaging film
JPS63297548A (en) Optical protective film and production thereof
JPS58105201A (en) Reflective mirror
JPH01246504A (en) Copper mirror coated with protective film
JPH0237303A (en) Multilayered reflecting mirror
JPS6364001A (en) Production of thin optical film
JPH04352102A (en) Antireflection film for plastic optical member and formation thereof