JPS6348586B2 - - Google Patents

Info

Publication number
JPS6348586B2
JPS6348586B2 JP54104881A JP10488179A JPS6348586B2 JP S6348586 B2 JPS6348586 B2 JP S6348586B2 JP 54104881 A JP54104881 A JP 54104881A JP 10488179 A JP10488179 A JP 10488179A JP S6348586 B2 JPS6348586 B2 JP S6348586B2
Authority
JP
Japan
Prior art keywords
group
hydrogenation
metal
hydrogenation catalyst
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104881A
Other languages
Japanese (ja)
Other versions
JPS5547147A (en
Inventor
Baiaa Erunsuto
Shuuman Uiruherumu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hairu Hemitsushe Fuarumatsuoiteitsushe Fuaburitsuku Unto Co KG GmbH
Original Assignee
Hairu Hemitsushe Fuarumatsuoiteitsushe Fuaburitsuku Unto Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hairu Hemitsushe Fuarumatsuoiteitsushe Fuaburitsuku Unto Co KG GmbH filed Critical Hairu Hemitsushe Fuarumatsuoiteitsushe Fuaburitsuku Unto Co KG GmbH
Publication of JPS5547147A publication Critical patent/JPS5547147A/en
Publication of JPS6348586B2 publication Critical patent/JPS6348586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1683Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage being to a soluble polymer, e.g. PEG or dendrimer, i.e. molecular weight enlarged complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/646Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of aromatic or heteroaromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/825Osmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Peptides Or Proteins (AREA)
  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は水素化触媒およびその製造方法並び
に水素化方法に関する。 均質溶液中の低分子金属触媒で水素化をおこな
うことは実験室においてもまた工業的にも実際上
適用されていない。反応生成物と触媒とを分離す
ることにまつわるやつかいな問題があるからであ
る。それ故、低分子均質触媒をホスフイン基を有
する重合体に結合する試みがおこなわれている。
不溶性重合体を用いると不均質となる。これらト
リフエニルホスフイン基を有する重合体錯体は、
上記低分子錯体と同様、選択性および安定性に幾
分乏しいのである。 したがつて、この発明の目的は普通の炭化水素
系溶媒に可溶であり、公知の触媒よりもより早く
より選択的に水素化を促進し、しかも反応生成物
から容易に分離でき、かつ長期間に渡つて充分に
活性な重合体水素化触媒を提供することである。 また、この発明の目的は上記水素化触媒の製造
方法を提供することである。 さらに、この発明の目的は上記水素化触媒を用
いた有機化合物の水素化方法を提供することであ
る。 この発明の水素化触媒は周期律表第亜族の金
属もしくはその塩を共有結合または第二次原子価
結合によつて可溶性重合体(これは合成であつて
も半合成であつてもよい)に結合してなるもので
ある。この水素化触媒は種々の水素化反応に非常
に効果的である。上記重合体の基本構造によつて
普通の溶媒中における水素化に用いることのでき
る可溶性水素化触媒が得られるわけである。 この発明の水素化触媒は沈殿、蒸留および抽出
のような通常の方法によつて、さらには分子量の
差を利用して透析ろ過およびゲルクロマトグラフ
法によつて低分子出発物質からおよび反応生成物
から分離できる。したがつて、分離の問題が単純
化され、しかも反応を均質的におこなうというこ
とも保持される。 この発明の水素化触媒のうち好ましいものは、
ポリビニルアルコール、ポリビニルピロリドン、
ポリアクリロニトリル、ポリアクリル酸、ポリエ
チレングリコール、ポリプロピレングリコール、
官能化ポリスチレン、カルボキシメチルセルロー
ス、ポリウレタン、ポリビニルアミン、ポリエチ
レンイミン、さらには合成および半合成のポリア
ミド、ポリペプチドおよび重合ポリヒドロキシ化
合物並びにこれらの混合物から得たものである。 上記重合体の分子量は広い範囲で選ぶことがで
き、例えば1000ないし1000000、好ましくは約
5000ないし300000、さらに好ましくは5000ないし
100000である。 この発明に従うと、上記重合体は周期律表第
亜族の金属もしくは金属イオンの塩もしくは錯体
と直接反応させることができる。この金属塩また
は金属錯体はFe,Co,Ni,Ru,Rh,Pd,Os,
IrまたはPtから得たものであることが有利であ
る。 金属または金属イオンを官能性重合体に結合さ
せる割合は広い範囲で変えることができる。好ま
しくは、金属約0.1〜10%を重合体に結合させる。
金属の結合割合をこれ以上にしても水素化の速度
は増加しない。 上記金属結合重合体の製造は一般に非常に簡単
な方法で、すなわち少なくとも一種の上記重合体
を周期律表第亜族金属、そのイオンもしくは錯
体と水溶液中でまたは有機溶媒中で反応させるこ
とによつておこなえる。 こうして得た金属もしくは金属イオン含有重合
体は透析ろ過によつて低分子量成分と分離し、精
製し、単離することなく溶液中での水素化反応に
使用できる。単離することを望む場合、沈殿、再
沈殿、溶媒の蒸発または凍結乾燥によつておこな
うことができる。一般に、周期律表第亜族の金
属またはそのイオンは上記したタイプの重合体と
反応し、この発明に従つて水素化触媒として利用
される。 この発明の重合体系水素化触媒を製造するため
の出発重合体として、上記した重合体に加えて、
官能化によつて変性された、他の金属結合性基を
導入してなる重合体も使用できる。既述のホスフ
イン基に加えて金属結合性官能基としてスルホン
酸基、カルボニル基、カルボキシル基、アミノ
基、イミノ基、ヒドロキシル基、シアノ基および
(または)酸アミド基を重合体に導入することが
できる。金属化合物はまた、オレフイン類または
芳香族化合物によつてπ複合体として結合するこ
ともできるし、炭素金属結合によつて結合するこ
ともできる。さらにまた、金属または金属イオン
は、既述のように重合体に直接結合させる他に、
低分子配位子によつて配位結合または塩形成結合
で結合させることもできる。例えば、トリフエニ
ルホスフインのようなホスフイン、一酸化炭素、
ハロゲン化物ことに塩化物、シアン化物、ニトリ
ル、アルケン、アルキンことにアセチレン、およ
び(または)シクロペンタジエンアニオンであ
る。 この発明の水素化触媒のうちことに好ましいも
のは、周期律表第亜族の金属もしくは金属塩好
ましくは金属パラジウムまたはパラジウム塩が可
溶性合成もしくは半合成重合体に共有結合および
(または)第二次原子価結合で結合し、かつさら
に少なくとも1つの低分子配位子が当該金属に結
合してなるものである。これら好ましい水素化触
媒は以下の低分子配位子を包含することができ
る。 (a) アミン。 (b) アミノ酸。 (c) 一般式 R―(CHR1o―CN () (ここで、Rはフエニル基、ナフチル基、アン
トラセニル基またはフエナンスレニル基であつ
て一種以上の直鎖もしくは分枝C1〜C6アルキ
ル基が置換していてもよい、あるいはRは直鎖
もしくは分枝C1〜C6アルキル基、R1は水素ま
たは直鎖もしくは分枝C1〜C6アルキル基、お
よびnは0,1または2)で示されるニトリ
ル。 (d) 一般式 P(R23 () (ここで、R2は同一または異なる基であつて
直鎖もしくは分枝C1〜C6アルキル基、フエニ
ル基、一つまたはそれ以上の直鎖もしくは分枝
C1〜C6アルキル基によつて置換されたフエニ
ル基、またはC1〜C6アルコキシ基)で示され
るホスフイン(非置換トリフエニルホスフイン
を含む)。 (e) オレフインまたはアルキン(環式オレフイン
もしくはアルキンを含む)。 (f) ホスホリル化合物。 上記したタイプの低分子配位子のうちことに有
利なものを以下列挙する。 (a) 嵩高の脂肪族、脂環族もしくは芳香族置換基
特に4個ないし16個の炭素原子を有する分枝脂
肪族基(例えば、イソプロピル基、第三ブチル
基およびネオペンチル基)を有する一級、二級
もしくは三級アミン。 (b) 脂環族基(例えば、シクロペンチル基、シク
ロヘキシル基およびアダマンチル基)を有する
アミン。 (c) 当該アルキル基が1個ないし6個の炭素原子
を含有し、かつその脂肪族基に少なくとも1つ
の芳香族基(特に、少なくとも1つのフエニル
基)および(または)少なくとも1つのナフチ
ル基、アンストラセニル基もしくはフエナント
レニル基を有するアール脂肪族アミン。この種
の配位子のうちことに好ましいものはフエニル
エチルアミン(特に1―フエニルエチルアミ
ン)、ジフエニルエチルアミン(特に、1,1
―ジフエニルエチルアミン)およびフエニルプ
ロピルアミンである。ここで述べたアール脂肪
族アミンにおいて、嵩高の置換基ことに芳香族
基は脂肪族基に結合したアミノ基に対して1位
または2位に位置することが好ましい。 前記式で示されるニトリル系配位子としてこ
とに好ましいものは、シアノ基が直接芳香族基
(ことに、フエニル基、ナフチル基、アントラセ
ニル基またはフエナントレニル基)に結合してい
るものである。この場合、シアノ基は芳香族基の
どの位置に結合していてもかまわない。また、こ
の芳香族基は1個または2個の短鎖脂肪族分枝も
しくは直鎖基ことにC1〜C6アルキル基によつて
置換されたものであつてもよい。この置換基は、
とくには嵩高のアルキル基例えば、第三ブチル
基、アミル基、ネオペンチル基等である。 さらに、シアノ基が1個または2個の炭素原子
によつて前記芳香族基から隔離されているニトリ
ルも好適である。このようなアルキレン架橋ニト
リルは1位の炭素原子に分枝もしくは直鎖C1
C6アルキル基例えば、メチル基、エチル基、n
―プロピル基、イソプロピル基、n―ブチル基、
sec―ブチル基、tert―ブチル基、アミル基、ネ
オペンチル基またはヘキシル基を有していてもか
まわない。 好適なアミノ酸はアミノ基に対して1位ないし
3位の位置に嵩高の基を有するものである。この
種の好ましい例を挙げると、ジフエニルグリシ
ン、ノルロイシン、ロイシン、イソロイシン、第
三ロイシン、バリン等である。 好適なホスフイン系配位子は例えばアリールホ
スフインであり、これは当該アリール核ことにフ
エニル核に1個以上の低級アルコキシ基もしくは
低級アルキル基が置換したものであつてもよい。
ことに好ましいものはトリフエニルホスフインで
あつてフエニル基に上記基が置換したものであ
る。 好適なオレフインは炭素原子数2ないし12のシ
スもしくはトランスモノオレフインであり、その
炭素鎖に他の基例えば、炭素原子数1〜6の基、
ハロゲン(例えば、F,Cl,Br,I)、シアノ
基、カルボニル基、カルボキシル基、アミノ基、
アミド基等が置換していてもよい。その例を挙げ
ると、エチレン、プロピレン、n―ブテン(1)、n
―ブテン(2)、n―ペンテン(1)、n―ペンテン(2)、
n―ペンテン(3)、n―ヘキセン(1)、n―ヘキセン
(2)、n―ヘキセン(3)、イソペンテン、イソヘキセ
ン、n―およびイソ―ヘプテン、n―およびイソ
―オクテン、n―およびイソ―ノネン、n―およ
びイソ―デセン、n―およびイソ―ドデセン、イ
ソブチレン、2―メチル―ブテン(1)、3―メチル
―ブテン(1)、n―ヘプテン(1)、n―オクテン(1)、
アリルクロリド、アリルブロミド等、さらにはシ
スまたはトランスジおよびポリオレフイン例えば
炭素原子数4〜12のジおよびトリオレフインであ
る。これらは他の置換基例えばC1〜C6アルキル
基、ハロゲン、C≡N―基、カルボニル基、カル
ボキシル基、ヒドロキシ基等によつて置換されて
いてもよい。この種の例を挙げると、ブタジエン
(1,3)、2,3―ジメチルブタジエン(1,
3)、ペンタジエン、ヘキサジエン、ヘキサトリ
エン、ドデカトリエン等である。 好適なアルキンの例を挙げると2個ないし12個
の炭素原子を有するアセチレン、メチルアセチレ
ン、エチルアセチレン、ジメチルアセチレン、ペ
ンチン(1)、ペンチン(2)、3―メチルブチン(1)、ヘ
キシン(1)、ヘキシン(2)、ヘキシン(3)、3,3―ジ
メチルブチン(1)等である。上記したオレフインの
場合と同様、これらアルキンは好適な官能基例え
ば、カルボキシル基(この場合の例としてアセチ
レンジカルボン酸)、ヒドロキシ基、ハロゲン、
C1〜C6アルキル基等によつて置換されていても
よい。 好適な環式ジエンの例を挙げると、1,3―シ
クロヘキサジエン、1,4―シクロヘキサジエン
およびシクロオクタジエン特に1,3―シクロオ
クタジエンおよび1,5―シクロオクタジエンで
ある。 ホスホリル化合物も好適な配位子である。例え
ば、メチレントリフエニルホスホランであり、そ
のメチレン基に脂肪族基または芳香族基特にC1
〜C6アルキル基、フエニル基、ベンジル基が置
換していてもよく、またそのメチレン基は環式脂
肪族基の環の一部であつてもよい。 一般に、水素化反応の選択性は配位子の嵩が増
す程高くなる。すなわち、配位子としてベンゾニ
トリルを用いた場合、選択性は非常に高いという
わけではないが、ナフトニトリルを用いた場合、
選択性は非常に増大する。シアノアントラセンを
用いた場合、選択性は非常に高い。 また、アミン同志でも選択性が異なる。例え
ば、1,1―ジフエニルエチルアミンの選択性は
1―フエニルエチルアミンのそれよりもはるかに
高い。もつとも、後者の化合物自体も選択性は非
常に高い。 脂肪を水素化するための従来法の欠点は所望の
不飽和シス脂肪酸エステルが水素化され過ぎると
いうことであつた。さらに、上記エステルの大部
分があまり望ましくないトランス型に異性体化し
てしまうということがあつた。 上記従来法に対して、この発明の水素化触媒特
に低分子配位子を有するものはこれを脂肪の水素
化に用いた場合選択的水素化をおこなうことがで
きるという利点がある。すなわち、いくつかの不
飽和点を有する脂肪残渣中の一つの二重結合だけ
または二つの二重結合だけを選択的に水素化する
ことが可能である。この過程で出発物質のシス型
立体配座は大きな程度に、しばしば完全に維持さ
れる。実際、二重結合の異性化は生じない。すな
わち、二重結合の転移は起らないのである。 上記観測は、この発明の水素化触媒を用いると
前記従来法の欠点である脂肪が水素化され過ぎて
完全に飽和してしまうということが回避されると
いうことを明らかに示している。この発明によれ
ば所望の部分水素化程度に水素化を停止させるこ
とができる。 低分子配位子を有するこの発明の水素化触媒は
低分子配位子を含有する周期律表第亜族金属の
塩もしくは錯体好ましくはパラジウム塩またはパ
ラジウム錯体を水溶液中または有機溶媒中で前記
重合体と反応させ、ついで所望に応じて水素化
(当該金属塩または金属錯体の水素による還元)
することによつて製造できる。 上記反応混合物はこれをそのまま水素化触媒と
して用いることができるし、あるいは低分子量出
発物質と反応生成物を分離した後水素化触媒とし
て使用してもよい。 以上のようにして得られた水素化触媒は透析ろ
過によつて低分子量成分から分離し、精製しても
よいし、あるいは単離することなく溶液として水
素化工程に供してもよい。所望ならば、水素化触
媒は沈でん、再沈でん、溶媒の蒸発または凍結乾
燥によつて単離してもよい。 この発明の水素化触媒は水中または有機溶媒
中、室温または昇温下、加圧または常圧下におけ
る広汎な有機化合物の水素化に用いることができ
る。また、この発明の水素化触媒は懸濁液例えば
脂肪のエマルジヨンや水中の脂肪酸においても使
用することができる。こうして、ニトロ基、ニト
ロソ基、およびシアノ基はアミンに水素化するこ
とができる。 さらに、この発明の水素化触媒はオレフイン、
アセチレン、芳香族化合物、C=O―化合物、C
=N―化合物およびN=N―化合物の水素化に使
用できる。 金属または重合体の種類によつてこの水素化触
媒は特定の水素化に特に適したものとなる。すな
わち、この発明の重合体金属錯体の構造によつ
て、特定のC≡C―三重結合化合物をシスまたは
トランスオレフインに水素化することができ、ま
たいくつかのC=C―二重結合を有する有機化合
物においては特定の個々の二重結合を他の二重結
合よりも大きな速度で水素化することができる。
この発明の水素化触媒は不連続的または連続的工
程に使用でき、また繰返し再使用できる。 以下、この発明の実施例を記す。 実施例 1 ポリビニルアルコール(分子量72000)の1%
水溶液25mlを室温でPdCl2の水中懸濁液1ml(Pd
10mgに相当)と反応させ、これにNa2CO3の4%
水溶液0.5mlを滴下した。これに水を加えて50ml
とし、H2で還元し、分子量3000未満のものを透
過する膜を用いて定容量下に12時間透析ろ過をお
こなつた。約0.2mgPd/mlの割合でPdを含有する
この溶液はこれを直接水素化に使用することがで
きた。単離するために凍結乾燥した。収量は0.23
gであり、これは3.9%のPdを含んでいた。 上記工程に従い、ポリビニルピロリドン(例え
ばBASF社製ルビスコールK70)またはカルボキ
シメチルセルロース(ヘンケル社製レラチン)を
有する重合体パラジウム化合物を製造することが
できた。上記パラジウム化合物はこれら重合体の
1%溶液25mlと同様に反応させた。 実施例 2 PdCl2の水性懸濁液1ml(Pd含量10mg)を室温
でポリビニルアルコール(分子量72000)のメタ
ノール(またはプロパノール)中1%溶液25mlに
加えた。ついで、2%トリエチルアミン溶液1ml
を滴下し、メタノール(またはプロパノール)を
加えて50mlとし、H2で還元し、ポリアミド膜
(分子量10000未満のものを透過)を用いて24時間
透析ろ過した。残液は約0.2mgPd/mlの割合でPd
を含有しており、これを直接水素化に使用するこ
とができた。単離するために、残液(低分子量の
ものを透析ろ過によつて除去したもの)を溶媒の
蒸発乾固によつて分離した。収量は0.24g(Pd含
有率3.8%)であつた。 実施例 3 ポリビニルピロリドンの1%メタノール溶液25
mlを室温でPdCl2・2C6H5CN38mgと撹拌下に反応
させた。ついで、トリエチルアミンの2%メタノ
ール溶液1mlを滴下し、これにメタノールを加え
て50mlとし、水素で還元し、定容量下に24時間透
析ろ過した。この残液は水素化に直接用いること
ができた。単離するために残液を蒸発乾固した。
収量は0.22g(Pd含有率3.95%)であつた。 実施例 4 実施例3の工程に従つて、ポリビニルピロリド
ンの1%水溶液をK2〔PtCl4〕の水溶液1ml(白
金含量10mg)と反応させた。収量は0.23gで、Pt
含有率は3.7%であつた。 実施例 5 ポリビニルピロリドンの1%水溶液25mlをRh
(OH)315mgと反応させメタノールを加えて50ml
とし、H2で還元した。ついでこれを定容量下に
ポリアミド膜(分子量10000未満のものを透過)
を用いて18時間透析ろ過した。得られたロジウム
重合体は溶液のまま水素化に直接用いることがで
きた。単離のために、透析残液を蒸発乾固した。
収量は2.2g(Rh含有率2.1%)であつた。 実施例 6 実施例5の工程に従い、Ru(OH)315mgをポリ
ビニルピロリドンの1%溶液25mlと反応させた。
収量は2.05gであり、3.5%のRuを含んでいた。 実施例 7 実施例1の工程に従い、ポリビニルピロリドン
の水溶液25mlをNa3〔IrCl6〕の水溶液1ml(イリ
ジウム10mg)と反応させた。収量は2.1g(イリ
ジウム含有率3.5%)であつた。 実施例 8 ポリビニルピロリドンの1%メタノール溶液25
mlを室温で四酸化オスミウム13mgと反応させ、こ
の反応溶液にアセチレンを30分間通じた。つい
で、メタノールを加えて50mlとし、常法により定
容量下に透析ろ過した。この残液はそのまま水素
化に使用することができた。単離するためにこの
残液を減圧下に蒸発乾固した。収量は2.1gであ
り、オスミウム含有率は4.0%であつた。 実施例 9 (a) クロロメチル化線状非架橋ポリスチレン(分
子量34000)をジメチルホルムアミド(DMF)
50mlに溶解し、トリフエニルホスフイン280mg
と反応させ、この溶液を還流下に24時間熱し
た。この反応溶液を冷却した後、氷冷した石油
エーテル(沸点30〜50℃)500mlに導入し、生
成重合体を沈でんさせた。この生成重合体をろ
別し、乾燥し、ベンゼン50mlに溶解し、これを
再び氷冷石油エーテルに注下・再沈させた。こ
うして得た重合体ホスホニウム塩をP4O10の減
圧下で乾燥した。P含有率は1.63%であつた。 (b) 上記工程(a)で得た重合体ホスホニウム塩2g
を二股管中でN2下に乾燥ベンゼン60ml中に懸
濁させ、n―ブチルリチウム0.17mlと反応させ
た。懸濁液は透明になり、黄色味を帯びてき
た。1時間の撹拌の後、小量の塩化リチウムを
ろ別し、ろ液をPdCl2・(C6H5CN)2153mgと反
応させた。この溶液を60℃で3日間撹拌したと
ころ暗かつ色となつた。冷却後、ろ過し、ろ液
を氷冷した石油エーテル500mlに注下し、生成
重合体を灰色粉末として沈でんさせた。ベンゼ
ンへの溶解および石油エーテル中での沈でんを
2回繰返した。ついでこれを減圧下にP4O10
で乾燥した。さらに精製するために、生成重合
体をベンゼンに溶解し、分子量10000未満のも
のを透過するポリアミド膜を用いて透析ろ過し
た。さらに、ろ液が透明になるまで限外ろ過を
おこなつた。得られた重合体を、前記と同様
に、再び氷冷石油エーテル中に沈でんさせ、乾
燥した。収量は1.9g(Pd含有率5.4%)であつ
た。 実施例 10 線状ポリアクリロニトリル(分子量106ダルト
ン)のN―メチルピロリドン(NMP)中1%溶
液25mlを室温で固形PdCl217mgと反応させ、
NMP中トリエチルアミンの2%溶液1mlを加
え、この混合物にNMPを加えて50mlとした。 上記溶液10mlを水素化反応器に仕込み、H2
3回フラツシングをおこない、H2下に12時間撹
拌した。ついで、ペンチン―(2)1ミリモルを加
え、室温、1バールの下で水素化した。20〜60分
間経過後、シスペンテン―(2)96%、さらにトラン
スペンテン―(2)2%およびn―ペンタン2%が得
られたことがガスクロマトグラフ分析によつてわ
かつた。 実施例 11 実施例10と同様にしてポリアクリロニトリル―
パラジウム錯体の溶液50mlを製造し、この反応溶
液にトリフエニルホスフイン10.5mgを加えた。 上記溶媒を実施例10と同様に予め水素化した。
ついで、ペンチン―(1)1ミリモルを加え、水素化
した。20〜60分間経過後ペンテン―(1)97%および
n―ペンタン3%が得られたことがガスクロマト
グラフ分析によつてわかつた。蒸留または限外ろ
過によつて分離した後、触媒は再使用できた。 実施例 12 実施例1,2,3または4で得た触媒溶液各5
mlを用いて以下のように水素化をおこなつた。 各触媒溶液5mlを蒸留水30mlで希釈し、H2
3回リンスし、水素下で30分間撹拌し、予め水和
させた。ついで、p―ニトロフエノール1ミリモ
ルを加え、室温、1バールの下で水素化した。そ
の後分子量10000のものを透過させるポリスルホ
ン膜を用いて定容量下、2バールでろ過した。ろ
液中でp―アミノフエノールを97%の収率で得
た。水素化時間は用いた触媒に応じて20〜120分
間に渡つて変化させた。透析ろ過で保持された液
中には水素化触媒が含まれており、これを再使用
することができた。 実施例 13 実施例5,6または7で得た水素化触媒溶液5
mlを水素化フラスコに仕込み、蒸留水30mlで希釈
し、水素で3回フラツシングし、水素下に60℃で
24時間撹拌することによつて予め水素化した。つ
いで、p―ニトロフエノール1ミリモルを加え、
室温下、1バールで水素化した。水素化時間は用
いた触媒に応じて20分間から4時間までに渡つ
た。4―アミノシクロヘキサノールの収率は85〜
90%であつた。 実施例 14 水素化反応容器中で、実施例2で得た水素化触
媒溶液5mlをメタノール12.5mlおよび蒸留水7.5
mlで希釈し、H2で3回フラツシングした。つい
で、これをH2下で30分間予備活性化させた。こ
れにマレイン酸1ミリモルを加え、20℃、1バー
ルの下で2時間水素化した。この反応混合物を分
子量10000未満のものを透過させる膜を用いてろ
過した。ろ液はコハク酸を97%の収率で含んでい
た。 実施例 15 水素化反応容器中で、実施例2の水素化触媒溶
液10mlをメタノール30mlで希釈し、H2で3回フ
ラツシングし、H2下で30分間予備活性化させた。
これにリノール酸1ミリモルを加え、20分間水素
化した。透析ろ過をしたところ、ステアリン酸を
94%の収率で含有していた。 前記と同一条件の下で、他の不飽和脂肪酸を水
素化できた。例えばオレイン酸をステアリン酸に
水素化した。 実施例 16 実施例14と同様にして、シクロヘキセン、ペン
チンまたはヘキシン―(2)1ミリモルを水素化し
た。水素化は20分間で完結した。こうして、シク
ロヘキサン、n―ペンタンまたはn―ヘキサンを
それぞれ定量的に得た。 実施例 17 水素化反応容器中で、実施例2で得た水素化触
媒溶液をメタノール20mlおよび水20mlで希釈し、
H2で3回フラツシングし、H2下に30分間撹拌す
ることによつて予備活性化させた。ついで、これ
に式 で示される、ベンジルエステル基が1つ結合した
ポリエチレングリコール(PEG)のポリマーペ
プチド1gを加えて25分間水素化(ベンジルエス
テルの水素化開裂)した。ついで、分子量10000
未満のものを透過させる膜を用いて透析ろ過し
た。凍結乾燥によつてろ液から生成ペプチドを得
た。収率は98%であつた。 実施例 18 水素化反応容器中で、実施例9の水素化触媒溶
液100mgをジオキサン30mlに溶解し、H2で3回フ
ラツシングし、H2下に一昼夜撹拌することによ
つて予備活性化させた。ついで、これにシクロヘ
キサジエン―(1,3)5mlを加え、30分間水素
化した。毎分4mlのH2が吸収され、反応を停止
することによつてさらに0.4mlH2/分が吸収され
た。 上記反応混合物を分子量10000のものを透過さ
せる膜を用いてろ過した。ガスクロマトグラフ分
析によつて、ろ液はシクロヘキセン90%およびシ
クロヘキサン5%を含有するものであることがわ
かつた。 実施例 20 PdCl2×2(9―シアノ―アントラセン)5.5mg
(約1mgPd)をN―メチルピロリドン0.5mlに溶解
し、ポリビニルピロリドン(分子量約200000)の
n―プロパノール中1%溶液40mlで希釈した。し
かる後、トリエチルアミンのn―プロパノール中
2%溶液0.25mlを加え、これを水素で還元した。
空気を排除した状態で、ピペツトを用いて亜麻仁
油5mlを加えたところ1時間以内に暗かつ色にな
つた。この混合物を撹拌下、室温で水素圧1バー
ルの下で水素化した。水素200mlを吸収した(104
分間)後、水素化が完結した。溶媒を回転蒸発器
により蒸発させ、残渣から水素化油を石油エーテ
ルで抽出した。石油エーテルを蒸発させた後、生
成水素化油をアルコール性水酸化カリウムでケン
化した。こうして得た脂肪酸をジアゾメタンを用
いてエステル化し、ガスクロマトグラフ法で分析
した。石油エーテルに不溶である水素化触媒はn
―プロパノールに溶解でき、水素化に再使用でき
る。(下記表参照)。 実施例 20 実施例19で用いたシアノ―アントラセン錯体を
PdCl2×2β―ナフトニトリル4.6mg(約1mgPd)
と置き換えた以外は実施例19と同一の操作をおこ
なつた。(下記表参照)。 実施例 21 実施例19で用いたシアノ―アントラセン錯体の
代りにPdCl2×2(1―フエニルエチルアミン)
4.0mg(約1mgPd)を用いた以外は実施例19と同
一の操作をおこなつた(下記表参照)。 実施例 22 PdCl2×2(1,1―ジフエニルエチルアミン)
5.4mgをN―メチルピロリドン0.5mlに溶解し、ポ
リビニルピロリドン(分子量約200000)の1%溶
液40mlで希釈した。トリエチルアミンのn―プロ
パノール溶液0.25mlを加えた後、これを室温で水
素を用いて還元した。1時間経過後、空気を排除
した状態で、ピペツトを用いた亜麻仁油5mlを加
え、水素の吸収が完了するまで(約250ml)水素
化した。この溶液を限外ろ過し、ろ液を濃縮し、
残つた水素化油をケン化し、ジアゾメタンでエス
テル化し、ガスクロマトグラフ法で分析した。残
液をn―プロパノールで希釈し、これを水素化に
再使用できた(下記表参照)。 実施例 23 実施例19で用いたポリビニルピロリドンの代り
にポリビニルピリジンを用いた以外は実施例19と
同一の操作をおこなつた。 実施例 24 油としてリノレン酸メチルエステルを用いた以
外は実施例19と同一の操作をおこなつた。
The present invention relates to a hydrogenation catalyst, a method for producing the same, and a hydrogenation method. Hydrogenation with small metal catalysts in homogeneous solution has no practical application either in the laboratory or in industry. This is because there are complex problems associated with separating reaction products and catalyst. Attempts have therefore been made to attach small molecule homogeneous catalysts to polymers containing phosphine groups.
The use of insoluble polymers results in heterogeneity. These polymer complexes having triphenylphosphine groups are
Like the small molecule complexes mentioned above, it has somewhat poor selectivity and stability. It is therefore an object of the present invention to provide catalysts that are soluble in common hydrocarbon solvents, that promote hydrogenation faster and more selectively than known catalysts, that are easily separated from the reaction products, and that It is an object of the present invention to provide a polymer hydrogenation catalyst that is sufficiently active over a period of time. Another object of the present invention is to provide a method for producing the above hydrogenation catalyst. Furthermore, an object of the present invention is to provide a method for hydrogenating organic compounds using the above hydrogenation catalyst. The hydrogenation catalyst of the present invention is a soluble polymer (which may be synthetic or semi-synthetic) that binds metals of subgroups of the periodic table or their salts through covalent bonds or secondary valence bonds. It is formed by combining. This hydrogenation catalyst is very effective in various hydrogenation reactions. The basic structure of the above polymer provides a soluble hydrogenation catalyst that can be used for hydrogenation in common solvents. The hydrogenation catalyst of this invention can be prepared from low molecular weight starting materials and from reaction products by conventional methods such as precipitation, distillation and extraction, as well as by diafiltration and gel chromatography, taking advantage of molecular weight differences. Can be separated. The problem of separation is thus simplified, while also preserving the homogeneous nature of the reaction. Among the hydrogenation catalysts of this invention, preferred ones are:
polyvinyl alcohol, polyvinylpyrrolidone,
polyacrylonitrile, polyacrylic acid, polyethylene glycol, polypropylene glycol,
These are derived from functionalized polystyrene, carboxymethylcellulose, polyurethane, polyvinylamine, polyethyleneimine, as well as synthetic and semi-synthetic polyamides, polypeptides and polymerized polyhydroxy compounds and mixtures thereof. The molecular weight of the above polymer can be selected within a wide range, for example from 1000 to 1000000, preferably about
5,000 to 300,000, more preferably 5,000 to 300,000
It is 100000. According to the invention, the polymer can be reacted directly with a salt or complex of a metal or metal ion of subgroup of the periodic table. These metal salts or metal complexes include Fe, Co, Ni, Ru, Rh, Pd, Os,
Advantageously, it is derived from Ir or Pt. The rate at which the metal or metal ion is bound to the functional polymer can vary within wide limits. Preferably, about 0.1-10% of the metal is bound to the polymer.
Increasing the metal bonding ratio beyond this does not increase the rate of hydrogenation. The metal-bonded polymers are generally produced in a very simple manner, namely by reacting at least one of the polymers with a metal from subgroup of the periodic table, an ion or a complex thereof, in aqueous solution or in an organic solvent. You can do it by setting it up. The metal or metal ion-containing polymer thus obtained can be separated from low molecular weight components by diafiltration, purified, and used in a hydrogenation reaction in solution without isolation. If desired, isolation can be achieved by precipitation, reprecipitation, evaporation of the solvent or lyophilization. Generally, metals from subgroups of the periodic table or ions thereof are reacted with polymers of the type described above and utilized as hydrogenation catalysts in accordance with the present invention. In addition to the above-mentioned polymers, as starting polymers for producing the polymer-based hydrogenation catalyst of the present invention,
Polymers modified by functionalization to incorporate other metal-binding groups can also be used. In addition to the aforementioned phosphine groups, sulfonic acid groups, carbonyl groups, carboxyl groups, amino groups, imino groups, hydroxyl groups, cyano groups, and/or acid amide groups can be introduced into the polymer as metal-binding functional groups. can. Metal compounds can also be bonded as pi complexes by olefins or aromatic compounds, or by carbon-metal bonds. Furthermore, in addition to directly bonding the metal or metal ion to the polymer as described above,
Coordination bonds or salt-forming bonds can also be bonded by means of small molecule ligands. For example, phosphines such as triphenylphosphine, carbon monoxide,
Halides are especially chlorides, cyanides, nitriles, alkenes, alkynes, especially acetylenes, and/or cyclopentadiene anions. Particularly preferred hydrogenation catalysts of the invention are metals of subgroups of the periodic table or metal salts, preferably metal palladium or palladium salts, which are covalently bonded and/or secondary to soluble synthetic or semisynthetic polymers. The metal is bonded by a valence bond, and at least one low molecular weight ligand is further bonded to the metal. These preferred hydrogenation catalysts can include the following small molecule ligands. (a) Amines. (b) Amino acids. (c) General formula R-(CHR 1 ) o -CN () (where R is a phenyl group, a naphthyl group, an anthracenyl group, or a phenanthrenyl group, and one or more straight-chain or branched C 1 to C 6 alkyl The groups may be substituted, or R is a straight-chain or branched C1 - C6 alkyl group, R1 is hydrogen or a straight-chain or branched C1 - C6 alkyl group, and n is 0, 1 or 2) A nitrile represented by (d) General formula P(R 2 ) 3 ( ) (where R 2 is the same or different group and is a straight chain or branched C 1 -C 6 alkyl group, a phenyl group, one or more straight chain chain or branch
Phosphines (including unsubstituted triphenylphosphine) represented by a phenyl group substituted by a C1 - C6 alkyl group or a C1 - C6 alkoxy group. (e) Olefins or alkynes (including cyclic olefins or alkynes). (f) Phosphoryl compounds. Particularly advantageous low molecular weight ligands of the type mentioned above are listed below. (a) primary with bulky aliphatic, cycloaliphatic or aromatic substituents, in particular branched aliphatic groups having from 4 to 16 carbon atoms, such as isopropyl, tert-butyl and neopentyl; Secondary or tertiary amines. (b) Amines having alicyclic groups (for example, cyclopentyl, cyclohexyl and adamantyl groups). (c) the alkyl radical contains from 1 to 6 carbon atoms and the aliphatic radical has at least one aromatic radical (in particular at least one phenyl radical) and/or at least one naphthyl radical; Araliphatic amines having an anthracenyl group or a phenanthrenyl group. Particularly preferred among this type of ligands are phenylethylamine (especially 1-phenylethylamine), diphenylethylamine (especially 1,1
-diphenylethylamine) and phenylpropylamine. In the aliphatic amines mentioned here, the bulky substituent, especially the aromatic group, is preferably located in the 1st or 2nd position with respect to the amino group bonded to the aliphatic group. Particularly preferred nitrile ligands of the above formula are those in which the cyano group is directly bonded to an aromatic group (particularly a phenyl group, a naphthyl group, an anthracenyl group or a phenanthrenyl group). In this case, the cyano group may be bonded to any position of the aromatic group. The aromatic radicals can also be substituted by one or two short-chain aliphatic branched or straight-chain radicals, especially by C1 - C6 alkyl radicals. This substituent is
Particularly bulky alkyl groups such as tert-butyl group, amyl group, neopentyl group and the like. Furthermore, nitriles in which the cyano group is separated from the aromatic group by 1 or 2 carbon atoms are also suitable. Such alkylene-bridged nitriles have a branched or straight chain C 1 to
C 6 alkyl group e.g. methyl group, ethyl group, n
-propyl group, isopropyl group, n-butyl group,
It may have a sec-butyl group, tert-butyl group, amyl group, neopentyl group or hexyl group. Preferred amino acids are those having bulky groups in the 1st to 3rd positions relative to the amino group. Preferred examples of this type include diphenylglycine, norleucine, leucine, isoleucine, tertiary leucine, and valine. Suitable phosphine-based ligands are, for example, arylphosphines, which may have one or more lower alkoxy or lower alkyl groups substituted on the aryl nucleus, especially on the phenyl nucleus.
Particularly preferred is triphenylphosphine, in which the phenyl group is substituted with the above groups. Suitable olefins are C2 to C12 cis or trans monoolefins which contain other groups in the carbon chain, such as C1 to C6 groups,
Halogen (e.g. F, Cl, Br, I), cyano group, carbonyl group, carboxyl group, amino group,
It may be substituted with an amide group or the like. Examples include ethylene, propylene, n-butene(1), n-
-butene (2), n-pentene (1), n-pentene (2),
n-pentene (3), n-hexene (1), n-hexene
(2), n-hexene (3), isopentene, isohexene, n- and iso-heptene, n- and iso-octene, n- and iso-nonene, n- and iso-decene, n- and iso-dodecene, Isobutylene, 2-methyl-butene (1), 3-methyl-butene (1), n-heptene (1), n-octene (1),
Allyl chloride, allyl bromide, etc., as well as cis or trans di- and polyolefins, such as di- and triolefins having 4 to 12 carbon atoms. These may be substituted with other substituents such as C 1 -C 6 alkyl groups, halogens, C≡N- groups, carbonyl groups, carboxyl groups, hydroxy groups, and the like. Examples of this type include butadiene (1,3), 2,3-dimethylbutadiene (1,3),
3), pentadiene, hexadiene, hexatriene, dodecatriene, etc. Examples of suitable alkynes include acetylene having 2 to 12 carbon atoms, methylacetylene, ethylacetylene, dimethylacetylene, pentyne (1), pentyne (2), 3-methylbutyne (1), hexyne (1). , hexine (2), hexine (3), 3,3-dimethylbutyne (1), etc. As in the case of the olefins described above, these alkynes may contain suitable functional groups such as carboxyl groups (in this case acetylene dicarboxylic acid), hydroxy groups, halogens,
It may be substituted with a C1 - C6 alkyl group or the like. Examples of suitable cyclic dienes are 1,3-cyclohexadiene, 1,4-cyclohexadiene and cyclooctadiene, especially 1,3-cyclooctadiene and 1,5-cyclooctadiene. Phosphoryl compounds are also suitable ligands. For example, methylenetriphenylphosphorane, whose methylene group contains an aliphatic group or an aromatic group, especially C 1
It may be substituted with a ~ C6 alkyl group, phenyl group, or benzyl group, and the methylene group may be a part of the ring of a cycloaliphatic group. Generally, the selectivity of the hydrogenation reaction increases as the bulk of the ligand increases. That is, when benzonitrile is used as a ligand, the selectivity is not very high, but when naphthonitrile is used,
Selectivity is greatly increased. When using cyanoanthracene, the selectivity is very high. Furthermore, the selectivity differs among amines. For example, the selectivity of 1,1-diphenylethylamine is much higher than that of 1-phenylethylamine. However, the latter compound itself also has very high selectivity. A drawback of conventional methods for hydrogenating fats has been that the desired unsaturated cis fatty acid esters are over hydrogenated. Furthermore, a large proportion of the esters were isomerized to the less desirable trans form. Compared to the above-mentioned conventional methods, the hydrogenation catalyst of the present invention, particularly one having a low molecular weight ligand, has the advantage that selective hydrogenation can be carried out when it is used for hydrogenation of fats. That is, it is possible to selectively hydrogenate only one double bond or only two double bonds in a fatty residue with several points of unsaturation. During this process, the cis conformation of the starting material is maintained to a large extent, often completely. In fact, no double bond isomerization occurs. In other words, no double bond transition occurs. The above observations clearly demonstrate that the hydrogenation catalyst of the present invention avoids the disadvantage of the prior art method, which is overhydrogenation of the fat to complete saturation. According to this invention, hydrogenation can be stopped to a desired degree of partial hydrogenation. The hydrogenation catalyst of the present invention having a low-molecular-weight ligand is a salt or complex of a metal from subgroup of the periodic table containing a low-molecular-weight ligand, preferably a palladium salt or a palladium complex, in an aqueous solution or an organic solvent. and optionally hydrogenation (reduction of the metal salt or metal complex with hydrogen).
It can be manufactured by The above reaction mixture can be used as a hydrogenation catalyst as it is, or it can be used as a hydrogenation catalyst after separating the low molecular weight starting material and the reaction product. The hydrogenation catalyst obtained as described above may be separated from low molecular weight components by diafiltration and purified, or may be subjected to the hydrogenation step as a solution without being isolated. If desired, the hydrogenation catalyst may be isolated by precipitation, reprecipitation, evaporation of the solvent or lyophilization. The hydrogenation catalyst of the present invention can be used for the hydrogenation of a wide variety of organic compounds in water or an organic solvent, at room temperature or at elevated temperature, and under pressure or normal pressure. The hydrogenation catalysts of the invention can also be used in suspensions, such as emulsions of fats or fatty acids in water. Thus, nitro, nitroso, and cyano groups can be hydrogenated to amines. Furthermore, the hydrogenation catalyst of this invention is an olefin,
Acetylene, aromatic compound, C=O- compound, C
It can be used for the hydrogenation of =N- and N=N-compounds. The type of metal or polymer makes the hydrogenation catalyst particularly suitable for a particular hydrogenation. That is, the structure of the polymeric metal complexes of this invention allows certain C≡C-triple bond compounds to be hydrogenated to cis or trans olefins, and also has several C≡C-double bonds. In organic compounds, certain individual double bonds can be hydrogenated at a greater rate than other double bonds.
The hydrogenation catalyst of this invention can be used in discontinuous or continuous processes and can be reused repeatedly. Examples of this invention will be described below. Example 1 1% of polyvinyl alcohol (molecular weight 72000)
Add 25 ml of the aqueous solution to 1 ml of a suspension of PdCl2 in water (Pd
(equivalent to 10 mg), which was then treated with 4% Na 2 CO 3
0.5 ml of aqueous solution was added dropwise. Add water to this and 50ml
The mixture was reduced with H 2 and subjected to diafiltration at a constant volume for 12 hours using a membrane that permeates substances with a molecular weight of less than 3000. This solution containing Pd at a rate of about 0.2 mg Pd/ml could be used directly for hydrogenation. Lyophilized for isolation. Yield is 0.23
g, which contained 3.9% Pd. According to the above steps, it was possible to produce a polymeric palladium compound having polyvinylpyrrolidone (for example Rubiscoll K70 manufactured by BASF) or carboxymethyl cellulose (Relatin manufactured by Henkel). The above palladium compounds were reacted in the same manner as with 25 ml of 1% solutions of these polymers. Example 2 1 ml of an aqueous suspension of PdCl 2 (Pd content 10 mg) was added at room temperature to 25 ml of a 1% solution of polyvinyl alcohol (molecular weight 72000) in methanol (or propanol). Then, 1 ml of 2% triethylamine solution
was added dropwise, methanol (or propanol) was added to bring the total volume to 50 ml, the mixture was reduced with H2 , and diafiltration was performed for 24 hours using a polyamide membrane (permeable to molecules with a molecular weight of less than 10,000). The residual liquid contains Pd at a rate of approximately 0.2mgPd/ml.
This could be used directly for hydrogenation. For isolation, the residual liquid (low molecular weights removed by diafiltration) was separated by evaporation of the solvent to dryness. The yield was 0.24 g (Pd content 3.8%). Example 3 1% methanol solution of polyvinylpyrrolidone25
ml was reacted with 38 mg of PdCl 2 .2C 6 H 5 CN at room temperature under stirring. Then, 1 ml of a 2% methanol solution of triethylamine was added dropwise, methanol was added to make 50 ml, the mixture was reduced with hydrogen, and the mixture was diafiltered under constant volume for 24 hours. This residual liquid could be used directly for hydrogenation. The residual liquid was evaporated to dryness for isolation.
The yield was 0.22 g (Pd content 3.95%). Example 4 Following the procedure of Example 3, a 1% aqueous solution of polyvinylpyrrolidone was reacted with 1 ml of an aqueous solution of K 2 [PtCl 4 ] (platinum content 10 mg). The yield was 0.23g, Pt
The content rate was 3.7%. Example 5 25 ml of a 1% aqueous solution of polyvinylpyrrolidone was
React with 15mg of (OH) 3 and add methanol to 50ml
and reduced with H2 . This is then passed through a polyamide membrane (those with a molecular weight of less than 10,000 permeate) under a constant volume.
The mixture was diafiltered for 18 hours. The obtained rhodium polymer could be directly used for hydrogenation as a solution. For isolation, the dialysis residue was evaporated to dryness.
The yield was 2.2 g (Rh content 2.1%). Example 6 Following the steps of Example 5, 15 mg of Ru(OH) 3 was reacted with 25 ml of a 1% solution of polyvinylpyrrolidone.
Yield was 2.05g and contained 3.5% Ru. Example 7 Following the steps of Example 1, 25 ml of an aqueous solution of polyvinylpyrrolidone was reacted with 1 ml of an aqueous solution of Na 3 [IrCl 6 ] (10 mg of iridium). The yield was 2.1 g (iridium content 3.5%). Example 8 1% methanol solution of polyvinylpyrrolidone25
ml was reacted with 13 mg of osmium tetroxide at room temperature, and acetylene was passed through the reaction solution for 30 minutes. Then, methanol was added to make up to 50 ml, and the mixture was diafiltered to a constant volume using a conventional method. This residual liquid could be used as it was for hydrogenation. For isolation, the residue was evaporated to dryness under reduced pressure. The yield was 2.1 g, and the osmium content was 4.0%. Example 9 (a) Chloromethylated linear non-crosslinked polystyrene (molecular weight 34000) was dissolved in dimethylformamide (DMF)
Triphenylphosphine 280mg dissolved in 50ml
and the solution was heated under reflux for 24 hours. After this reaction solution was cooled, it was introduced into 500 ml of ice-cooled petroleum ether (boiling point 30-50°C) to precipitate the produced polymer. The resulting polymer was filtered, dried, and dissolved in 50 ml of benzene, which was again poured into ice-cold petroleum ether and reprecipitated. The polymeric phosphonium salt thus obtained was dried under reduced pressure of P 4 O 10 . The P content was 1.63%. (b) 2 g of polymer phosphonium salt obtained in step (a) above
was suspended in 60 ml of dry benzene under N 2 in a bifurcated tube and reacted with 0.17 ml of n-butyllithium. The suspension became clear and yellowish. After stirring for 1 hour, a small amount of lithium chloride was filtered off and the filtrate was reacted with 153 mg of PdCl2 .( C6H5CN ) 2 . When this solution was stirred at 60° C. for 3 days, it became dark and colored. After cooling, it was filtered, and the filtrate was poured into 500 ml of ice-cooled petroleum ether to precipitate the resulting polymer as a gray powder. The dissolution in benzene and precipitation in petroleum ether was repeated twice. It was then dried over P 4 O 10 under reduced pressure. For further purification, the resulting polymer was dissolved in benzene and diafiltered using a polyamide membrane that is permeable to molecules with molecular weights less than 10,000. Furthermore, ultrafiltration was performed until the filtrate became clear. The resulting polymer was again precipitated in ice-cold petroleum ether and dried in the same manner as above. The yield was 1.9g (Pd content 5.4%). Example 10 25 ml of a 1% solution of linear polyacrylonitrile (molecular weight 106 daltons) in N-methylpyrrolidone (NMP) is reacted with 17 mg of solid PdCl 2 at room temperature,
1 ml of a 2% solution of triethylamine in NMP was added and the mixture was made up to 50 ml with NMP. 10 ml of the above solution was charged into a hydrogenation reactor, flushed three times with H 2 and stirred under H 2 for 12 hours. Then 1 mmol of pentyne (2) was added and hydrogenated at room temperature and under 1 bar. After 20 to 60 minutes, gas chromatographic analysis showed that 96% of cispentene (2), plus 2% of transpentene (2) and 2% of n-pentane were obtained. Example 11 Polyacrylonitrile was prepared in the same manner as in Example 10.
A solution of 50 ml of palladium complex was prepared, and 10.5 mg of triphenylphosphine was added to this reaction solution. The above solvent was previously hydrogenated in the same manner as in Example 10.
Then, 1 mmol of pentyne (1) was added and hydrogenated. After 20 to 60 minutes, gas chromatographic analysis showed that 97% of pentene-(1) and 3% of n-pentane were obtained. After separation by distillation or ultrafiltration, the catalyst could be reused. Example 12 5 each of the catalyst solutions obtained in Examples 1, 2, 3 or 4
Hydrogenation was carried out as follows using ml. 5 ml of each catalyst solution was diluted with 30 ml of distilled water, rinsed three times with H 2 and stirred under hydrogen for 30 min to prehydrate. 1 mmol of p-nitrophenol was then added and hydrogenated at room temperature and under 1 bar. Thereafter, it was filtered under constant volume at 2 bar using a polysulfone membrane that allows substances with a molecular weight of 10,000 to pass through. p-aminophenol was obtained in the filtrate with a yield of 97%. Hydrogenation times varied from 20 to 120 minutes depending on the catalyst used. The liquid retained by diafiltration contained a hydrogenation catalyst, which could be reused. Example 13 Hydrogenation catalyst solution 5 obtained in Example 5, 6 or 7
ml into a hydrogenation flask, diluted with 30 ml of distilled water, flushed with hydrogen three times, and heated under hydrogen at 60°C.
It was previously hydrogenated by stirring for 24 hours. Then, 1 mmol of p-nitrophenol was added,
Hydrogenation was carried out at room temperature and 1 bar. Hydrogenation times ranged from 20 minutes to 4 hours depending on the catalyst used. The yield of 4-aminocyclohexanol is 85~
It was 90%. Example 14 In a hydrogenation reaction vessel, 5 ml of the hydrogenation catalyst solution obtained in Example 2 was mixed with 12.5 ml of methanol and 7.5 ml of distilled water.
ml and flushed three times with H2 . This was then preactivated under H2 for 30 minutes. To this was added 1 mmol of maleic acid and hydrogenated for 2 hours at 20° C. and 1 bar. This reaction mixture was filtered using a membrane that allows molecules with a molecular weight of less than 10,000 to pass through. The filtrate contained succinic acid with a yield of 97%. Example 15 In a hydrogenation reaction vessel, 10 ml of the hydrogenation catalyst solution of Example 2 was diluted with 30 ml of methanol, flushed three times with H 2 and preactivated for 30 minutes under H 2 .
To this was added 1 mmol of linoleic acid and hydrogenated for 20 minutes. After diafiltration, stearic acid was removed.
Contained with a yield of 94%. Other unsaturated fatty acids could be hydrogenated under the same conditions as above. For example, oleic acid was hydrogenated to stearic acid. Example 16 In the same manner as in Example 14, 1 mmol of cyclohexene, pentyne or hexyne (2) was hydrogenated. Hydrogenation was completed in 20 minutes. In this way, cyclohexane, n-pentane or n-hexane were obtained quantitatively. Example 17 In a hydrogenation reaction vessel, the hydrogenation catalyst solution obtained in Example 2 was diluted with 20 ml of methanol and 20 ml of water,
Preactivation was performed by flushing three times with H 2 and stirring for 30 minutes under H 2 . Next, add this to the formula 1 g of a polyethylene glycol (PEG) polymer peptide having one benzyl ester group bound thereto was added and hydrogenated for 25 minutes (hydrogenation cleavage of benzyl ester). Then, the molecular weight is 10000
Diafiltration was performed using a membrane that allows less than The product peptide was obtained from the filtrate by freeze-drying. The yield was 98%. Example 18 In a hydrogenation reaction vessel, 100 mg of the hydrogenation catalyst solution from Example 9 was dissolved in 30 ml of dioxane, flushed three times with H2 , and preactivated by stirring overnight under H2 . . Then, 5 ml of cyclohexadiene (1,3) was added to this and hydrogenated for 30 minutes. 4 ml H 2 /min was absorbed, and by stopping the reaction an additional 0.4 ml H 2 /min was absorbed. The above reaction mixture was filtered using a membrane that allows substances having a molecular weight of 10,000 to pass therethrough. Gas chromatographic analysis showed that the filtrate contained 90% cyclohexene and 5% cyclohexane. Example 20 PdCl 2 ×2 (9-cyano-anthracene) 5.5 mg
(approximately 1 mg Pd) was dissolved in 0.5 ml of N-methylpyrrolidone and diluted with 40 ml of a 1% solution of polyvinylpyrrolidone (molecular weight approximately 200,000) in n-propanol. Thereafter, 0.25 ml of a 2% solution of triethylamine in n-propanol was added and this was reduced with hydrogen.
With the air excluded, 5 ml of linseed oil was added using a pipette, and the mixture turned dark and colored within an hour. The mixture was hydrogenated at room temperature under 1 bar of hydrogen pressure while stirring. Absorbed 200ml of hydrogen (104
After 1 min), the hydrogenation was complete. The solvent was evaporated on a rotary evaporator and the hydrogenated oil was extracted from the residue with petroleum ether. After evaporating the petroleum ether, the resulting hydrogenated oil was saponified with alcoholic potassium hydroxide. The fatty acids thus obtained were esterified using diazomethane and analyzed by gas chromatography. Hydrogenation catalysts that are insoluble in petroleum ether are n
-Can be dissolved in propanol and reused for hydrogenation. (See table below). Example 20 The cyano-anthracene complex used in Example 19 was
PdCl 2 ×2β-naphthonitrile 4.6mg (approximately 1mgPd)
The same operation as in Example 19 was performed except that . (See table below). Example 21 PdCl 2 ×2 (1-phenylethylamine) instead of the cyano-anthracene complex used in Example 19
The same operation as in Example 19 was performed except that 4.0 mg (approximately 1 mg Pd) was used (see table below). Example 22 PdCl 2 ×2 (1,1-diphenylethylamine)
5.4 mg was dissolved in 0.5 ml of N-methylpyrrolidone and diluted with 40 ml of a 1% solution of polyvinylpyrrolidone (molecular weight approximately 200,000). After adding 0.25 ml of a solution of triethylamine in n-propanol, this was reduced with hydrogen at room temperature. After 1 hour, while removing air, 5 ml of linseed oil was added using a pipette, and hydrogenation was carried out until hydrogen absorption was completed (approximately 250 ml). This solution was ultrafiltered, the filtrate was concentrated,
The remaining hydrogenated oil was saponified, esterified with diazomethane, and analyzed by gas chromatography. The residual liquid was diluted with n-propanol and could be reused for hydrogenation (see table below). Example 23 The same operation as in Example 19 was performed except that polyvinylpyridine was used in place of the polyvinylpyrrolidone used in Example 19. Example 24 The same procedure as in Example 19 was performed except that linolenic acid methyl ester was used as the oil.

【表】【table】

【表】【table】

【表】【table】

【表】 上記表〜から明らかなように、亜麻仁油の
水素化中亜麻仁油に含まれている飽和脂肪酸すな
わちステアリン酸およびパルミチン酸の量は実質
上一定である。これに対し、三つの不飽和結合を
有するリノレン酸の量は段階的に消失し、それ故
リノール酸およびオレイン酸の量が増加する。 トランス異性化は水素吸収量100ないし150ml
(固形脂肪に相当)までそれ程生じない。すなわ
ち、上記表の水素化によれば例えば100mlのH2
吸収後ではわずか11%のトランス異性体しか生成
せず、また150mlのH2吸収後ではわずか17%のト
ランス異性体しか生成しなかつた。これに対し
て、従来法では水素化工程中に60ないし80%の転
化率でトランス異性体が生成する。 実施例 25 NiCl2・6H2O48mgをフラスコ中でn―プロパ
ノール20ml中に溶解した。これに、n―プロパノ
ール中ポリビニルピロリドン(PVP)の2%溶
液を加えた。このフラスコを水素化反応装置に接
続し、3回排気し、窒素でパージした。水素化ホ
ウ素ナトリウム10mgで還元した後、室温および水
素圧1バールの条件でベセル油(Becel Oil)5
mlを水素化した。結果を表に示す。 実施例 26 NiCl2・6H2Oの量を24mgとした以外は実施例
25と同様の条件で水素化をおこなつた。結果を表
に示す。
[Table] As is clear from the above tables, the amounts of saturated fatty acids, ie, stearic acid and palmitic acid, contained in the linseed oil during hydrogenation of the linseed oil are substantially constant. In contrast, the amount of linolenic acid, which has three unsaturated bonds, disappears stepwise, and the amount of linoleic acid and oleic acid therefore increases. Trans isomerization has a hydrogen absorption capacity of 100 to 150 ml.
(equivalent to solid fat) does not occur much. That is, according to the hydrogenation in the table above, for example 100 ml of H 2
Only 11% of the trans isomer was formed after absorption, and only 17% of the trans isomer was formed after absorption of 150 ml of H2 . In contrast, in conventional methods, the trans isomer is produced during the hydrogenation step at a conversion rate of 60 to 80%. Example 25 48 mg of NiCl 2 .6H 2 O were dissolved in 20 ml of n-propanol in a flask. To this was added a 2% solution of polyvinylpyrrolidone (PVP) in n-propanol. The flask was connected to a hydrogenation reactor, evacuated and purged with nitrogen three times. After reduction with 10 mg of sodium borohydride, Becel Oil 5 was added at room temperature and 1 bar of hydrogen pressure.
ml was hydrogenated. The results are shown in the table. Example 26 Example except that the amount of NiCl 2 6H 2 O was 24 mg.
Hydrogenation was carried out under the same conditions as in 25. The results are shown in the table.

【表】【table】

【表】 低分子配位子を有するこの発明の水素化触媒に
よる水素化は好ましくは低級脂肪族アルコール特
にn―プロパノール中でおこなわれる。
[Table] Hydrogenation with the hydrogenation catalyst of the invention having low molecular weight ligands is preferably carried out in lower aliphatic alcohols, especially n-propanol.

Claims (1)

【特許請求の範囲】 1 金属結合性官能基としてホスホリライド、ス
ルホン酸、カルボニル、カルボキシル、アミノ、
イミノ、ヒドロキシル、シアノもしくは酸アミド
基を有する可溶性重合体が該金属結合性官能基に
よる共有結合または第二次原子価結合によつて、
周期律表第族金属類から選ばれた金属もしくは
その塩に直接結合してなる水素化触媒であつて、
該可溶重合体が、ポリビニアルコール、ポリアク
リロニトリル、ポリアクリル酸、ポリビニルピロ
リドン、カルボキシメチルセルロース、官能化ポ
リスチレン、ポリエチレングリコール、ポリプロ
ピレングリコール、ポリウレタン、ポリビニルア
ミンおよびポリエチレンイミンからなる群より選
ばれる触媒。 2 金属結合性官能基としてホスホリライド、ス
ルホン酸、カルボニル、カルボキシル、アミノ、
イミノ、ヒドロキシル、シアノもしくは酸アミド
基を有する可溶性重合体が該金属結合性官能基に
よる共有結合または第二次原子価結合によつて、
周期律表第族金属類から選ばれた金属もしくは
その塩に直接結合してなり、かつ低分子配位子を
含有する水素化触媒であつて、認可溶性重合体
が、ポリビニアルコール、ポリアクリロニトリ
ル、ポリアクリル酸、ポリビニルピロリドン、カ
ルボキシメチルセルロース、官能化ポリスチレ
ン、ポリエチレングリコール、ポリプロピレング
リコール、ポリウレタン、ポリビニルアミンおよ
びポリエチレンイミンからなる群より選ばれる触
媒。 3 低分子配位子がホスフイン、一酸化炭素、ハ
ロゲン化物、シアン化物、ニトリル、アルケンま
たはアルキンである特許請求の範囲第2項記載の
水素化触媒。 4 低分子配位子が(a)アミン、(b)アミノ酸、(c)式
R―(CHR1o―CN(ここで、Rはフエニル基、
ナフチル基、アントラセニル基、フエナントレニ
ル基もしくはこれらに線状もしくは分枝C1〜C6
アルキル基が一つもしくはそれ以上が置換したも
の、または線状もしくは分枝C1〜C6アルキル基、
R1は水素または線状もしくは分枝C1〜C6アルキ
ル基、およびnは0,1または2)で示されるニ
トリル(d)式P(R23(ここでR2は線状もしくは分
枝C1〜C6アルキル基、フエニル基、および線状
もしくは分枝C1〜C6アルキル基もしくはC1〜C6
アルコキシ基の1つ以上が置換したフエニル基よ
りなる群の中から選ばれた同一または異なる基)、
(e)オレフインまたはアルキン、または(f)ホスホリ
ル化合物である特許請求の範囲第2項記載の水素
化触媒。 5 金属が原子価0のパラジウムまたはパラジウ
ム塩である特許請求の範囲第4項記載の水素化触
媒。 6 低分子配位子が嵩高の脂肪族、脂環族もしく
は芳香族基を有する一級、二級もしくは三級アミ
ンである特許請求の範囲第5項記載の水素化触
媒。 7 低分子配位子が4個ないし6個の炭素原子を
有する分枝脂肪族基を有するアミンである特許請
求の範囲第6項記載の水素化触媒。 8 低分子配位子がシクロペンチル基、シクロヘ
キシル基またはアダマンチル基を有する一級、二
級または三級アミンである特許請求の範囲第6項
記載の水素化触媒。 9 低分子配位子が当該アルキル基が1ないし6
個の炭素原子を含有し、かつそのアルキル基に結
合した芳香族基を少なくとも1つ含有するアリル
脂肪族アミンである特許請求の範囲第6項記載の
水素化触媒。 10 低分子配位子が式 H2N―R3 (ここで、R3は1―フエニルエチル基、1,
1―ジフエニルエチル基、1―フエニルプロピル
基、1,1―ジフエニルプロピル基、2―フエニ
ルエチル基、1,2―ジフエニルエチル基、2,
2―ジフエニルエチル基、1,2―ジフエニルプ
ロピル基または2,2―ジフエニルプロピル基)
で示されるアミンである特許請求の範囲第9項記
載の水素化触媒。 11 低分子配位子が当該アミノ基に対して1な
いし3位に嵩高の基を有するアミノ基である特許
請求の範囲第4項記載の水素化触媒。 12 低分子配位子がジフエニルグリシン、ノル
ロイシン、ロイシン、イソロイシン、tert―ロイ
シンまたはバリンである特許請求の範囲第1項記
載の水素化触媒。 13 低分子配位子が9―シアノアントラセンま
たはβ―ナフトニトリルである特許請求の範囲第
4項記載の水素化触媒。 14 金属結合性官能基としてホスホリライド、
スルホン酸、カルボニル、カルボキシル、アミ
ノ、イミノ、ヒドロキシル、シアノもしくは酸ア
ミド基を有する可溶性重合体を溶液中において周
期律表第族金属から選ばれた金属またはその錯
体もしくは塩と反応させることを特徴とする水素
化触媒の製造方法であつて、該可溶性重合体が、
ポリビニルアルコール、ポリアクリロニトリル、
ポリアクリル酸、ポリビニルピロリドン、カルボ
キシメチルセルロース、官能化ポリスチレン、ポ
リエチレングリコール、ポリプロピレングリコー
ル、ポリウレタン、ポリビニルアミンおよびポリ
エチレンイミンからなる群より選ばれる水素化触
媒の製造方法。 15 溶液が水溶液である特許請求の範囲第14
項記載の製造方法。 16 溶液が有機溶媒中の溶液である特許請求の
範囲第14項記載の製造方法。 17 金属が鉄、コバルト、ニツケル、ルテニウ
ム、ロジウム、パラジウム、オスミウム、イリジ
ウムまたは白金である特許請求の範囲第14項記
載の製造方法。 18 周期律表第族金属の塩もしくは錯体と少
なくとも1つの低分子配位子とによつて形成され
た金属塩もしくは金属錯体を水溶液中または有機
溶媒中で重合体と反応させ、しかる後場合に応じ
て生成物を水素化することを特徴とする特許請求
の範囲第14項記載の製造方法。 19 金属塩または金属錯体としてパラジウム塩
またはパラジウム錯体を用いることを特徴とする
特許請求の範囲第18項記載の製造方法。 20 溶液、懸濁液または均質相中における有機
化合物の水素化方法において、前記水素化を金属
結合性官能基としてホスホリライド、スルホン
酸、カルボニル、カルボキシル、アミノ、イミ
ノ、ヒドロキシル、シアノもしくは酸アミド基を
有する可溶性重合体が、該金属結合性官能基によ
る共有結合または第二次原子価結合によつて、周
期律表第族金属類から選ばれた金属もしくはそ
の塩に直接結合してなる水素化触媒であつて、該
可溶性重合体が、ポリビニルアルコール、ポリア
クリロニトリル、ポリアクリル酸、ポリビニルピ
ロリドン、カルボキシメチルセルロース、官能化
ポリスチレン、ポリエチレングリコール、ポリプ
ロピレングリコール、ポリウレタン、ポリビニル
アミンおよびポリエチレンイミンからなる群より
選ばれる触媒の存在下におこなうことを特徴とす
る水素化方法。 21 水素化を常圧下でおこなう特許請求の範囲
第20項記載の水素化方法。 22 水素化を加圧下でおこなう特許請求の範囲
第20項記載の水素化方法。 23 有機化合物がニトロ化合物またはニトロソ
化合物であり、これをアミンに水素化する特許請
求の範囲第20項記載の水素化方法。 24 有機化合物がアルキンまたはアルケンであ
り、これをアルカンに水素化する特許請求の範囲
第20項記載の水素化方法。 25 有機化合物がシクロオレフインまたは芳香
族化合物であり、これを脂環族化合物に水素化す
る特許請求の範囲第20項記載の水素化方法。 26 エステルを開裂する特許請求の範囲第20
項記載の水素化方法。 27 アルキンを選択的にシスまたはトランスア
ルケンに水素化する特許請求の範囲第20項記載
の水素化方法。 28 有機化合物がポリオレフイン、不飽和酸、
アルコール、ケトンまたは脂肪である特許請求の
範囲第20項記載の水素化方法。 29 水素化触媒が金属またはその塩としてパラ
ジウムまたはパラジウム塩を有し、かつ(a)アミ
ン、(b)アミノ酸、(c)式R―(CHR1o―CN(ここ
で、Rはフエニル基、ナフチル基、アントラセニ
ル基、フエナントレニル基もしくはこれらに線状
もしくは分枝C1〜C6アルキル基が一つもしくは
それ以上が置換したもの、または線状もしくは分
枝C1〜C6アルキル基、R1は水素または線状もし
くは分枝C1〜C6アルキル基、およびnは0,1
または2)で示されるニトリル、(d)式P(R23
(ここで、R2は線状もしくは分枝C1〜C6アルキル
基、フエニル基、および線状もしくは分枝C1
C6アルキル基もしくはC1〜C6アルコキシ基の1
つ以上が置換したフエニル基よりなる群の中から
選ばれた同一または異なる基)、(e)オレフインま
たはアルキン、および(f)ホスホリル化合物よりな
る群の中から選ばれた低分子配位子を有し、水素
化を均質相中でおこなう特許請求の範囲第20項
記載の水素化方法。 30 2個以上の二重結合を有する脂肪酸または
脂肪酸エステルを1個の二重結合を有する脂肪酸
または脂肪酸エステルに水素化する特許請求の範
囲第29項記載の水素化方法。 31 脂肪酸または脂肪酸エステルがシス体であ
る特許請求の範囲第30項記載の水素化方法。
[Claims] 1 Metal-binding functional groups include phosphorylide, sulfonic acid, carbonyl, carboxyl, amino,
A soluble polymer having imino, hydroxyl, cyano or acid amide groups is bonded by covalent bonding or secondary valence bonding by the metal-binding functional group,
A hydrogenation catalyst directly bonded to a metal selected from group metals of the periodic table or a salt thereof,
A catalyst in which the soluble polymer is selected from the group consisting of polyvinyl alcohol, polyacrylonitrile, polyacrylic acid, polyvinylpyrrolidone, carboxymethylcellulose, functionalized polystyrene, polyethylene glycol, polypropylene glycol, polyurethane, polyvinylamine, and polyethyleneimine. 2. Phosphorylide, sulfonic acid, carbonyl, carboxyl, amino,
A soluble polymer having imino, hydroxyl, cyano or acid amide groups is bonded by covalent bonding or secondary valence bonding by the metal-binding functional group,
A hydrogenation catalyst directly bonded to a metal selected from Group metals of the periodic table or a salt thereof, and containing a low molecular weight ligand, in which the approved soluble polymer is polyvinyl alcohol, polyacrylonitrile, etc. , polyacrylic acid, polyvinylpyrrolidone, carboxymethylcellulose, functionalized polystyrene, polyethylene glycol, polypropylene glycol, polyurethane, polyvinylamine and polyethyleneimine. 3. The hydrogenation catalyst according to claim 2, wherein the low molecular weight ligand is phosphine, carbon monoxide, halide, cyanide, nitrile, alkene or alkyne. 4 The low molecular weight ligand is (a) amine, (b) amino acid, (c) formula R-(CHR 1 ) o -CN (where R is a phenyl group,
Naphthyl group, anthracenyl group, phenanthrenyl group or linear or branched C 1 to C 6
one or more substituted alkyl groups, or linear or branched C1 - C6 alkyl groups,
R 1 is hydrogen or a linear or branched C 1 -C 6 alkyl group, and n is 0, 1 or 2 . Branched C1 - C6 alkyl groups, phenyl groups, and linear or branched C1 - C6 alkyl groups or C1 - C6
the same or different groups selected from the group consisting of phenyl groups substituted with one or more alkoxy groups),
The hydrogenation catalyst according to claim 2, which is (e) an olefin or alkyne, or (f) a phosphoryl compound. 5. The hydrogenation catalyst according to claim 4, wherein the metal is palladium or a palladium salt having a valence of zero. 6. The hydrogenation catalyst according to claim 5, wherein the low molecular weight ligand is a primary, secondary or tertiary amine having a bulky aliphatic, alicyclic or aromatic group. 7. The hydrogenation catalyst according to claim 6, wherein the low molecular weight ligand is an amine having a branched aliphatic group having 4 to 6 carbon atoms. 8. The hydrogenation catalyst according to claim 6, wherein the low molecular weight ligand is a primary, secondary or tertiary amine having a cyclopentyl group, cyclohexyl group or adamantyl group. 9 The low molecular weight ligand has 1 to 6 alkyl groups.
7. The hydrogenation catalyst according to claim 6, which is an allylaliphatic amine containing at least one aromatic group bonded to its alkyl group. 10 The low molecular weight ligand has the formula H 2 N―R 3 (where R 3 is a 1-phenylethyl group, 1,
1-diphenylethyl group, 1-phenylpropyl group, 1,1-diphenylpropyl group, 2-phenylethyl group, 1,2-diphenylethyl group, 2,
2-diphenylethyl group, 1,2-diphenylpropyl group or 2,2-diphenylpropyl group)
The hydrogenation catalyst according to claim 9, which is an amine represented by: 11. The hydrogenation catalyst according to claim 4, wherein the low molecular weight ligand is an amino group having a bulky group at the 1st to 3rd positions relative to the amino group. 12. The hydrogenation catalyst according to claim 1, wherein the low molecular weight ligand is diphenylglycine, norleucine, leucine, isoleucine, tert-leucine or valine. 13. The hydrogenation catalyst according to claim 4, wherein the low molecular weight ligand is 9-cyanoanthracene or β-naphthonitrile. 14 Phosphorylide as a metal-binding functional group,
It is characterized by reacting a soluble polymer having a sulfonic acid, carbonyl, carboxyl, amino, imino, hydroxyl, cyano or acid amide group with a metal selected from group metals of the periodic table or a complex or salt thereof in a solution. A method for producing a hydrogenation catalyst, the soluble polymer comprising:
polyvinyl alcohol, polyacrylonitrile,
A method for producing a hydrogenation catalyst selected from the group consisting of polyacrylic acid, polyvinylpyrrolidone, carboxymethylcellulose, functionalized polystyrene, polyethylene glycol, polypropylene glycol, polyurethane, polyvinylamine and polyethyleneimine. 15 Claim 14 in which the solution is an aqueous solution
Manufacturing method described in section. 16. The manufacturing method according to claim 14, wherein the solution is a solution in an organic solvent. 17. The manufacturing method according to claim 14, wherein the metal is iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, or platinum. 18 A metal salt or a metal complex formed by a salt or complex of a group metal of the periodic table and at least one low molecular weight ligand is reacted with a polymer in an aqueous solution or an organic solvent, and then, if necessary, 15. Process according to claim 14, characterized in that the product is hydrogenated accordingly. 19. The manufacturing method according to claim 18, characterized in that a palladium salt or a palladium complex is used as the metal salt or metal complex. 20 A process for the hydrogenation of organic compounds in solution, suspension or homogeneous phase, in which the hydrogenation is carried out using phosphorylide, sulfonic acid, carbonyl, carboxyl, amino, imino, hydroxyl, cyano or acid amide groups as metal-binding functional groups. A hydrogenation catalyst in which a soluble polymer having a soluble polymer is directly bonded to a metal selected from group metals of the periodic table or a salt thereof through a covalent bond or a secondary valence bond through the metal-binding functional group. and the soluble polymer is a catalyst selected from the group consisting of polyvinyl alcohol, polyacrylonitrile, polyacrylic acid, polyvinylpyrrolidone, carboxymethylcellulose, functionalized polystyrene, polyethylene glycol, polypropylene glycol, polyurethane, polyvinylamine, and polyethyleneimine. A hydrogenation method characterized by being carried out in the presence of. 21. The hydrogenation method according to claim 20, wherein the hydrogenation is carried out under normal pressure. 22. The hydrogenation method according to claim 20, wherein the hydrogenation is carried out under pressure. 23. The hydrogenation method according to claim 20, wherein the organic compound is a nitro compound or a nitroso compound, and the organic compound is hydrogenated to an amine. 24. The hydrogenation method according to claim 20, wherein the organic compound is an alkyne or an alkene, and the organic compound is hydrogenated to an alkane. 25. The hydrogenation method according to claim 20, wherein the organic compound is a cycloolefin or an aromatic compound, and the organic compound is hydrogenated to an alicyclic compound. 26 Claim 20 that cleaves ester
Hydrogenation method described in section. 27. The hydrogenation method according to claim 20, wherein an alkyne is selectively hydrogenated to a cis or trans alkene. 28 Organic compound is polyolefin, unsaturated acid,
21. The hydrogenation method according to claim 20, wherein the hydrogenation is an alcohol, a ketone or a fat. 29 The hydrogenation catalyst has palladium or a palladium salt as the metal or its salt, and (a) amine, (b) amino acid, (c) formula R-(CHR 1 ) o -CN (where R is a phenyl group) , naphthyl, anthracenyl, phenanthrenyl or these substituted with one or more linear or branched C1 - C6 alkyl groups, or linear or branched C1 - C6 alkyl groups, R 1 is hydrogen or a linear or branched C 1 -C 6 alkyl group, and n is 0,1
or nitrile represented by 2), formula (d) P(R 2 ) 3
(where R 2 is a linear or branched C 1 -C 6 alkyl group, a phenyl group, and a linear or branched C 1 -C 6 alkyl group, a phenyl group,
1 of C 6 alkyl group or C 1 to C 6 alkoxy group
(e) olefins or alkynes; and (f) phosphoryl compounds. 21. The hydrogenation method according to claim 20, wherein the hydrogenation is carried out in a homogeneous phase. 30. The hydrogenation method according to claim 29, wherein a fatty acid or fatty acid ester having two or more double bonds is hydrogenated to a fatty acid or fatty acid ester having one double bond. 31. The hydrogenation method according to claim 30, wherein the fatty acid or fatty acid ester is in the cis form.
JP10488179A 1978-08-17 1979-08-17 Hydrogenated catalyst and its preparation and its hydrogenating method Granted JPS5547147A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19782835943 DE2835943A1 (en) 1978-08-17 1978-08-17 Polymeric soluble hydrogenation catalyst - contg. iron, cobalt, nickel or platinum gp. metal as covalent or coordination cpd. with soluble polymer

Publications (2)

Publication Number Publication Date
JPS5547147A JPS5547147A (en) 1980-04-03
JPS6348586B2 true JPS6348586B2 (en) 1988-09-29

Family

ID=6047213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10488179A Granted JPS5547147A (en) 1978-08-17 1979-08-17 Hydrogenated catalyst and its preparation and its hydrogenating method

Country Status (2)

Country Link
JP (1) JPS5547147A (en)
DE (1) DE2835943A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE450466B (en) * 1984-03-19 1987-06-29 Electrocell Ab CATALYST ELEMENTS AND THE USE OF THE SAME
DE19513121C1 (en) * 1995-04-07 1996-08-29 Edwin Prof Dr Baumgarten High activity polymeric catalyst for heterogeneous gas phase reactions
EP0940170B1 (en) 1998-03-02 2002-09-11 Wako Pure Chemical Industries, Ltd. Microencapsulated osmium oxide composition
US7091383B2 (en) 2002-02-06 2006-08-15 Basf Aktiengesellschaft Method for the production of amines
JP5223195B2 (en) * 2004-12-02 2013-06-26 和光純薬工業株式会社 New catalyst
DE102007011158A1 (en) * 2007-03-07 2008-09-11 Wacker Chemie Ag Iridium-catalyzed production process for organosilicon compounds
JP7180440B2 (en) * 2018-02-23 2022-11-30 三菱ケミカル株式会社 Noble metal catalyst, reduction method, and method for producing compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123589A (en) * 1973-12-20 1975-09-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123589A (en) * 1973-12-20 1975-09-29

Also Published As

Publication number Publication date
DE2835943A1 (en) 1980-03-20
JPS5547147A (en) 1980-04-03

Similar Documents

Publication Publication Date Title
US4419490A (en) Polymeric hydrogenation catalysts, the production thereof and their use to promote hydrogenation
Reek et al. Dendrimers in catalysis
CN109806911B (en) Catalyst for preparing straight-chain aldehyde with high selectivity and preparation and application thereof
Saluzzo et al. Homogeneous‐supported catalysts for enantioselective hydrogenation and hydrogen transfer reduction
Dwars et al. Complex‐catalyzed hydrogenation reactions in aqueous media
JP4680591B2 (en) Removal of metal compounds
Bianchini et al. Recent aspects of asymmetric catalysis by immobilized chiral metal catalysts
Bianchini et al. Immobilization of Optically Active Rhodium‐Diphosphine Complexes on Porous Silica via Hydrogen Bonding
US6040263A (en) Catalytic composition based on transition metal complexes, and a process for the hydrogenation of unsaturated compounds
DE2336763A1 (en) PROCESS FOR SEPARATION OF ORGANIC SOLUTIONS
US5174899A (en) Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media
JP6852046B2 (en) Methods for hydroformylation of 2-substituted butadiene, and methods for the production of its secondary products, especially Ambrox.
JPH0352475B2 (en)
RU2011143940A (en) HYBRID INORGANIC / ORGANIC POLYMER CATALYTIC MEMBRANE MATERIALS CONTAINING IMMOBILIZED MOLECULAR CATALYSTS AND THEIR PRODUCTION
Kirschning Immobilized catalysts: solid phases, immobilization and applications
US20020040109A1 (en) Method for producing saturated polymers and saturated or unsaturated blends
JPS6348586B2 (en)
CN101146618B (en) Unsymmetrically substituted phospholane catalysts
DE2326489A1 (en) Metal cpds. of synthetic polymers as catalysts - in homogeneous soln., of acid- or base- catalysed reactions
Bayer et al. Liquid phase polymer-based catalysis for stereo-and regio-selective hydrogenation
Ciardelli et al. Polymer effect on catalysis by macromolecules/transition metal complexes
KR101797091B1 (en) Inorganic/polymeric hybrid catalytic materials with high activity in various solvents
AU692935B2 (en) Process for preparing formylcarboxylic esters
Alberico et al. Expanding the Scope of Atropisomeric Monodentate P‐Donor Ligands in Asymmetric Catalysis: Hydrogen‐Transfer Reduction of α, β‐Unsaturated Acid Derivatives by Rhodium/Ph‐binepine Catalysts
Kaneda et al. HIGHLY ACTIVE POLYMER-SUPPORTED Pd COMPLEX. A NEW SYNTHETIC METHOD AND ITS USE IN SELECTIVE HYDROGENATION OF OLEFINS AND ACETYLENES