JPS6348519A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPS6348519A
JPS6348519A JP19238986A JP19238986A JPS6348519A JP S6348519 A JPS6348519 A JP S6348519A JP 19238986 A JP19238986 A JP 19238986A JP 19238986 A JP19238986 A JP 19238986A JP S6348519 A JPS6348519 A JP S6348519A
Authority
JP
Japan
Prior art keywords
medium
light
elastic wave
luminous flux
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19238986A
Other languages
Japanese (ja)
Inventor
Yoshibumi Nishimoto
義文 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19238986A priority Critical patent/JPS6348519A/en
Publication of JPS6348519A publication Critical patent/JPS6348519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To scan luminous flux on a specific surface with a specific light intensity distribution by moving the luminous flux guided out of a guiding-out means and also controlling the intensity of luminous flux incident on a medium by a light control part according th the medium of a local elastic wave area which is caused in the medium by an elastic wave generating means. CONSTITUTION:When an elastic wave is generated by the elastic wave generating means 3 powered on by a power source 6, an area of optical anisotropy is formed speedily in the medium 4 and moves in the medium 4. Linear polarized light incident on the medium 4 is phase-modulated partially corresponding to a slit area according to the movement of the area of optical anisotropy to become elliptic polarized light. Consequently, luminous flux with intensity corresponding to the ellipticity of the elliptic polarized light is projected from an area on the polarizing plate 5 corresponding to the area of optical anisotropy is projected so as to scan on the polarizing plate 5 from different area on the polarizing plate 5. The intensity of this luminous flux is controlled by varying the output value of a light source 1 relatively to the movement of the luminous flux. Consequently, the luminous flux with specific light intensity can be scanned on the specific surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光走査装置に関し、特に弾性波により光弾性効
果を生ずる媒体を利用して、該媒体に入射させた光束の
光変調を行い該媒体から射出若しくは反射する光束を利
用し、例えば被照射面を走査的に照明する場合に好適な
光走査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical scanning device, and in particular to an optical scanning device that uses a medium that produces a photoelastic effect due to an elastic wave to optically modulate a light beam incident on the medium to perform optical scanning. The present invention relates to an optical scanning device suitable for, for example, scanningly illuminating an irradiated surface by utilizing a light beam emitted or reflected from a medium.

(従来の技術) 従来より複写機の照明系やラインセンサーを用い順次受
光する装置等では機械的な手段により光源からの光束を
所定面上に導光し、該所定面上を光束で走査している。
(Prior art) Conventionally, in the illumination system of a copying machine or a device that sequentially receives light using a line sensor, a light beam from a light source is guided onto a predetermined surface by mechanical means, and the light beam scans the predetermined surface. ing.

例えばポリゴンミラーを回転させて、ポリゴンミラーか
らの反射光束を用いて走査している。
For example, scanning is performed by rotating a polygon mirror and using the reflected light beam from the polygon mirror.

一般に機械的方法は走査速度の高速化を図るのが難しく
、又機構的にも複雑化する傾向がある。
Generally, with mechanical methods, it is difficult to increase the scanning speed, and the mechanism tends to be complicated.

これに対して電気的な手段により所定面上を光束で走査
する方法が種々と提案されている。
In contrast, various methods have been proposed in which a predetermined surface is scanned with a beam of light using electrical means.

例えば液晶をライン状に複数個配置し、順次液晶に電圧
を印加し、液晶の複屈折率を変化させることにより、液
晶から射出する光束を光変調させて行う方法がある。
For example, there is a method in which a plurality of liquid crystals are arranged in a line, a voltage is sequentially applied to the liquid crystals, and the birefringence of the liquid crystals is changed to optically modulate the light flux emitted from the liquid crystals.

しかしながら液晶を利用する方法は各液晶アレイを駆動
させるのに多数の駆動電極及び駆動回路を必要とし装置
全体が複雑になる傾向があった。
However, methods using liquid crystals tend to require a large number of drive electrodes and drive circuits to drive each liquid crystal array, making the entire device complicated.

又液晶の応答速度があまり速くないので高速走査を行う
のが困難であり、更に温度変化等によって特性が変化し
やすく、所定の光強度分布で所定面上を走査するのが大
変難しい等の欠点があった。
In addition, the response speed of the liquid crystal is not very fast, making it difficult to perform high-speed scanning.Furthermore, the characteristics tend to change due to changes in temperature, etc., and it is very difficult to scan a given surface with a given light intensity distribution. was there.

(発明か解決しようとする問題点) 本発明は応答速度が速く、しかも環境変化に対して安定
した特性を有し、所定の光強度分布で所定面」二を走査
することが出来、しかも光束の高速走査が可能な電気的
手段を利用した簡易な構成の光走査装置の提供を目的と
する。
(Problems to be solved by the invention) The present invention has fast response speed, stable characteristics against environmental changes, can scan a predetermined surface with a predetermined light intensity distribution, and is capable of scanning a predetermined surface with a predetermined light intensity distribution. An object of the present invention is to provide an optical scanning device with a simple configuration using electrical means capable of high-speed scanning.

(問題点を解決する為の手段) 弾性波により光弾性効果を生じる媒体と該媒体に局所的
な弾性波を加える弾性波発生手段と前記媒体に偏光特性
を有した光束を入射させる入射手段と前記媒体を通過若
しくは反射した光束のうち所定の偏光成分の光束を導出
させる導出手段とを有し、前記弾性波発生手段により首
記媒体中に生じさせた局所的な弾性波領域の該媒体中の
移動に伴って前記導出手段から導出される光束を移動さ
せると共に光制御部により前記媒体に入射する光束の光
強度を制御したことである。
(Means for Solving the Problems) A medium that produces a photoelastic effect using elastic waves, an elastic wave generating means that applies local elastic waves to the medium, and an input means that makes a light beam having polarization characteristics enter the medium. a deriving means for deriving a luminous flux of a predetermined polarization component out of the luminous flux that has passed through or reflected from the medium, and a local elastic wave region generated in the medium by the elastic wave generating means in the medium; In accordance with the movement of the medium, the light flux led out from the light emitting means is moved, and the light intensity of the light flux incident on the medium is controlled by a light control section.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。同
図において1は光源であり、例えば広い面積にわたり自
然光を放射する面光源、若しくは内部に拡散用光学系を
有し広い面積にわたり均一強度の自然光を放射している
光源である。2.5は各々偏光板で互いの偏光軸が直交
する直交ニコルの関係となるように配置されている。3
は弾性波発生手段で例えば水晶、PZT、超音波発生装
置等から成っている。4は弾性波により内部に光学異方
性が生ずる、所謂光弾性効果が生じる媒体で例えばガラ
ス、プラスチック等から成っている。そして媒体4の一
部に弾性波発生手段3か固着されている。6は電源であ
り弾性波発生手段3を駆動させている。7は光制御部で
あり、電源6の弾性波発生手段3への印加電圧に関連さ
せて光源1から射出する光束の光強度を制御している。
(Embodiment) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a light source, for example, a surface light source that emits natural light over a wide area, or a light source that has a diffusion optical system inside and emits natural light of uniform intensity over a wide area. 2.5 are polarizing plates, which are arranged so that their polarization axes are orthogonal to each other in a crossed Nicol relationship. 3
The elastic wave generating means is made of, for example, quartz crystal, PZT, an ultrasonic wave generating device, etc. Reference numeral 4 denotes a medium in which optical anisotropy occurs internally due to elastic waves, a so-called photoelastic effect, and is made of, for example, glass or plastic. An elastic wave generating means 3 is fixed to a part of the medium 4. A power source 6 drives the elastic wave generating means 3. Reference numeral 7 denotes a light control section, which controls the light intensity of the light beam emitted from the light source 1 in relation to the voltage applied to the elastic wave generating means 3 from the power source 6.

本実施例では光源!、偏光板2そして光制御部7は入射
手段の一部を構成している。
In this example, the light source! , the polarizing plate 2 and the light control unit 7 constitute a part of the input means.

未実施例では電源6により交流若しくはパルス電圧を弾
性波発生手段3に印加することにより弾性波発生手段3
に弾性波を発生させている。
In the non-embodiment, the elastic wave generating means 3 is activated by applying an alternating current or pulse voltage to the elastic wave generating means 3 from the power source 6.
generates elastic waves.

そして弾性波を媒体4中に伝搬させている。このとき媒
体4の内部には光弾性効果により光学異方性が発生する
。例えば媒体4の面方向には歪の大きさに依存した大き
さの光学異方性が発生する。このとき媒体4中に伝搬す
る弾性波伝搬速度は速いので光学異方性は迅速に発生す
るようになる。又このときの光学異方性の発生状態は周
囲の温度変化等に全んどB’−’Elされずに発生して
くる。
The elastic waves are then propagated into the medium 4. At this time, optical anisotropy occurs inside the medium 4 due to the photoelastic effect. For example, optical anisotropy occurs in the in-plane direction of the medium 4, the magnitude of which depends on the magnitude of strain. At this time, since the propagation speed of the elastic wave propagating in the medium 4 is high, optical anisotropy occurs quickly. Further, the state in which optical anisotropy occurs at this time is not completely affected by B'-'El due to changes in ambient temperature, etc.

そして媒体4中における弾性波領域の伝搬と共に媒体4
中に生じた光学異方性の領域は同時に移動するようにな
る。このとき、例えば弾性波発生手段3に印加する電圧
をパルス状若しくは正弦波状である一定時間バーストし
た形状にすれば媒体4中の光学異方性の領域はある限ら
れた局所的なものとなり、媒体4中を移動するようにな
る。例えば第2図に示すように媒体4中をスリット状の
領域21を有しつつ移動するようになる。
As the elastic wave region propagates in the medium 4, the medium 4
The regions of optical anisotropy that have arisen in the image begin to move at the same time. At this time, for example, if the voltage applied to the elastic wave generating means 3 is made into a pulsed or sinusoidal burst shape for a certain period of time, the optical anisotropy region in the medium 4 becomes a limited and localized region. It begins to move within the medium 4. For example, as shown in FIG. 2, it moves within the medium 4 while having a slit-shaped area 21.

一方光源1から放射した光束は入射手段としての偏光板
2を通過し所定方向に偏光した直線偏光として媒体4に
入射させている。媒体4は弾性波が伝搬していない場合
には光学的に等方性と見做すことが出来るので直線偏光
はその偏光状、態を変えずに偏光板5に入射する。2つ
の偏光板2.5は互いに直交ニコルの関係となっている
ので導出手段としての偏光板5から光束は出射しない。
On the other hand, the light beam emitted from the light source 1 passes through a polarizing plate 2 serving as an input means, and is made to enter the medium 4 as linearly polarized light polarized in a predetermined direction. Since the medium 4 can be regarded as optically isotropic when no elastic waves are propagating therein, the linearly polarized light enters the polarizing plate 5 without changing its polarization state. Since the two polarizing plates 2.5 are in an orthogonal Nicols relationship with each other, no light beam is emitted from the polarizing plate 5 serving as a deriving means.

即ち光束は遮光される。That is, the luminous flux is blocked.

次に電源6により弾性波発生手段3に弾性波を発生させ
た場合には前述の如く媒体4には光学的異方性の領域が
速やかに発生し、この領域が媒体4中を移動するように
なる。従って媒体4に入射した直線偏光は媒体4中の光
学異方性の領域の移動と共に例えば第2図のスリット状
の領域21に対応して部分的に順次位相変調を受け、即
ち偏光状態が変化され、例えば楕円偏光となる。この為
偏光板5上の媒体4中の光学異方性の領域に対応する領
域からは楕円偏光の楕円率に応じた強度の光束が出射し
てくる。即ち光束は偏光板5上の異った領域から順次、
偏光板5上を走査するように射出してくる。本実施例て
はこのとき射出してくる光束の光強度を該光束の移動と
関連させて光制御部7により光源1の出力値を変えて制
御している。例えば第1図に示す媒体4における弾性波
の仏殿方向にX軸をとったとき偏光板5から射出してく
る光束の光強度が第3図に示すように矩形状となるよう
に制御している。
Next, when the power source 6 causes the elastic wave generating means 3 to generate an elastic wave, an optically anisotropic region is quickly generated in the medium 4 as described above, and this region moves in the medium 4. become. Therefore, as the optically anisotropic region in the medium 4 moves, the linearly polarized light incident on the medium 4 undergoes partial sequential phase modulation corresponding to, for example, the slit-shaped region 21 in FIG. 2, that is, the polarization state changes. For example, it becomes elliptically polarized light. Therefore, a light beam with an intensity corresponding to the ellipticity of the elliptically polarized light is emitted from a region of the medium 4 on the polarizing plate 5 corresponding to the optically anisotropic region. That is, the luminous flux is sequentially transmitted from different areas on the polarizing plate 5,
The light is emitted so as to scan the polarizing plate 5. In this embodiment, the light intensity of the light beam emitted at this time is controlled by changing the output value of the light source 1 by the light control section 7 in relation to the movement of the light beam. For example, when the X-axis is taken in the direction of the temple of the elastic wave in the medium 4 shown in FIG. 1, the light intensity of the light beam emerging from the polarizing plate 5 is controlled so that it has a rectangular shape as shown in FIG. 3. There is.

即ち光源1からの光束を断続的にON、OFF又は機械
的若しくは電気的に遮光することにより光強度を矩形状
にして走査するのを可能としている。そして本実施例で
はこのとき偏光板5から射出してくる光束を例えば被照
射面上に導光し、被照射面を断続的に走査するようにし
ている。
That is, by intermittently turning on and off the light beam from the light source 1, or mechanically or electrically blocking it, it is possible to perform scanning by changing the light intensity into a rectangular shape. In this embodiment, the light beam emerging from the polarizing plate 5 is guided, for example, onto the irradiated surface, and the irradiated surface is intermittently scanned.

第4図は本発明の他の一実施例の概略図である。FIG. 4 is a schematic diagram of another embodiment of the present invention.

本実施例では第1図の実施例に比べて、例えばPLZT
9/65/35等の材料より成る光強度変調部8と偏光
板9を偏光板2と媒体4との間に新たに設けている。
In this embodiment, compared to the embodiment shown in FIG. 1, for example, PLZT
A light intensity modulating section 8 and a polarizing plate 9 made of a material such as 9/65/35 are newly provided between the polarizing plate 2 and the medium 4.

そして第1図の実施例の光制御部7により光源1の出力
値を制御した代わりに本実施例では光3+制御部7によ
り光強度変調部8の特性、例えば複屈折率を変えること
により光源1からの光束の媒体4への入射及び遮光を電
気的に行っている。
In this embodiment, instead of controlling the output value of the light source 1 by the light control section 7 in the embodiment shown in FIG. The light flux from 1 is incident on the medium 4 and the light is blocked electrically.

例えば偏光板2と偏光板9の偏光軸が互いに直交するよ
うな直交ニコルの状態若しくは互いに平行となるような
平行ニコルの状態となるようにして光制御部7からの信
号に基づいて光強度変調部8の複屈折率を変えることに
より偏光板9を通過する光束の光強度を制御している。
For example, the light intensity is modulated based on the signal from the light control unit 7 so that the polarization axes of the polarizing plate 2 and the polarizing plate 9 are in a crossed Nicols state where they are orthogonal to each other or a parallel Nicols state where they are parallel to each other. By changing the birefringence of the portion 8, the intensity of the light beam passing through the polarizing plate 9 is controlled.

このように本実施例では電気的手段により光源1からの
光束の光変調を行うことにより媒体4への光束の入射及
び遮光を高速に行うことを可能にしている。
As described above, in this embodiment, by optically modulating the light beam from the light source 1 by electrical means, it is possible to make the light beam incident on the medium 4 and to block it at high speed.

尚木実hζ例において偏光板5上の光束の移動に関して
は第1図の実施例と同様である。
The movement of the light beam on the polarizing plate 5 in the example hζ is the same as in the example shown in FIG.

以上のように本実施例では電源6を制御し、弾性波発生
手段3に弾性波を発生させ媒体4中に弾性波を伝搬させ
ることにより媒体中に生じる光学異方性の領域を移動さ
せると共に光制御部7により媒体4への入射光束の光強
度を制御し、矩形状や三角形状等、任意の出力分布が得
られるようにしている。そしてこれにより導出手段とし
ての偏光板5から出射する光束の移動と共に該光束の光
強度を任意に制御した光走査装置を達成している。
As described above, in this embodiment, the power supply 6 is controlled, the elastic wave generating means 3 generates an elastic wave, and the elastic wave is propagated in the medium 4, thereby moving the optical anisotropy region generated in the medium. The light control unit 7 controls the light intensity of the light beam incident on the medium 4, so that any output distribution such as a rectangular shape or a triangular shape can be obtained. As a result, an optical scanning device is achieved in which the movement of the light flux emitted from the polarizing plate 5 serving as the derivation means and the light intensity of the light flux are arbitrarily controlled.

第1図、第4図に示す実施例では媒体4を通過する光束
を制御する場合について示したが、媒体4で反射する光
束を制御するようにしても良い。
In the embodiments shown in FIGS. 1 and 4, the case is shown in which the light flux passing through the medium 4 is controlled, but the light flux reflected by the medium 4 may also be controlled.

このとき媒体4からの反射光束は媒体4の表面から反射
された光束であっても良く、又媒体4の裏面に反射膜を
施し、この反射面から反射した光束を利用するようにし
ても良い。
At this time, the reflected light flux from the medium 4 may be the light flux reflected from the surface of the medium 4, or a reflective film may be applied to the back surface of the medium 4, and the light flux reflected from this reflective surface may be used. .

本実施例における2つの偏光板を直交ニコルの状態で配
置する代わりに平行ニコルの状態で配置しても良い。こ
のときは単に光束の走査状態の明暗関係が反転するだけ
であり基本的には全く同様である。
Instead of arranging the two polarizing plates in a crossed Nicol state in this embodiment, they may be arranged in a parallel Nicol state. At this time, the light/dark relationship in the scanning state of the light flux is simply reversed, and the situation is basically exactly the same.

尚本実施例において媒体中を伝搬する弾性波が媒体端部
で反射し逆行して通過光束に悪B2 qzを与えるのを
防止する為に媒体の端部に弾性波吸収部材を設け、若し
くは媒体端部を弾性波が媒体端部より射出するような形
状、例えば三角形状等で構成するのか好ましい。
In this embodiment, in order to prevent the elastic waves propagating in the medium from being reflected at the ends of the medium and going backwards and imparting an adverse B2 qz to the passing light flux, an elastic wave absorbing member is provided at the end of the medium, or an elastic wave absorbing member is provided at the end of the medium. It is preferable that the end portion be configured in a shape such as a triangular shape such that an elastic wave is emitted from the end portion of the medium.

(発明の効果) 以上のように本発明によれば高速走査が可能で、しかも
周囲の温度変化に対しても安定した特性を有した電気的
手段により所定面上を所定の光強度で光束走査すること
か出来る光走査装置を達成することができる。
(Effects of the Invention) As described above, according to the present invention, high-speed scanning is possible, and a beam of light is scanned at a predetermined light intensity on a predetermined surface using an electric means that has stable characteristics even against changes in ambient temperature. It is possible to achieve an optical scanning device that can perform the following functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、第2図は
第1図の一部分の説明図である。第3図は第1図の実施
例より得られる光束の移動にf#う光強度分布の説明図
、第4図は本発明の他の一実施例の概略図である。図中
1は光源、2,5.9は各々偏光板、3は、jlIl性
波発主波発生手段媒体、6は電源、7は光制御部、8は
光強度塵1個部てある。 特許出願人  キャノン株式会社 代  理  人     高  梨  幸  雄 1.
11・・1 第   1   図 釡   2   ロ
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a portion of FIG. 1. FIG. 3 is an explanatory diagram of the light intensity distribution according to f# due to the movement of the luminous flux obtained from the embodiment of FIG. 1, and FIG. 4 is a schematic diagram of another embodiment of the present invention. In the figure, 1 is a light source, 2, 5, and 9 are polarizing plates, 3 is a jlIl wave generating main wave generating means medium, 6 is a power source, 7 is a light control section, and 8 is one light intensity dust part. Patent applicant Yukio Takanashi, representative of Canon Co., Ltd. 1.
11..1 1st Diagram 2 B

Claims (1)

【特許請求の範囲】[Claims] 弾性波により光弾性効果を生じる媒体と該媒体に局所的
な弾性波を加える弾性波発生手段と前記媒体に偏光特性
を有した光束を入射させる入射手段と前記媒体を通過若
しくは反射した光束のうち所定の偏光成分の光束を導出
させる導出手段とを有し、前記弾性波発生手段により前
記媒体中に生じさせた局所的な弾性波領域の該媒体中の
移動に伴って前記導出手段から導出される光束を移動さ
せると共に光制御部により前記媒体に入射する光束の光
強度を制御したことを特徴とする光走査装置。
A medium that produces a photoelastic effect due to elastic waves, an elastic wave generating means that applies local elastic waves to the medium, an input means that makes a light beam having polarization characteristics enter the medium, and a light beam that has passed through or reflected from the medium. a deriving means for deriving a luminous flux of a predetermined polarized light component, and the light beam is derived from the deriving means as a local elastic wave region generated in the medium by the elastic wave generating means moves in the medium. What is claimed is: 1. An optical scanning device, characterized in that a light beam is moved along the medium, and a light intensity of the light beam incident on the medium is controlled by a light control section.
JP19238986A 1986-08-18 1986-08-18 Optical scanning device Pending JPS6348519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19238986A JPS6348519A (en) 1986-08-18 1986-08-18 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19238986A JPS6348519A (en) 1986-08-18 1986-08-18 Optical scanning device

Publications (1)

Publication Number Publication Date
JPS6348519A true JPS6348519A (en) 1988-03-01

Family

ID=16290487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19238986A Pending JPS6348519A (en) 1986-08-18 1986-08-18 Optical scanning device

Country Status (1)

Country Link
JP (1) JPS6348519A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161826A (en) * 1981-03-31 1982-10-05 Yokogawa Hokushin Electric Corp Display device
JPS59139017A (en) * 1983-01-28 1984-08-09 Yokogawa Hokushin Electric Corp Optical gate element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161826A (en) * 1981-03-31 1982-10-05 Yokogawa Hokushin Electric Corp Display device
JPS59139017A (en) * 1983-01-28 1984-08-09 Yokogawa Hokushin Electric Corp Optical gate element

Similar Documents

Publication Publication Date Title
JP3362814B2 (en) Switchable holographic device
KR930010577A (en) Image display device and its display method
KR20010034497A (en) Image generating system
JP2008299278A (en) Optical scanner, image forming apparatus and optical scanning method
US4635082A (en) Thermo-optic light modulation array
US10942378B2 (en) Waveguide with coherent interference mitigation
JPH06118453A (en) Element for high-speed tracking in raster output scanner
US4561727A (en) Two-dimensional acousto-optic deflection arrangement
JPS6348519A (en) Optical scanning device
JPS6348518A (en) Optical scanning device
JPS6348516A (en) Optical scanning device
JPH04294322A (en) Optical device
JP6925195B2 (en) Light modulation element
JPH0566377A (en) Optical device
JPS6348517A (en) Optical shutter device
JPS59165021A (en) Optical switch
JPS59139017A (en) Optical gate element
JP2002236273A (en) Optical modulator and its control method
ATE397234T1 (en) ELECTRO-OPTICAL LIGHT MODULATOR
JP2004004194A (en) Optical deflection element using 90 degree polarization interface
KR0179620B1 (en) Light beam modulation device
JPS5878173A (en) Optical imaging device
Mao et al. Real-time edge enhancement with hybrid amorphous silicon/ferroelectric liquid crystal devices
JP2020024269A (en) Optical phase modulation device and illumination device
JPH06102483A (en) Liquid crystal display device