JPS6348266B2 - - Google Patents

Info

Publication number
JPS6348266B2
JPS6348266B2 JP16394682A JP16394682A JPS6348266B2 JP S6348266 B2 JPS6348266 B2 JP S6348266B2 JP 16394682 A JP16394682 A JP 16394682A JP 16394682 A JP16394682 A JP 16394682A JP S6348266 B2 JPS6348266 B2 JP S6348266B2
Authority
JP
Japan
Prior art keywords
picoline
catalyst
oxygen
reaction
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16394682A
Other languages
Japanese (ja)
Other versions
JPS5955870A (en
Inventor
Kazuyuki Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP16394682A priority Critical patent/JPS5955870A/en
Publication of JPS5955870A publication Critical patent/JPS5955870A/en
Publication of JPS6348266B2 publication Critical patent/JPS6348266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、γ―ピコリンを含有する低品質なβ
―ピコリン中のγ―ピコリンを接触反応さすこと
によつて、高純度なβ―ピコリンを製造する方法
に関するものである。 β―ピコリンは農医薬の中間体原料として重要
であり、近年γ―ピコリンを含有しないβ―ピコ
リンが強く要望されている。 高純度のβ―ピコリンの製造法は従来、γ―ピ
コリンとβ―ピコリンの沸点が143.1℃と143.8℃
で極めて接近しているため蒸留等による簡単な操
作で両者を分離することは不可能であり、製造時
にγ―ピコリンの副生を抑える方法がとられてい
る。例えば特公昭47−44746によれば、アクロレ
イン(以下ALと略す)アセトアルデヒド(以下
ADと略す)からピリジン及びβ―ピコリンを製
造する場合、γ―ピコリンの副生を抑える目的で
メタノールを反応系に添加しているが、AL/
AD仕込みモル比1のとき、メタノールをADに
対して等モル添加することにより生成β―ピコリ
ン1に対してγ―ピコリンが0.04とメタノール無
添加と比較して(無添加の場合、0.42)改善され
ているが、まだ満足できるものではない。また
Chemiker―Zeitung 101(1977)377〜384によ
れば、AL単独からβ―ピコリン及びピリジンを
製造した場合、γ―ピコリンの副生が少なく、β
―ピコリン1に対してγ―ピコリンが0.001程度
になることが報告されているが、完全にγ―ピコ
リンを抑えることができない。さらに、この場合
反応性を激しいアクロレイン単独を使用すること
から取扱いが容易でなく、又、反応中に触媒上に
大量の炭素質が付着し、触媒の活性低下が速い等
の問題があり、工業的に優れている方法ではな
い。 本発明者は、上記の事実をふまえてγ―ピコリ
ンを含有する低品質なβ―ピコリンからのγ―ピ
コリンを含有しない高純度なβ―ピコリンの直接
的製造法について鋭意検討した結果、バナジウム
を主成分とする触媒の存在下で酸素含有ガスと接
触させた場合、γ―ピコリンとβ―ピコリンに反
応性の差があり、γ―ピコリンはβ―ピコリンに
較べて容易に反応することを見い出し、本発明を
完成するに至つた。即ち、本発明はバナジウムを
主成分とする触媒存在下γ―ピコリンを含有する
β―ピコリンを気相で酸素含有気体と接触反応さ
せてγ―ピコリンを選択的に除去することを特徴
とする高純度β―ピコリンの製造法である。 本発明で使用する触媒はバナジウムを主成分と
するものであればよく、例えば酸化バナジウム
(V2O5)単独、あるいは同化合物にクロム、銀、
モリブデン、タングステン等を添加した触媒を用
いることができる。 触媒構成原料にはメタバナジン酸アンモニウ
ム、塩化バナジル、メターまたはピロバナジン
酸、シユウ酸バナジウム、酸化バナジウムなどの
バナジウム化合物が用いられる。その他の添加金
属としてクロムの硝酸塩、塩酸塩酸化物、クロム
酸などのクロム化合物、モリブデン酸、モリブデ
ン酸アンモニウム、酸化モリブデンなどのモリブ
デン化合物、タングステン酸、タングステン酸ア
ンモニウム、酸化タングステンなどのタングステ
ン化合物、硝酸銀、酢酸銀、乳酸銀、酸化銀など
の銀化合物が使用される。 本発明に係る触媒は担体なしでも、あるいは適
当な担体上に支持させても使用し得るが、担体に
支持させて使用する方が一層有効である。担体と
して用いられる物質としてはアルミナ、シリカ、
炭化ケイ素、軽石、酸化チタン等が適当である。
担体の量は使用する担体の種類により一様ではな
いが、一般に重量比で95%以下、特に5〜95%の
担体を含有するよう調製するのが望ましい。 触媒の調製方法は、この種の触媒を調製する場
合に行なわれている一般的な方法によつて行なわ
れる。例えば、メタバナジン酸アンモニウムに水
懸濁液を加熱しながらシユウ酸を徐々に添加して
均一溶液とする。この溶液に担体を加え、よく混
合しながら濃縮する。生成したケーキを乾燥後適
当な大きさに成型し、300〜600℃の温度で焼成し
て触媒を得る。また各種の金属を添加する場合も
以上述べた方法に準じて調製することができる。 本発明に係る触媒は固定床、流動床のいずれに
も使用することができる。 本発明で使用する原料のβ―ピコリン中のγ―
ピコリン含有量については通常10%以下のものが
使用されるが、特に規制されるものではない。酸
素源としては純粋な酸素でも酸素濃度を高めた空
気でも、あるいは酸素を添加しない空気でもよ
い。経済的理由から酸素含有気体として空気を使
用するが望ましい。 原料ピコリンは酸素含有ガスと共に反応器中に
水蒸気を添加することが好ましい。水蒸気の添加
はγ―ピコリン及びβ―ピコリンの一部が脱アル
キルされて有用なピリジンの生成を増大させると
共に、爆発防止、安全確保の作用をもつ。安全上
の見地から、もし必要なら更に窒素、アルゴンな
どの公知に不活性ガスを希釈剤として使用するこ
とができる。 ピコリン類に対する酸素の供給比率はモル比で
0.1〜1.0であり、酸素モル比が大きいと、β―ピ
コリンの変化率が増加し、目的とする高純度のβ
―ピコリンの得率が減少する。また、これが逆に
小さいと、γ―ピコリンの変化率が低下するの
で、欲求する純度により適宜モル比を決定するの
がよい。ピコリンに対する水の供給比率はモル比
で35倍以下が好ましい。水のモル比が大きいと変
化したピコリンが有用なピリジンとなる回収率が
向上するので望ましいが、ピコリンの変化率が低
下するので必要以上に大きくするのは好ましくな
い。原料ガスの接触時間は0.5〜20秒である。 本発明において高純度β―ピコリンを製造する
に適した反応温度は300〜500℃である。また、反
応は特に圧力に制限なく実施できる。 反応により得られた生成液中にはβ―ピコリン
及び脱アルキルされたピリジンを含み、これから
公知の方法、例えば蒸留などの方法で容易に高純
度のβ―ピコリンを取得することができ、さらに
有用なピリジンも同時に回収することができる。 本発明によれば、γ―ピコリンを含有する低品
質なβ―ピコリンに適用して反応条件、特に酸
素/ピコリンの供給比率、さらに好ましくは水/
ピコリンの供給比率等を適切に選ぶことによつ
て、選択的に大きなγ―ピコリンの変化率を誘き
出し、γ―ピコリンを事実上含有しない高純度な
β―ピコリンを得ることが出来るである。 次に、本発明を実施例に従つて、より具体的に
説明する。 実施例 1 メタバナジン酸アンモニウム6.4gに水100mlを
加え、はげしく撹拌しながらシユウ酸5.4gを
徐々に加え、メタバナジン酸アンモニウムを完全
に溶解する。ついで、硝酸クロム15.7gに水20ml
を加え、完全に溶解した後、前記のメタバナジン
酸アンモニウムのシユウ酸溶液に加える。さらに
硝酸銀1.5gを水20mlに溶解し、前記混合液に添
加し、よく撹拌する。一方、別に担体として用い
る球状アルミナ(5mmφ)を砂浴上で加熱し、こ
れに前記の触媒成分混合液を少量ずつ振りかけ含
浸させる。得られた触媒を120℃で1時間乾燥後
450℃で空気中3時間焼成した。 得られた触媒の組成比はV1Cr0.7Ag0.16O3.63
(15wt%)―Al2O3(85wt%)であつた。 上記触媒60mlを内径27.2mmφのステンレス製U
字型反応管に充填し、γ―ピコリン2.5%を含有
するβ―ピコリンを用い、ピコリン:空気:水の
モル比1:3.5:15の混合ガスを接触時間9秒、
反応温度320℃で反応した。反応粗液をガスクロ
により分析したところ、γ―ピコリンは全くな
く、仕込んだピコリンの29.1%が変化しており、
変化したピコリンに対して有用なピリジンは74.5
%生成していた。 実施例 2〜4 実施例1に用いた触媒及びピコリンを使用し反
応条件のみを変更した。 結果、下表の通りであつた。
The present invention deals with low-quality β containing γ-picoline.
- This relates to a method for producing highly pure β-picoline by subjecting γ-picoline in picoline to a catalytic reaction. β-picoline is important as an intermediate raw material for agricultural medicines, and in recent years there has been a strong demand for β-picoline that does not contain γ-picoline. The conventional method for producing high-purity β-picoline is that the boiling points of γ-picoline and β-picoline are 143.1°C and 143.8°C.
Since they are very close to each other, it is impossible to separate the two by simple operations such as distillation, and methods are used to suppress the by-product of γ-picoline during production. For example, according to Japanese Patent Publication No. 47-44746, acrolein (hereinafter abbreviated as AL) and acetaldehyde (hereinafter abbreviated as AL)
When producing pyridine and β-picoline from AL/
When the molar ratio of AD is 1, the amount of γ-picoline produced is 0.04 for every 1 β-picoline produced by adding methanol to AD in equal moles, which is an improvement compared to when methanol is not added (0.42 in the case of no addition). However, it is still not satisfactory. Also
According to Chemiker-Zeitung 101 (1977) 377-384, when β-picoline and pyridine are produced from AL alone, the by-product of γ-picoline is small and
- It has been reported that γ-picoline is about 0.001 to 1 picoline, but it is not possible to completely suppress γ-picoline. Furthermore, in this case, acrolein, which has high reactivity, is used alone, which makes it difficult to handle, and there are also problems such as a large amount of carbon depositing on the catalyst during the reaction, and a rapid decline in catalyst activity. It's not a particularly good method. Based on the above-mentioned facts, the present inventor has conducted extensive studies on a method for directly producing high-purity β-picoline that does not contain γ-picoline from low-quality β-picoline that contains γ-picoline. It was discovered that there is a difference in reactivity between γ-picoline and β-picoline, and that γ-picoline reacts more easily than β-picoline when brought into contact with an oxygen-containing gas in the presence of a catalyst, which is the main component. , we have completed the present invention. That is, the present invention is a high-density polymerization method characterized in that γ-picoline is selectively removed by catalytically reacting β-picoline containing γ-picoline with an oxygen-containing gas in the gas phase in the presence of a catalyst containing vanadium as a main component. This is a method for producing pure β-picoline. The catalyst used in the present invention may be one containing vanadium as a main component, such as vanadium oxide (V 2 O 5 ) alone or the same compound containing chromium, silver,
A catalyst to which molybdenum, tungsten, etc. are added can be used. Vanadium compounds such as ammonium metavanadate, vanadyl chloride, meta- or pyrovanadic acid, vanadium oxalate, and vanadium oxide are used as catalyst constituent raw materials. Other additive metals include chromium nitrates, hydrochloride oxides, chromium compounds such as chromic acid, molybdenum compounds such as molybdic acid, ammonium molybdate, and molybdenum oxide, tungsten compounds such as tungstic acid, ammonium tungstate, and tungsten oxide, silver nitrate, Silver compounds such as silver acetate, silver lactate, and silver oxide are used. Although the catalyst according to the present invention can be used without a carrier or supported on a suitable carrier, it is more effective to use it supported on a carrier. Materials used as carriers include alumina, silica,
Silicon carbide, pumice, titanium oxide, etc. are suitable.
Although the amount of carrier varies depending on the type of carrier used, it is generally desirable to prepare the composition so that the carrier content is 95% or less, particularly 5 to 95% by weight. The catalyst is prepared by a common method used to prepare this type of catalyst. For example, oxalic acid is gradually added to ammonium metavanadate while heating an aqueous suspension to form a homogeneous solution. Add the carrier to this solution and concentrate while mixing well. After drying, the resulting cake is molded into an appropriate size and calcined at a temperature of 300 to 600°C to obtain a catalyst. Further, when various metals are added, preparations can be made according to the method described above. The catalyst according to the present invention can be used in either a fixed bed or a fluidized bed. γ- in β-picoline, the raw material used in the present invention
The picoline content is usually 10% or less, but it is not particularly regulated. The oxygen source may be pure oxygen, air with increased oxygen concentration, or air without added oxygen. For economic reasons, it is preferable to use air as the oxygen-containing gas. It is preferable to add water vapor to the raw material picoline together with an oxygen-containing gas in a reactor. Addition of steam not only increases the production of useful pyridine by dealkylating a portion of γ-picoline and β-picoline, but also has the effect of preventing explosions and ensuring safety. For safety reasons, if necessary, additionally known inert gases such as nitrogen, argon, etc. can be used as diluents. The supply ratio of oxygen to picolines is a molar ratio.
0.1 to 1.0, and when the oxygen molar ratio is large, the conversion rate of β-picoline increases, and the desired high purity β
- The gain rate of Picolin will be reduced. On the other hand, if this ratio is small, the rate of change of γ-picoline will decrease, so it is better to determine the molar ratio appropriately depending on the desired purity. The supply ratio of water to picoline is preferably 35 times or less in terms of molar ratio. A large molar ratio of water is desirable because it improves the recovery rate of converted picoline to useful pyridine, but it is not preferable to make it larger than necessary because the conversion rate of picoline decreases. The contact time of the raw material gas is 0.5 to 20 seconds. In the present invention, the reaction temperature suitable for producing high purity β-picoline is 300 to 500°C. Further, the reaction can be carried out without any particular pressure restrictions. The product liquid obtained by the reaction contains β-picoline and dealkylated pyridine, and highly pure β-picoline can be easily obtained from this by known methods such as distillation, and is further useful. Pyridine can also be recovered at the same time. According to the present invention, it is possible to apply the reaction conditions to low-quality β-picoline containing γ-picoline, particularly the oxygen/picoline supply ratio, and more preferably to the water/picoline supply ratio.
By appropriately selecting the supply ratio of picoline, etc., it is possible to selectively induce a large change rate of γ-picoline and obtain highly pure β-picoline that contains virtually no γ-picoline. Next, the present invention will be described in more detail with reference to Examples. Example 1 100 ml of water is added to 6.4 g of ammonium metavanadate, and while stirring vigorously, 5.4 g of oxalic acid is gradually added to completely dissolve the ammonium metavanadate. Next, add 15.7g of chromium nitrate and 20ml of water.
After completely dissolving, add to the oxalic acid solution of ammonium metavanadate. Further, 1.5 g of silver nitrate was dissolved in 20 ml of water, added to the mixture, and stirred well. Separately, spherical alumina (5 mmφ) used as a carrier is heated on a sand bath, and the catalyst component mixture is sprinkled little by little onto it to impregnate it. After drying the obtained catalyst at 120℃ for 1 hour
It was baked at 450°C in air for 3 hours. The composition ratio of the obtained catalyst is V 1 Cr0.7Ag0.16O3.63
(15wt%) - Al 2 O 3 (85wt%). 60ml of the above catalyst is placed in a stainless steel U with an inner diameter of 27.2mmφ.
Filled in a shaped reaction tube, using β-picoline containing 2.5% γ-picoline, a mixed gas with a molar ratio of picoline:air:water of 1:3.5:15 was contacted for 9 seconds.
The reaction was carried out at a reaction temperature of 320°C. When the reaction crude liquid was analyzed by gas chromatography, there was no γ-picoline at all, and 29.1% of the charged picoline had changed.
Pyridine useful for altered picoline is 74.5
% was generated. Examples 2 to 4 The catalyst and picoline used in Example 1 were used, but only the reaction conditions were changed. The results were as shown in the table below.

【表】 実施例 5 酸化バナジウムを10%含有した市販の触媒
(Harshaw社製V―0601T.アルミナ担体)を用
い、実施例1で用いたピコリンを使用し、反応温
度320℃で、ピコリン:空気:水=1:2.4:16の
モル比でガスを接触時間10秒で反応した。結果、
仕込んだピコリンの13.4%が変化しており、反応
粗液中のγ―ピコリン/β―ピコリンの比率は
0.002まで低下していた。
[Table] Example 5 A commercially available catalyst containing 10% vanadium oxide (Harshaw V-0601T. Alumina carrier) was used, the same picoline used in Example 1 was used, the reaction temperature was 320°C, and the picoline:air The gases were reacted at a molar ratio of :water=1:2.4:16 for a contact time of 10 seconds. result,
13.4% of the charged picoline has changed, and the ratio of γ-picoline/β-picoline in the crude reaction solution is
It had dropped to 0.002.

【特許請求の範囲】[Claims]

1 アニリンまたは置換基を有するアニリンを結
晶性ゼオライト触媒と接触させ、得られた生成物
流からα―ピコリンまたは置換基を有するα―ピ
コリンを分離することからなる、α―ピコリンま
たは置換基を有するα―ピコリンの製法。 2 アニリンをゼオライトとアンモニアの存在下
で接触させる特許請求の範囲第1項記載の製法。 3 アンモニア:アニリンのモル比が0.5:1〜
25:1である特許請求の範囲第2項記載の製法。 4 ゼオライトが少くとも12:1のシリカ:アル
ミナ比と1〜12の制御指数をもつ特許請求の範囲
第1項ないし第3項のいずれかに記載の製法。 5 ゼオライトがZSM―5、ZSM―11、ZSM―
35またはZSM―38である特許請求の範囲第4項
記載の製法。 6 アニリンをゼオライトと200℃〜650℃の温
度、200〜25000のkPaの圧力、0.1〜50重量時間
空間速度で接触させる特許請求の範囲第1項ない
し第5項のいずれかに記載の製法。 7 フエノール化合物または置換基を有するフエ
ノール化合物をアンモニアまたはアミンと少くと
も12のシリカ:アルミナ比と1〜12の制御指数を
1. α-picoline or substituted α-picoline, consisting of contacting aniline or substituted aniline with a crystalline zeolite catalyst and separating α-picoline or substituted α-picoline from the resulting product stream. -The manufacturing method of picoline. 2. The production method according to claim 1, wherein aniline is brought into contact with zeolite in the presence of ammonia. 3 The molar ratio of ammonia:aniline is 0.5:1~
The manufacturing method according to claim 2, wherein the ratio is 25:1. 4. A process according to any one of claims 1 to 3, wherein the zeolite has a silica:alumina ratio of at least 12:1 and a control index of 1 to 12. 5 Zeolite is ZSM-5, ZSM-11, ZSM-
35 or ZSM-38. 6. The production method according to any one of claims 1 to 5, wherein aniline is brought into contact with zeolite at a temperature of 200°C to 650°C, a pressure of 200 to 25000 kPa, and a space velocity of 0.1 to 50 weight hours. 7 A phenolic compound or a phenolic compound having a substituent group is combined with ammonia or an amine with a silica:alumina ratio of at least 12 and a control index of 1 to 12.

JP16394682A 1982-09-22 1982-09-22 Preparation of high-purity beta-picoline Granted JPS5955870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16394682A JPS5955870A (en) 1982-09-22 1982-09-22 Preparation of high-purity beta-picoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16394682A JPS5955870A (en) 1982-09-22 1982-09-22 Preparation of high-purity beta-picoline

Publications (2)

Publication Number Publication Date
JPS5955870A JPS5955870A (en) 1984-03-31
JPS6348266B2 true JPS6348266B2 (en) 1988-09-28

Family

ID=15783818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16394682A Granted JPS5955870A (en) 1982-09-22 1982-09-22 Preparation of high-purity beta-picoline

Country Status (1)

Country Link
JP (1) JPS5955870A (en)

Also Published As

Publication number Publication date
JPS5955870A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
US3972920A (en) Process for producing unsaturated aldehydes, unsaturated fatty acids or conjugated dienes
US5162578A (en) Acetic acid from ethane, ethylene and oxygen
US4524236A (en) Process for oxydehydrogenation of ethane to ethylene
US5994580A (en) Process for producing acrylic acid
US6143928A (en) Catalysts for low temperature selective oxidation of propylene, methods of making and using the same
US3087964A (en) Vapor phase oxidation of acrolein to acrylic acid
US3065264A (en) Vapor phase oxidation of propylene acrylic acid
JPH04257528A (en) Method and catalyst for producing ethyl- ene and acetic acid
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
US4062885A (en) Process for producing phthalonitrile
JP2003520202A (en) Sulfur-containing cocatalysts for oxidative dehydrogenation of alkanes
US6930201B2 (en) Process for producing methacrylic acid
US4620035A (en) Production of acrylic acid by oxidation of acrolein
CA1305180C (en) Organic acids from alkanols
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
US4541964A (en) Production of methacrylonitrile
CZ378598A3 (en) Process for preparing acetic acid and a catalyst for making the same
US4052417A (en) Vapor phase oxidation of butane producing maleic anhydride and acetic acid
JP4240162B2 (en) Method for producing nitrile compound and catalyst for production
US3959297A (en) Process for the preparation of 3-cyanopyridine
US4257921A (en) Catalyst for the oxidation of butene
JPS6348266B2 (en)
US3803156A (en) Process for the preparation of pyridinecarboxylic acid
JP2631866B2 (en) Method for producing pyrimidines
EP0282314A2 (en) Method for ammoxidation of paraffins and catalyst therefor