JPS634818B2 - - Google Patents

Info

Publication number
JPS634818B2
JPS634818B2 JP56029532A JP2953281A JPS634818B2 JP S634818 B2 JPS634818 B2 JP S634818B2 JP 56029532 A JP56029532 A JP 56029532A JP 2953281 A JP2953281 A JP 2953281A JP S634818 B2 JPS634818 B2 JP S634818B2
Authority
JP
Japan
Prior art keywords
reaction
compound
yield
lewis acid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029532A
Other languages
Japanese (ja)
Other versions
JPS57144247A (en
Inventor
Shinichi Suzuki
Kunitomo Suzuki
Moriaki Higo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP56029532A priority Critical patent/JPS57144247A/en
Publication of JPS57144247A publication Critical patent/JPS57144247A/en
Publication of JPS634818B2 publication Critical patent/JPS634818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエポキシド化合物と第1級アミノ化合
物又は第2級アミノ化合物とを反応させるN−置
換アミノアルコール化合物の製造方法において、
触媒としてルイス酸を使用することにより、収
率、反応に要する時間、副反応の発生等を大幅に
改善したN−置換アミノアルコール化合物の製造
方法に関する。 エポキシド化合物と第1級アミノ化合物又は第
2級アミノ化合物との反応は周知のようにエポキ
シ基へのアミンの付加反応であり、一般に溶媒の
存在又は不存在下で反応を行なつているが、この
反応は反応速度が小さいこと、低収率である
こと、アミノ基の窒素原子に電子密度を低下さ
せるような電子吸引性の置換基が結合している場
合もしくはアミノ基の窒素原子に結合した置換基
が立体障害を生じさせるような場合には反応性が
著しく悪くなること等の問題点を有する。例え
ば、グリシジルメタクリレートとアミンとを反応
させて歯科用コンポジツトレジンや接着剤等に用
いられる付加重合用モノマーを製造する場合、従
来はグリシジルメタクリレートとアミンとをメタ
ノール等の溶媒中又は溶媒を使用せずに反応させ
ているが、この反応は前記のように本来収率が低
い上、反応速度も小さく、反応に長時間を要する
ので、反応中に重合反応等の副反応が起きて更に
収率を低下させ易い等の問題を有していた。 本発明者らはグリシジルメタクリレート等のエ
ポキシド化合物と第1級アミノ化合物又は第2級
アミノ化合物とを反応させてN−置換アミノアル
コール化合物を収率良く製造する方法について
種々検討しているうちに、電子対受容体として機
能するZnCl2、SnCl2、SnCl4、FeCl3、TiCl3
TiCl4、AlCl3、CuCl、CuCl2、SbCl5、BF3
CH3OH、BF3・(C2H52O等のルイス酸を反応触
媒として用いた場合、エポキシド化合物とアミノ
化合物との反応が特異的に促進されて、N−置換
アミノアルコール化合物を収率良く製造すること
ができると共に、上記問題点も解消し得ることを
知見し、本発明を完成するに至つたものである。 即ち、本発明は下記反応式Aで示されるエポキ
シド化合物のエポキシ基とアミノ化合物の第1級
アミノ基又は第2級アミノ基を反応させるN−置
換アミノアルコール化合物の製造方法において、
触媒としてルイス酸を使用するものである。 以下、本発明を詳細に説明する。 本発明においてエポキシド化合物としては、エ
チレンオキサイド、プロピレンオキサイド、2・
3−エポキシブタン等のアルキルオキサイド及び
置換アルキルオキサイドや、グリシジルメタクリ
レート、グリシジルアクリレート等のグリシジル
誘導体、その他分子内にエポキシ基を有する化合
物はいずれのものでも使用できる。 また、アミノ化合物としては第1級アミノ化合
物及び第2級アミノ化合物が使用される。第1級
アミノ化合物としてはメチルアミン、エチルアミ
ン等のモノアルキルアミン;アニリン;ハロゲン
原子、メトキシ基やエトキシ基その他のアルコキ
シ基、水酸基、カルボキシル基、カルボニル基、
アシル基等の置換基を有する芳香族アミノ化合物
などの分子内に第1級アミノ基を有する化合物は
いずれのものでも使用できる。また、第2級アミ
ノ化合物としては、ジメチルアミン、ジエチルア
ミン等のジアルキルアミン;ジフエニルアミン;
N−メチルアニリン等のN−アルキルアニリン;
またそれらのフエニル基にハロゲン原子、メトキ
シ基やエトキシ基その他のアルコキシ基、水酸
基、カルボキシル基、カルボニル基、アシル基等
の置換基を有する芳香族アミノ化合物などの分子
内に第2級アミノ基を有する化合物はいずれのも
のも使用できる。 本発明においては、上記エポキシド化合物と第
1級アミノ化合物又は第2級アミノ化合物とを反
応させるものであるが、この際にルイス酸を触媒
として使用することにより所期の目的を達成し得
たものである。このルイス酸として、例えば
ZnCl2、SnCl2、SnCl4、FeCl3、TiCl3、TiCl4
AlCl3、CuCl、CuCl2、SbCl5、BF3・CH3OH、
BF3・(C2H52O等の電子対受容体として機能す
る無機塩類及びこれらの誘導体等が好適に使用で
きる。なお、これらのルイス酸はその1種を単独
で使用しても2種以上を併用しても差支えない。
またこのルイス酸の添加量は通常エポキシド化合
物1モルに対し0.01〜0.1モルとなるようにする
ことが好ましい。更に好ましくは0.02〜0.06モル
である。 反応は溶媒中で、又は溶媒を使用することなく
行なうことができる。溶媒としては通常使用する
ものが広く使用できるが、特に酢酸エチル等のエ
ステル類及びメタノール、エタノール等のアルコ
ール類が好適に使用できる。 本発明の反応は迅速に進行するので特に高温に
加熱する必要がなく、一般に−30〜100℃の比較
的低い温度、特に−10〜50℃で行なうことが副反
応を起さないためにも好ましい。 反応は通常3〜8時間以内に実質的に完了し、
撹拌は反応を促進する。 而して、本発明はエポキシド化合物と第1級又
は第2級アミノ化合物とを反応させるN−置換ア
ミノアルコール化合物の製造方法において、触媒
としてルイス酸を使用することにより、反応が極
めて円滑に進行すると共に、反応条件が温和なも
のとなり、収率も著しく高くなる。しかも反応時
間も従来よりもはるかに短くなる。従つて、従来
法による場合には立体障害等の理由でほとんど収
率が零に近い反応でも本発明方法によれば高い収
率で目的物を得ることができる。更に、従来法で
は反応中に重合等の副反応を起して収率が著しく
低下し易い化合物を製造する場合においても、本
発明方法によれば反応時間が短かく、かつ反応条
件が温和なものであるから副反応等を有効に防止
し得、高収率で目的化合物を製造することができ
る。更に、触媒として用いるルイス酸は安価なも
のが多く、しかも後処理も簡単なことから工業的
大量生産を行なう場合に非常に有効な製造方法で
ある。 以下、実施例により本発明を更に具体的に説明
する。 実施例 1 グリシジルメタクリレート1.42g(10mmol)
とo−アニシジン1.23g(10mmol)とを、触媒
としてFeCl30.06g(0.4mmol)の存在下に50℃
で1時間撹拌して1.94gの目的化合物である3−
(2−メトキシフエニルアミノ)−2−ヒドロキシ
プロピルメタクリレートを得た。 収率78% 比較例 1 FeCl3を加えない以外は実施例1と同様の条件
で反応を行なつたが、反応は進行せず収率は0%
であつた。 比較例 2 比較例1と同一条件で、ただし反応時間を10時
間として反応を行なつた。この場合、収率は12%
であつた。 以上の結果から明らかなように、本発明方法に
よれば目的物質を収率78%で得ることができたの
に対して、ルイス酸を使用していない比較例1の
場合には殆んど反応が進行せず、また反応時間を
10時間とした場合でも比較例2に示したように収
率は12%にすぎず、従つてルイス酸を触媒として
使用することにより反応の収率及び反応時間が大
幅に改善されることが確認された。 実施例 2〜22 グリシジルメタクリレート10mmolと下表に示
す各アミン10mmolを下表に示すルイス酸触媒
0.4mmolの存在下に反応温度50℃で反応させた。
結果を下表に示す。また、比較のために触媒を使
用しない場合を比較例3に示した。
The present invention provides a method for producing an N-substituted amino alcohol compound in which an epoxide compound and a primary amino compound or a secondary amino compound are reacted.
The present invention relates to a method for producing an N-substituted amino alcohol compound that uses a Lewis acid as a catalyst to significantly improve yield, time required for reaction, occurrence of side reactions, etc. As is well known, the reaction between an epoxide compound and a primary amino compound or a secondary amino compound is an addition reaction of an amine to an epoxy group, and the reaction is generally carried out in the presence or absence of a solvent. This reaction has a slow reaction rate, a low yield, and when an electron-withdrawing substituent that lowers the electron density is bonded to the nitrogen atom of the amino group, or when the nitrogen atom of the amino group is bonded to an electron-withdrawing substituent that reduces the electron density. If the substituent causes steric hindrance, there are problems such as significantly poor reactivity. For example, when glycidyl methacrylate and amine are reacted to produce addition polymerization monomers used in dental composite resins, adhesives, etc., conventionally, glycidyl methacrylate and amine are reacted in a solvent such as methanol or by using a solvent. However, as mentioned above, this reaction inherently has a low yield, the reaction rate is low, and the reaction takes a long time, so side reactions such as polymerization occur during the reaction, further reducing the yield. However, there were problems such as a tendency to reduce the The present inventors have studied various methods for producing N-substituted amino alcohol compounds in good yield by reacting epoxide compounds such as glycidyl methacrylate with primary amino compounds or secondary amino compounds. ZnCl 2 , SnCl 2 , SnCl 4 , FeCl 3 , TiCl 3 , which function as electron pair acceptors;
TiCl 4 , AlCl 3 , CuCl, CuCl 2 , SbCl 5 , BF 3
When a Lewis acid such as CH 3 OH, BF 3 .(C 2 H 5 ) 2 O, etc. is used as a reaction catalyst, the reaction between an epoxide compound and an amino compound is specifically promoted, resulting in the formation of an N-substituted amino alcohol compound. The present invention has been completed based on the finding that it can be produced with good yield and that the above problems can also be solved. That is, the present invention provides a method for producing an N-substituted amino alcohol compound in which an epoxy group of an epoxide compound shown by the following reaction formula A is reacted with a primary amino group or a secondary amino group of an amino compound.
A Lewis acid is used as a catalyst. The present invention will be explained in detail below. In the present invention, epoxide compounds include ethylene oxide, propylene oxide, 2.
Any of alkyl oxides and substituted alkyl oxides such as 3-epoxybutane, glycidyl derivatives such as glycidyl methacrylate and glycidyl acrylate, and other compounds having an epoxy group in the molecule can be used. Further, as the amino compound, a primary amino compound and a secondary amino compound are used. Primary amino compounds include monoalkylamines such as methylamine and ethylamine; aniline; halogen atoms, methoxy groups, ethoxy groups and other alkoxy groups, hydroxyl groups, carboxyl groups, carbonyl groups,
Any compound having a primary amino group in the molecule, such as an aromatic amino compound having a substituent such as an acyl group, can be used. Further, as secondary amino compounds, dialkylamines such as dimethylamine and diethylamine; diphenylamine;
N-alkylaniline such as N-methylaniline;
In addition, aromatic amino compounds having substituents such as a halogen atom, methoxy group, ethoxy group, other alkoxy group, hydroxyl group, carboxyl group, carbonyl group, or acyl group on the phenyl group have a secondary amino group in the molecule. Any compound can be used. In the present invention, the above-mentioned epoxide compound is reacted with a primary amino compound or a secondary amino compound, and the intended purpose can be achieved by using a Lewis acid as a catalyst at this time. It is something. As this Lewis acid, for example,
ZnCl2 , SnCl2 , SnCl4 , FeCl3 , TiCl3 , TiCl4 ,
AlCl 3 , CuCl, CuCl 2 , SbCl 5 , BF 3・CH 3 OH,
Inorganic salts that function as electron pair acceptors such as BF 3 .(C 2 H 5 ) 2 O and derivatives thereof can be suitably used. Note that these Lewis acids may be used alone or in combination of two or more.
Further, the amount of Lewis acid added is preferably 0.01 to 0.1 mol per 1 mol of the epoxide compound. More preferably, it is 0.02 to 0.06 mol. The reaction can be carried out in a solvent or without the use of a solvent. As the solvent, a wide variety of commonly used solvents can be used, and esters such as ethyl acetate and alcohols such as methanol and ethanol are particularly suitable. Since the reaction of the present invention proceeds rapidly, there is no need to heat it to a particularly high temperature, and it is generally carried out at a relatively low temperature of -30 to 100°C, particularly -10 to 50°C, in order to avoid side reactions. preferable. The reaction is usually substantially complete within 3 to 8 hours;
Stirring accelerates the reaction. Accordingly, the present invention provides a method for producing an N-substituted amino alcohol compound in which an epoxide compound and a primary or secondary amino compound are reacted, and by using a Lewis acid as a catalyst, the reaction proceeds extremely smoothly. At the same time, the reaction conditions become milder and the yield becomes significantly higher. Moreover, the reaction time is also much shorter than before. Therefore, even if the conventional method yields almost zero due to steric hindrance, the method of the present invention allows the desired product to be obtained in high yield. Furthermore, even when producing compounds that tend to undergo side reactions such as polymerization during the reaction with conventional methods, resulting in a significant decrease in yield, the method of the present invention allows for short reaction times and mild reaction conditions. Since it is a compound, side reactions etc. can be effectively prevented and the target compound can be produced in high yield. Furthermore, many of the Lewis acids used as catalysts are inexpensive and post-treatment is simple, making this a very effective manufacturing method for industrial mass production. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Glycidyl methacrylate 1.42g (10mmol)
and 1.23 g (10 mmol) of o-anisidine at 50°C in the presence of 0.06 g (0.4 mmol) of FeCl 3 as a catalyst.
After stirring for 1 hour, 1.94 g of the target compound 3-
(2-methoxyphenylamino)-2-hydroxypropyl methacrylate was obtained. Yield 78% Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 except that FeCl 3 was not added, but the reaction did not proceed and the yield was 0%.
It was hot. Comparative Example 2 A reaction was carried out under the same conditions as Comparative Example 1, but with a reaction time of 10 hours. In this case the yield is 12%
It was hot. As is clear from the above results, according to the method of the present invention, the target substance could be obtained with a yield of 78%, whereas in the case of Comparative Example 1, in which no Lewis acid was used, almost no yield was obtained. The reaction does not proceed and the reaction time
Even when the reaction time was 10 hours, the yield was only 12% as shown in Comparative Example 2, thus confirming that the reaction yield and reaction time were significantly improved by using a Lewis acid as a catalyst. It was done. Examples 2 to 22 10 mmol of glycidyl methacrylate and 10 mmol of each amine shown in the table below were combined with the Lewis acid catalyst shown in the table below.
The reaction was carried out in the presence of 0.4 mmol at a reaction temperature of 50°C.
The results are shown in the table below. Further, for comparison, a case where no catalyst was used was shown in Comparative Example 3.

【表】【table】

【表】 比較例3〓
実施例 23 エチレンオキサイド2.20g(50mmol)とアニ
リン4.66g(50mmol)とをメタノール20mlに溶
解し、これにルイス酸の触媒として塩化亜鉛0.27
g(2mmol)を加えた後、0℃で3時間反応さ
せた。次いで、得られた反応混合物を過した
後、溶媒を留去した。得られた残留物を減圧蒸留
して167℃/17mmHgの留分を集めることによりN
−フエニルエタノールアミン5.49gを得た。収率
80% 実施例 24 プロピレンオキサイド2.90g(50mmol)とN
−メチルアリニン5.36g(50mmol)とをメタノ
ール20mlに溶解し、これにルイス酸触媒として塩
化第2鉄0.3g(2mmol)を加えた後、室温で
3時間反応させた。得られた反応混合物を過し
た後、液中の溶媒を留去した。得られた残留物
を蒸留して262℃の留出分を集めることにより2
−フエニルアミノ−2−ブタノール6.17gを得
た。収率75% 実施例 25 2・3−エポキシブタン7.21g(0.1mol)とo
−アニシジン12.31g(0.1mol)をナス型コルベ
ンに入れ、塩化亜鉛0.5gを加え、50℃で1時間
反応させた。次にで得られた反応混合物はSiO2
−カラムに吸着し、ベンゼンで溶出し、第2フラ
クシヨンからO−メトキシフエニルアミノ−2−
ブタノール14.27g(収率73.1%)を得た。
[Table] Comparative example 3
Example 23 2.20 g (50 mmol) of ethylene oxide and 4.66 g (50 mmol) of aniline were dissolved in 20 ml of methanol, and 0.27 g of zinc chloride was added as a Lewis acid catalyst.
After adding g (2 mmol), the mixture was reacted at 0° C. for 3 hours. Next, the resulting reaction mixture was filtered and the solvent was distilled off. N
-5.49 g of phenylethanolamine was obtained. yield
80% Example 24 2.90g (50mmol) of propylene oxide and N
- 5.36 g (50 mmol) of methylalinine was dissolved in 20 ml of methanol, and 0.3 g (2 mmol) of ferric chloride was added thereto as a Lewis acid catalyst, followed by reaction at room temperature for 3 hours. After the resulting reaction mixture was filtered, the solvent in the liquid was distilled off. By distilling the obtained residue and collecting the distillate at 262℃,
6.17 g of -phenylamino-2-butanol was obtained. Yield 75% Example 25 7.21 g (0.1 mol) of 2,3-epoxybutane and o
- 12.31 g (0.1 mol) of anisidine was placed in an eggplant-shaped colben, 0.5 g of zinc chloride was added, and the mixture was reacted at 50°C for 1 hour. The reaction mixture obtained then is SiO 2
- adsorbed on the column, eluted with benzene, and from the second fraction O-methoxyphenylamino-2-
14.27 g (yield 73.1%) of butanol was obtained.

Claims (1)

【特許請求の範囲】 1 エポキシド化合物と第1級アミノ化合物又は
第2級アミノ化合物とを反応させるN−置換アミ
ノアルコール化合物の製造方法において、反応触
媒としてルイス酸を用いることを特徴とするN−
置換アミノアルコール化合物の製造方法。 2 ルイス酸がZnCl2、SnCl2、SnCl4、FeCl3
TiCl3、TiCl4、AlCl3、CuCl、CuCl2、SbCl5
BF3・CH3OH又はBF3・(C2H52Oである特許請
求の範囲第1項記載の製造方法。
[Scope of Claims] 1. A method for producing an N-substituted amino alcohol compound by reacting an epoxide compound with a primary amino compound or a secondary amino compound, characterized in that a Lewis acid is used as a reaction catalyst.
A method for producing a substituted amino alcohol compound. 2 Lewis acid is ZnCl 2 , SnCl 2 , SnCl 4 , FeCl 3 ,
TiCl3 , TiCl4 , AlCl3 , CuCl, CuCl2 , SbCl5 ,
The manufacturing method according to claim 1, which is BF 3 .CH 3 OH or BF 3 .(C 2 H 5 ) 2 O.
JP56029532A 1981-03-02 1981-03-02 Preparation of n-substituted amino-alcohol compound Granted JPS57144247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029532A JPS57144247A (en) 1981-03-02 1981-03-02 Preparation of n-substituted amino-alcohol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029532A JPS57144247A (en) 1981-03-02 1981-03-02 Preparation of n-substituted amino-alcohol compound

Publications (2)

Publication Number Publication Date
JPS57144247A JPS57144247A (en) 1982-09-06
JPS634818B2 true JPS634818B2 (en) 1988-02-01

Family

ID=12278716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029532A Granted JPS57144247A (en) 1981-03-02 1981-03-02 Preparation of n-substituted amino-alcohol compound

Country Status (1)

Country Link
JP (1) JPS57144247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157015U (en) * 1988-04-21 1989-10-30
JPH0485134A (en) * 1990-07-28 1992-03-18 Toyoda Gosei Co Ltd Window molding
WO2021025122A1 (en) 2019-08-07 2021-02-11 花王株式会社 Method for culturing dermal papilla cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE910752A1 (en) * 1990-03-08 1991-09-11 Fujisawa Pharmaceutical Co A novel substituted-amine compound and a process for the¹preparation thereof
EP1059283B1 (en) * 1999-06-11 2003-05-28 F. Hoffmann-La Roche Ag Process for preparing neuraminidase inhibitor ro-64-0796
JP2014201520A (en) * 2013-04-01 2014-10-27 東レ・ファインケミカル株式会社 Method for producing diglycidyl amine-type epoxy compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157015U (en) * 1988-04-21 1989-10-30
JPH0485134A (en) * 1990-07-28 1992-03-18 Toyoda Gosei Co Ltd Window molding
WO2021025122A1 (en) 2019-08-07 2021-02-11 花王株式会社 Method for culturing dermal papilla cells

Also Published As

Publication number Publication date
JPS57144247A (en) 1982-09-06

Similar Documents

Publication Publication Date Title
US3056836A (en) Aralkylamines and methods of preparation thereof
IE51495B1 (en) N-hydroxyalkylated dicarboxylic acid bis-(3,5-dicarbamoyl-2,4,6-triiodoanilides),process for their preparation,and x-ray contrast preparations containing them
JPS634818B2 (en)
JPS62281835A (en) Organic solvent soluble polyvalent metal alkoxyalkoxide and manufacture
Hennis et al. Esters from the reactions of alkyl halides and salts of carboxylic acids. Comprehensive study of amine catalysis
JP3055757B2 (en) Process for producing albuterol and its intermediates, acetal, hemiacetal and arylglyoxal hydrate
JPS63295593A (en) Production of silyl group-containing amine compound
JPH0733378B2 (en) Process for producing α-substituted γ-butyrolactone
JPS6335543A (en) Manufacture of unsaturated carboxylic acid ester
JP3769192B2 (en) Process for producing 2- (N-phenylamino) benzoic acid
EP0377638B1 (en) Process for the iodination of hydroxyaromatic and aminoaromatic compounds
JP2020531459A (en) Method for producing monothiocarbonate compound
JPS584779A (en) Manufacture of 2-alkoxy-(1,3)-dioxolane
US3278601A (en) Aralkylamines and methods of preparation thereof
JPS5835983B2 (en) Method for producing β-aminopropionamide
JPS6197249A (en) Manufacture of alkoxyhalide
US4661625A (en) Synthesis and purification of d-propoxyphene hydrochloride
JPH0730003B2 (en) Co-production method of ethylene cyanohydrin and its ether
JP2006298922A (en) Method of producing unsaturated cyclic orthoester
EP0282435A1 (en) Improved method for the esterification of thiopropionates
JPS58177937A (en) Manufacture of acetal and enol ether
JP3864997B2 (en) Method for producing 2,4-oxazolidinediones
EP0097357A1 (en) Process for preparing trifluoromethylbenzene derivatives
JP3417418B2 (en) Method for producing alkylene carbonate
KR102376869B1 (en) Method for producing iodine-containing silicon compound