JPS634816B2 - - Google Patents

Info

Publication number
JPS634816B2
JPS634816B2 JP56086886A JP8688681A JPS634816B2 JP S634816 B2 JPS634816 B2 JP S634816B2 JP 56086886 A JP56086886 A JP 56086886A JP 8688681 A JP8688681 A JP 8688681A JP S634816 B2 JPS634816 B2 JP S634816B2
Authority
JP
Japan
Prior art keywords
catalyst
aldehyde
alcohol
reaction
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56086886A
Other languages
Japanese (ja)
Other versions
JPS57203024A (en
Inventor
Tadamitsu Kyora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56086886A priority Critical patent/JPS57203024A/en
Publication of JPS57203024A publication Critical patent/JPS57203024A/en
Publication of JPS634816B2 publication Critical patent/JPS634816B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルデヒドの製造方法、より詳細に
は、分子内にエーテル結合を持つアルデヒド、ま
たは、内子内に2ケのアルデヒド基を持つジアル
デヒドの製造法の改良に関する。 従来、アルコールの脱水素反応によりアルデヒ
ドを得るには銅系の触媒が多用されている。例え
ば、エチルアルコールの脱水素によりアセトアル
デヒドを得るプロセスでは銅クロマイト触媒が工
業的にも使用されていた。アルコールからアルデ
ヒドを得る他の触媒系としては、メチルアルコー
ルの酸化脱水素によるホルムアルデヒドの製造に
用いられている銀触媒がある。このホルムアルデ
ヒド製造に用いられる触媒は、担体を用いない金
属単味の銀の粒状触媒である。 本発明の方法における分子内にエーテル結合を
持つアルコールまたはグリコールを酸化脱水素し
て、分子内にエーテル結合を持つアルデヒドまた
はジアルデヒドを得る目的には、前記の触媒を用
いるプロセスによつて高収率で目的アルデヒドを
得ることは出来ない。 本発明の目的とするところは、分子内のエーテ
ル結合を持つアルコールまたはグリコールを酸化
脱水素して、高収率で目的とするアルデヒドを得
る方法を提供することにある。 本発明者は、分子内にエーテル結合を持つアル
コールまたはグリコールの酸化脱水素に関して
種々研究した結果、銀を担持する担体を適当に選
ぶことにより、かつ、より調製した銀触媒を用い
ることにより、目的とするアルデヒドが高収率で
得られることを見出して、本発明を完成するに至
つた。 すなわち、本発明は、分子内にエーテル結合を
持つアルコールまたはグリコールを酸化脱水素し
て、分子内にエーテル結合を持つアルデヒドまた
はジアルデヒドを製造するに際し、表面積が2
m2/gに満たない担体に担持した銀触媒を用いて
反応せしめることを特徴とするアルデヒドの製造
方法である。 この本発明の方法によれば、目的とする分子内
にエーテル結合を持つアルデヒドまたはジアルデ
ヒドを収率良く製造することが出来る。 本発明の方法において出発物質として用いるア
ルコールは、RO−CH2CH2OH(Rは炭素数1〜
4のアルキル基を示す)またはHO−(CH2o
OH(nは2〜4の整数である)で表わされるエ
ーテル結合を持つアルコールまたはグリコールで
あつて、得られるアルデヒドはRO−CH2CHO
(Rは炭素数1〜4のアルキル基を示す)または
OHC−(CH2o-2−CHO(nは2〜6の数整であ
る)で表わされるジアルデヒドである。例えば、
原料アルコールのRがメチル基であるエチレング
リコールモノメチルエーテルを用いれば、得られ
るアルデヒドはメトキシ−アセトアルデヒドであ
り、Rがイソプロピル基であれば、イソプロポキ
シ−アセトアルデヒドが得られる。また、原料ア
ルコールがエチレングリコールであれば、得られ
るジアルデヒドはグリオキザールであり、1・4
−ブタンジオールからは1・4−ブタンジアール
(1・2−ジホルミルエタン)が得られる。 本発明の方法における触媒は、銀を特定な表面
積を持つた担体に担持したものである。好ましい
担体の表面積は、窒素ガスの沸点温度における担
体への吸着等温線にBETの吸着等温式を適用し
て算出した表面積が、2m2/g未満のものであ
る。担体が反応に対して不活性であればその表面
積が2m2/g未満であれば、その種類は問はな
い。すなわち、熔融アルミナ、熔融シリカ、シリ
コンカーバイドまたは陶磁器の細片等を担体とし
て用いることが出来る。 表面積が、上記の値以上であつても目的とする
アルデヒドは得られるが、その収率は低い。 担体上への銀の担持量は、1〜30wt%、特に
5〜10wt%の範囲が多用されるが、一般的には
銀の担持量は低い方が触媒コストを低減するうえ
で好ましい。触媒の調製方法は、常法、例えば、
硝酸銀等の銀塩を水に溶かし、担体に浸漬、乾
燥、焼成後還元処理することによる。 本発明の方法は、高温、気相で反応を実施する
が、反応温度は、300〜600℃、特に350〜450℃の
範囲が多用される。反応時の圧力は常圧近傍であ
つて、通常、原料となるアルコールの分圧は0.5
気圧以下が多用される。反応に際しては、原料ア
ルコールの分圧を0.5気圧以下にするのに、スチ
ーム、窒素、炭酸ガスまたはこれらの混合ガスを
原料アルコールと共に反応系に供給する場合が多
い。 酸化脱水素反応の酸化剤は酸素が用いられるが
酸素源としては、酸素ガスまたは空気が多用され
る。酸素の原料アルコールに対する割合は通常、
化学量論量より過剰の酸素を用いる。酸素の過剰
量は、化学量論量の1.5〜3倍量が多用される。 反応物質と触媒床との接触時間は、0.1〜3秒
の範囲が用いられる。本発明の方法を実施するの
に用いる触媒床は固定床が適しているが、流動床
を用いることも出来る。 本発明の方法によつて得られる分子内にエーテ
ル結合を持つアルデヒドまたはジアルデヒドは、
アミノ酸等の合成原料、または繊維および紙加工
剤の合成原料等に広範な用途を持つ有用な化合物
である。 以下、実施例により本発明の方法を説明する。 実施例 1 内径12m/mのステンレススチール製の円筒を
反応管に用い、粒径1〜1.6m/mの触媒を2ml
充填した。供給原料として、エチレングリコール
モノメチルエーテルを0.85g/Hr.窒素ガス100
ml/min、空気20ml/minの混合物を400℃に加
熱した触媒床に予熱気化させてから供給した。反
応器を流出した反応物をドライアイスで冷却した
トラツプに捕集した。トラツプに捕集した液体の
重量および、その組成をガスクロマトグラフで分
析して、エチレングリコールモノメチルエーテル
の転化率およびメトキシアセトアルデヒドへの選
択率を算出した。 用いる触媒の種類をかえて得られた結果を表−
1に示した。
The present invention relates to a method for producing an aldehyde, and more particularly, to an improved method for producing an aldehyde having an ether bond in the molecule or a dialdehyde having two aldehyde groups in the inner molecule. Conventionally, copper-based catalysts have been frequently used to obtain aldehydes through the dehydrogenation reaction of alcohols. For example, copper chromite catalysts have been used industrially in the process of obtaining acetaldehyde by dehydrogenating ethyl alcohol. Other catalyst systems for obtaining aldehydes from alcohols include silver catalysts used in the production of formaldehyde by oxidative dehydrogenation of methyl alcohol. The catalyst used for this formaldehyde production is a granular metal catalyst of silver without using a carrier. In order to obtain an aldehyde or dialdehyde having an ether bond in the molecule by oxidative dehydrogenation of an alcohol or glycol having an ether bond in the molecule in the method of the present invention, a process using the above-mentioned catalyst can be used in high yield. It is not possible to obtain the desired aldehyde at this rate. An object of the present invention is to provide a method for obtaining a desired aldehyde in high yield by oxidatively dehydrogenating an alcohol or glycol having an ether bond in the molecule. As a result of various studies on the oxidative dehydrogenation of alcohols or glycols having an ether bond in the molecule, the present inventor has determined that the desired purpose can be achieved by appropriately selecting a carrier supporting silver and using a more prepared silver catalyst. The present invention was completed by discovering that the aldehyde can be obtained in high yield. That is, in the present invention, when an aldehyde or dialdehyde having an ether bond in the molecule is produced by oxidative dehydrogenation of an alcohol or glycol having an ether bond in the molecule, the surface area is 2.
This is a method for producing aldehydes, characterized in that the reaction is carried out using a silver catalyst supported on a carrier of less than m 2 /g. According to the method of the present invention, the desired aldehyde or dialdehyde having an ether bond in the molecule can be produced with good yield. The alcohol used as a starting material in the method of the present invention is RO-CH 2 CH 2 OH (R has 1 to 1 carbon atoms).
4) or HO-( CH2 ) o-
An alcohol or glycol with an ether bond represented by OH (n is an integer from 2 to 4), and the resulting aldehyde is RO-CH 2 CHO
(R represents an alkyl group having 1 to 4 carbon atoms) or
It is a dialdehyde represented by OHC-( CH2 ) o-2 -CHO (n is an integer from 2 to 6). for example,
If ethylene glycol monomethyl ether in which R of the raw alcohol is a methyl group is used, the resulting aldehyde will be methoxy-acetaldehyde, and if R is an isopropyl group, isopropoxy-acetaldehyde will be obtained. In addition, if the raw alcohol is ethylene glycol, the dialdehyde obtained is glyoxal, which is 1.4
-Butanediol yields 1,4-butanedial (1,2-diformylethane). The catalyst used in the method of the present invention is one in which silver is supported on a carrier having a specific surface area. A preferable carrier has a surface area of less than 2 m 2 /g, which is calculated by applying the BET adsorption isotherm to the adsorption isotherm to the carrier at the boiling point temperature of nitrogen gas. The type of carrier does not matter as long as it is inert to the reaction and has a surface area of less than 2 m 2 /g. That is, fused alumina, fused silica, silicon carbide, ceramic strips, etc. can be used as the carrier. Even if the surface area is greater than the above value, the desired aldehyde can be obtained, but the yield is low. The amount of silver supported on the carrier is often in the range of 1 to 30 wt%, particularly 5 to 10 wt%, but generally a lower amount of silver supported is preferable in terms of reducing catalyst cost. The catalyst can be prepared by a conventional method, for example,
This is done by dissolving a silver salt such as silver nitrate in water, immersing it in a carrier, drying it, firing it, and then subjecting it to a reduction treatment. In the method of the present invention, the reaction is carried out at high temperature in the gas phase, and the reaction temperature is often in the range of 300 to 600°C, particularly 350 to 450°C. The pressure during the reaction is near normal pressure, and the partial pressure of the raw alcohol is usually 0.5.
Below atmospheric pressure is often used. During the reaction, steam, nitrogen, carbon dioxide, or a mixed gas thereof is often supplied to the reaction system together with the raw alcohol in order to reduce the partial pressure of the raw alcohol to 0.5 atm or less. Oxygen is used as the oxidizing agent in the oxidative dehydrogenation reaction, and oxygen gas or air is often used as the oxygen source. The ratio of oxygen to raw alcohol is usually
An excess of oxygen over the stoichiometric amount is used. The excess amount of oxygen is often 1.5 to 3 times the stoichiometric amount. The contact time between the reactants and the catalyst bed is in the range of 0.1 to 3 seconds. The catalyst bed used to carry out the process of the invention is suitably a fixed bed, but a fluidized bed can also be used. The aldehyde or dialdehyde having an ether bond in the molecule obtained by the method of the present invention is
It is a useful compound that has a wide range of uses, including as a raw material for the synthesis of amino acids, fibers, and paper processing agents. The method of the present invention will be explained below with reference to Examples. Example 1 A stainless steel cylinder with an inner diameter of 12 m/m was used as a reaction tube, and 2 ml of catalyst with a particle size of 1 to 1.6 m/m was charged.
Filled. As feed material, ethylene glycol monomethyl ether 0.85g/Hr.Nitrogen gas 100
ml/min and air at 20 ml/min, which was preheated and vaporized before being fed to the catalyst bed heated to 400°C. The reactants flowing out of the reactor were collected in a trap cooled with dry ice. The weight and composition of the liquid collected in the trap were analyzed by gas chromatography to calculate the conversion rate of ethylene glycol monomethyl ether and the selectivity to methoxyacetaldehyde. The table shows the results obtained by changing the type of catalyst used.
Shown in 1.

【表】 実施例 2 実施例1と同様の反応器と触媒を用い、供給原
料をエチレングリコール0.40g/Hr.水0.60g/
Hr.窒素100ml/min、空気30ml/minにかえて反
応させた。 捕集物の重さを測定し、その組成を高速液体ク
ロマトグラフイーで分析し、エチレングリコール
の転化率およびグリオキザールの選択率を算出し
た。結果を表−2に示す。
[Table] Example 2 Using the same reactor and catalyst as in Example 1, the feedstock was ethylene glycol 0.40g/Hr.water 0.60g/Hr.
The reaction was performed by changing the nitrogen flow to 100 ml/min and the air to 30 ml/min. The weight of the collected material was measured, its composition was analyzed by high performance liquid chromatography, and the ethylene glycol conversion rate and glyoxal selectivity were calculated. The results are shown in Table-2.

【表】【table】

【表】 実施例 3 実施例1と同様の装置に10wt%Ag/熔融アル
ミナ(0.07m2/g)触媒2mlを充填し、反応温度
を400℃で用いる原料アルコールをかえて反応さ
せた。結果を表−3に示す。
[Table] Example 3 The same apparatus as in Example 1 was filled with 2 ml of 10 wt% Ag/fused alumina (0.07 m 2 /g) catalyst, and the reaction was carried out at a reaction temperature of 400° C. by changing the raw material alcohol used. The results are shown in Table-3.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 一般式RO−CH2CH2OH(Rは炭素数1〜4
のアルキル基を示す)またはHO−(CH2o−OH
(nは2〜6の整数である)で表わされるアルコ
ールを酸化脱水素して、一般式RO−CH2CHO
(Rは前記に同じ)またはOHC−(CH2o-2
CHO、(nは前記に同じ)で表わされるアルデヒ
ドを製造するに際し、表面積が2m2/gに満たな
い担体に担持した銀触媒を用いることを特徴とす
るアルデヒドの製造方法。
1 General formula RO-CH 2 CH 2 OH (R has 1 to 4 carbon atoms
) or HO−(CH 2 ) o −OH
(n is an integer from 2 to 6) is oxidized and dehydrogenated to form the general formula RO-CH 2 CHO
(R is the same as above) or OHC-( CH2 ) o-2-
1. A method for producing an aldehyde, which comprises using a silver catalyst supported on a carrier having a surface area of less than 2 m 2 /g when producing an aldehyde represented by CHO (n is the same as above).
JP56086886A 1981-06-08 1981-06-08 Preparation of aldehyde Granted JPS57203024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086886A JPS57203024A (en) 1981-06-08 1981-06-08 Preparation of aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086886A JPS57203024A (en) 1981-06-08 1981-06-08 Preparation of aldehyde

Publications (2)

Publication Number Publication Date
JPS57203024A JPS57203024A (en) 1982-12-13
JPS634816B2 true JPS634816B2 (en) 1988-02-01

Family

ID=13899309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086886A Granted JPS57203024A (en) 1981-06-08 1981-06-08 Preparation of aldehyde

Country Status (1)

Country Link
JP (1) JPS57203024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388910U (en) * 1989-12-28 1991-09-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241122A (en) * 1990-06-13 1993-08-31 Union Camp Corporation Catalysts comprising group IB metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388910U (en) * 1989-12-28 1991-09-11

Also Published As

Publication number Publication date
JPS57203024A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
US3342858A (en) Preparation of alkoxy-alkanoic acids by the oxidation of alkoxy-alkanols
US4220803A (en) Catalytic dehydrogenation of ethanol for the production of acetaldehyde and acetic acid
US3972952A (en) Vapor-phase conversion of methanol and ethanol to higher linear primary alcohols by heterogeneous catalysis
EP1133463A1 (en) Aldol condensation
JPS6118528B2 (en)
JP2997039B2 (en) Selective monoepoxidation of styrene, styrene analogs and styrene derivatives to the corresponding oxides with molecular oxygen
JPS63255253A (en) Production of amines
US4874888A (en) Process for the preparation of a diester of oxalic acid
US4421938A (en) Preparation of aldehydes
JPH0853438A (en) Production of trioxane
US4482753A (en) Catalyst for use in the hydrogenolysis of methyl glycol formals
JPS634816B2 (en)
USRE29901E (en) Catalyst for producing unsaturated carboxylic acids
US5008408A (en) Preparation of 1,4-butanediol and tetrahydrofuran
EP0594858A1 (en) Process for producing 1,1-dichloro-2,2,2-trifluoroethane
US4599454A (en) Synthesis of ketones from alcohols
JP2004002395A (en) Method for producing 3-methyltetrahydrofuran
US4471141A (en) Preparation of aldehydes
GB1570890A (en) Process for producing tetrahydrofuran
US4605782A (en) Process for the preparation of an aldehyde
EP0108359B1 (en) Process for the preparation of a diester of oxalic acid
US4619947A (en) Chemical process
JP3820709B2 (en) Acetal or ketal manufacturing method
US2393532A (en) Catalytic oxidation of ketones
WO2000069557A1 (en) Catalysts for the preparation of fluorinated alcohols and process for the preparation of fluorinated alcohols