JPS6348028Y2 - - Google Patents

Info

Publication number
JPS6348028Y2
JPS6348028Y2 JP5619284U JP5619284U JPS6348028Y2 JP S6348028 Y2 JPS6348028 Y2 JP S6348028Y2 JP 5619284 U JP5619284 U JP 5619284U JP 5619284 U JP5619284 U JP 5619284U JP S6348028 Y2 JPS6348028 Y2 JP S6348028Y2
Authority
JP
Japan
Prior art keywords
contact
silver
nickel
weight
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5619284U
Other languages
Japanese (ja)
Other versions
JPS60168218U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5619284U priority Critical patent/JPS60168218U/en
Publication of JPS60168218U publication Critical patent/JPS60168218U/en
Application granted granted Critical
Publication of JPS6348028Y2 publication Critical patent/JPS6348028Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、耐消耗性および耐溶着性にすぐれた
電気接点に関するものである。 従来、電流値が中程度(数10〜数100A程度)
の電気機器、例えば電磁開閉器、配線用回路遮断
器などに使用されている電気接点には、酸化カド
ミウム5〜15重量%および銀95〜85重量%よりな
る酸化カドミウム−銀系接点あるいはニツケル10
〜20重量%および銀90〜80重量%よりなるニツケ
ル−銀系接点などが、いずれも同種のもの同士が
組合されて使用されている。 特に、前者の酸化カドミウム−銀系接点は、耐
溶着性の点で非常にすぐれているので従来から多
く用いられているが、酸化カドミウムは700℃付
近で熱分解するため銀も同時に飛散して消耗が激
しく、そのため絶縁劣化を起し易かつた。また、
カドミウム化合物は、有害なカドミウムの化合物
であるため、製造上および公害防止の観点から、
それを用いない電気接点の開発が望まれている。 また、後者のニツケル−銀系接点は、ニツケル
自身の加工性が良好なので、ニツケルの割合を増
加させても加工性が損われず、接点性能の点でも
比較的接触抵抗が低くて安定であり、耐消耗性に
もすぐれているので、やはり実用上多く使用され
ている。しかしながら、この電気接点は前者の電
気接点と比較して耐溶着性に劣り、特に初期溶着
を起し易いという欠点がみられる。 このように、従来の電気接点は、開閉接点とし
ての固定接点と可動接点とがいずれも同じ接点材
料から構成されていたので、耐溶着性が良いと耐
消耗性が劣り、逆に耐消耗性が良いと耐溶着性が
悪いなどの問題がみられた。 そこで、本考案者は、耐消耗性および耐溶着性
のいずれの点をも満足させる電気接点を求めて
種々検討の結果、前記ニツケル−銀系接点を開閉
接点の一方の接点とし、他方を銅−銀系の接点と
することにより、かかる課題が効果的に解決し得
ることを先に見出した(実開昭60−155118号公報
参照)。 本考案者は、かかる構成の電気接点について更
に検討した結果、一方のニツケル−銀系接点のニ
ツケル成分の一部を更に炭化タングステンまたは
タングステン・チタン複炭化物(炭化タングステ
ンと炭化チタンとが固溶した炭化物で、工業的に
はそれらの50:50および70:30の割合の固溶物が
用いられている)で置換することにより、電気接
点に求められている耐消耗性および耐溶着性の一
層の向上を達成し得ることを見出した。 従つて、本考案は電気接点に係り、この電気接
点は、ニツケル10〜60重量%、炭化タングステン
またはタングステン・チタン複炭化物1〜10重量
%および残部が銀よりなる変性ニツケル−銀系接
点と銅3〜20重量%および銀97〜80重量%よりな
る銅−銀系接点とを開閉接点としてなる。 開閉接点の一方の接点となる変性ニツケル−銀
系接点は、従来から行われている如く、ニツケル
と銀とが殆んど固溶しないため、粉末冶金法で製
造される。ニツケルは、カーボニルニツケル粉、
銀メツキカーボニルニツケル粉、銀−ニツケル共
沈粉などの形で、全体の10〜60重量%、好ましく
は27〜48重量%の割合で用いられるが、これ以下
の混合割合では耐消耗性が十分ではなく、逆にこ
れ以上の割合で用いられると接触抵抗が非常に不
安定となる。なお、ニツケルとして共沈粉などが
用いられた場合には、共沈粉中の実際のニツケル
含有量がその算出基準となる。 炭化タングステンまたはタングステン・チタン
複炭化物は、1〜10重量%、好ましくは2〜3重
量%の割合で用いられるが、これ以下の混合割合
では相手材への移動防止効果が少なく、一方これ
以上の割合で用いられると接触抵抗が不安定とな
り、またそれの製造の際の焼結性が阻害されるよ
うになる。なお、残部の銀は、好ましくは50〜70
重量%の割合で用いられる。 開閉接点の他方の接点となる銅−銀系接点は、
一般的な溶解法により製造される。銅は、全体の
3〜20重量%、好ましくは7.5〜10重量%の割合
で用いられるが、これ以下の混合割合では相手側
接点となる変性ニツケル−銀系接点との耐溶着性
を高めるのに十分ではなく、逆にこれ以上の割合
で用いられると接触抵抗が高くなり、銅の酸化の
影響がみられるようになる。 このような電気接点を設けた開閉器の一態様
が、図面の第1図に平面図として、また第2図に
正面図として示されている。即ち、ネジ1,1′,
1″,1で固定された黄銅製固定接触子2,
2′には、固定側接点として好ましくは変性ニツ
ケル−銀系接点3,3′が取付けられ、また黄銅
製可動接触子4には、可動側接点として好ましく
は銅−銀系接点5,5′が取付けられている。 本考案に係る電気接点においては、変性ニツケ
ル−銀系接点と銅−銀系接点とを、例えばこのよ
うにして、開閉接点として用いているが、その理
由は次の如くである。 即ち、変性ニツケル−銀系接点において、ニツ
ケルの混合割合を増すと、接点表面は非常に安定
で凹凸が少なく、アークの遮断性が良く、また耐
消耗性も良好であるという特性が発揮され、ニツ
ケルが高濃度になつたため電気抵抗が大きくなつ
て表面の温度上昇が激しくなり、耐溶着性が悪く
なるという欠点は、接点材料の一成分として炭化
タングステンまたはタングステン・チタン複炭化
物を更に用いて相手材への移転を防ぎ、また相手
側接点に銅−銀系接点を用いることにより電気抵
抗を低くしかつ異種材料で形成させることによ
り、相手との溶着のし易さを改善し、これらの相
乗効果により、従来の電気接点よりも耐消耗性お
よび耐溶着性の点で非常にすぐれた電気接点を形
成させることができたのである。 本考案に係る電気接点は、主として電流値が中
程度の電気機器に用いられる。これは、それの開
閉時の発熱との関係からであり、低電流値の場合
には発熱により形成される銅の酸化被膜が接触抵
抗を大きくする傾向があり、一方大電流値の場合
には必要に応じてタングステンなどを更に添加し
ないと十分な耐熱性を得ることができない。 次に、実施例について本考案の効果を説明す
る。 実施例 1 平均粒径数μのニツケル粉末、炭化タングステ
ン粉末および銀粉末を種々の割合(重量%)で混
合し、所定の形状に粉末成形した後、真空または
水素雰囲気中で焼結した。これの密度を更に向上
させるため、再圧縮成形し、これから電気接点性
能試験用試料として、7.5mm角の正方形または直
形7mmの円形の板(厚さ1.5mm)にそれぞれ加工
し、黄銅台金上に銀ロー付けした。 一方、銅と銀とを種々の割合(重量%)で用
い、溶解法によつて合金化し、これをプレスなど
の加工手段によつて、上記と同一形状および寸法
の電気接点性能試験用試料に加工し、黄銅台金上
に銀ロー付けした。 これらの試料を用い、変性ニツケル−銀系接点
を固定側接点とし、銅−銀系接点を可動側接点と
して、それぞれ消耗特性試験および溶着特性試験
を次のようにして行なつた。 消耗特性試験: いずれの接点にも上記正方形のものを用い、
135A型電磁開閉器について、JIS C−8325のAC
3級1号に準じて(交流電圧200V、閉路電流
480A、遮断電流80A、開閉頻度1200回/時間)、
10万回の開閉試験を行ない、両接点6個づつにお
ける全消耗量を測定した。 溶着特性試験: いずれの接点にも上記円形のものを用い、これ
に交流電圧120V、電流1200Aで2サイクル通電
し、その溶着力をバネ秤で測定し、各試料につい
ての10回の測定値の平均値を測定した。 以上の各試験における測定結果は、次の表1に
示される。なお、No.14〜15は、同種の接点材料が
用いられた比較例である。 (No.14) Ag87%−CdO13%同士 (No.15) Ag80%−Ni 20%同士
The present invention relates to an electrical contact with excellent wear resistance and welding resistance. Conventionally, the current value is medium (about several 10s to several 100A)
Electrical contacts used in electrical equipment such as electromagnetic switches and wiring circuit breakers include cadmium oxide-silver contacts consisting of 5 to 15% by weight of cadmium oxide and 95 to 85% by weight of silver, or nickel 10.
Nickel-silver contacts made of ~20% by weight and 90-80% by weight of silver are used in combination with similar types. In particular, the former type of cadmium oxide-silver contacts has been widely used because of its excellent welding resistance, but since cadmium oxide thermally decomposes at around 700°C, silver is also scattered at the same time. It was subject to severe wear and tear, and was therefore prone to insulation deterioration. Also,
Cadmium compounds are harmful cadmium compounds, so from the viewpoint of manufacturing and pollution prevention,
It is desired to develop electrical contacts that do not use this. In addition, the latter type of nickel-silver contact has good workability due to the nickel itself, so even if the proportion of nickel is increased, the workability is not impaired, and in terms of contact performance, the contact resistance is relatively low and stable. It also has excellent wear resistance, so it is often used in practical applications. However, this electrical contact has a disadvantage in that it is inferior in welding resistance compared to the former electrical contact, and is particularly susceptible to initial welding. In this way, in conventional electrical contacts, both the fixed contact and the movable contact are made of the same contact material, so if the welding resistance is good, the abrasion resistance is poor; Problems such as poor welding resistance were observed when the properties were good. Therefore, after various studies in search of an electrical contact that satisfies both wear resistance and welding resistance, the inventor of the present invention decided to use the nickel-silver contact as one of the switching contacts, and make the other contact with copper. - We have previously discovered that this problem can be effectively solved by using a silver-based contact (see Japanese Utility Model Application Publication No. 155118/1983). As a result of further study on electrical contacts with such a configuration, the inventor of the present invention found that a part of the nickel component of one nickel-silver contact was further replaced with tungsten carbide or tungsten-titanium double carbide (tungsten carbide and titanium carbide in solid solution). By replacing carbides (industrially they are used in solid solutions in the ratios of 50:50 and 70:30), the added resistance to wear and welding required for electrical contacts can be achieved. We have found that it is possible to achieve improvements in Therefore, the present invention relates to an electrical contact, which comprises a modified nickel-silver contact consisting of 10 to 60% by weight of nickel, 1 to 10% by weight of tungsten carbide or tungsten-titanium double carbide, and the balance silver, and copper. It serves as an opening/closing contact with a copper-silver type contact consisting of 3 to 20% by weight and 97 to 80% by weight of silver. The modified nickel-silver contact, which serves as one of the opening/closing contacts, is manufactured by powder metallurgy, as has been conventionally done, since nickel and silver hardly form a solid solution. Nickel is carbonyl nickel powder,
It is used in the form of silver-plated carbonyl nickel powder, silver-nickel co-precipitated powder, etc. in a proportion of 10 to 60% by weight, preferably 27 to 48% by weight of the total, but if the mixing proportion is less than this, it has sufficient wear resistance. On the contrary, if it is used at a ratio higher than this, the contact resistance becomes extremely unstable. In addition, when coprecipitated powder or the like is used as nickel, the actual nickel content in the coprecipitated powder becomes the calculation standard. Tungsten carbide or tungsten/titanium double carbide is used in a proportion of 1 to 10% by weight, preferably 2 to 3% by weight, but if the mixing proportion is less than this, the effect of preventing migration to the mating material will be small; If used in such a high proportion, the contact resistance becomes unstable and the sinterability during production is inhibited. In addition, the remaining silver is preferably 50 to 70
It is used in proportions of % by weight. The copper-silver contact, which is the other contact of the opening/closing contact, is
Manufactured using a general melting method. Copper is used in a proportion of 3 to 20% by weight, preferably 7.5 to 10% by weight of the total weight, but if the proportion is less than this, it will increase the welding resistance with the modified nickel-silver type contact that will be the mating contact. On the other hand, if it is used in a proportion higher than this, the contact resistance will increase and the effects of copper oxidation will be seen. One embodiment of a switch provided with such electrical contacts is shown in a plan view in FIG. 1 and in a front view in FIG. 2 of the drawings. That is, screws 1, 1',
Brass fixed contact 2 fixed at 1″,1,
2' is preferably equipped with modified nickel-silver contacts 3, 3' as fixed contacts, and the brass movable contact 4 is preferably equipped with copper-silver contacts 5, 5' as movable contacts. is installed. In the electrical contact according to the present invention, a modified nickel-silver type contact and a copper-silver type contact are used as opening/closing contacts, for example, as described above, and the reason is as follows. In other words, in a modified nickel-silver contact, when the mixing ratio of nickel is increased, the contact surface is very stable and has few irregularities, has good arc blocking properties, and has good wear resistance. Due to the high concentration of nickel, the electric resistance increases, the temperature rises rapidly on the surface, and the welding resistance worsens. By preventing transfer to the material, and by using a copper-silver contact for the mating contact, the electrical resistance is lowered, and by forming the contact with a different material, the ease of welding with the mating material is improved, and these synergistic effects are achieved. As a result, it was possible to form electrical contacts with much better wear resistance and welding resistance than conventional electrical contacts. The electrical contact according to the present invention is mainly used in electrical equipment with a medium current value. This is due to the relationship with the heat generated during opening and closing.At low current values, the copper oxide film formed due to heat generation tends to increase the contact resistance, while at high current values, the contact resistance tends to increase. Sufficient heat resistance cannot be obtained unless tungsten or the like is further added as necessary. Next, the effects of the present invention will be explained with reference to Examples. Example 1 Nickel powder, tungsten carbide powder, and silver powder with an average particle size of several microns were mixed in various proportions (wt%), powder-molded into a predetermined shape, and then sintered in vacuum or in a hydrogen atmosphere. In order to further improve the density, it was recompression molded and then processed into 7.5 mm square or straight 7 mm circular plates (1.5 mm thick) as samples for electrical contact performance tests. Silver soldered on top. On the other hand, copper and silver are used in various proportions (wt%) and alloyed by a melting method, and this is processed into electrical contact performance test samples having the same shape and dimensions as above by processing means such as pressing. It was processed and silver brazed onto a brass base metal. Using these samples, a wear characteristic test and a welding characteristic test were carried out as follows, using a modified nickel-silver contact as a fixed contact and a copper-silver contact as a movable contact. Wear characteristic test: Use the above square contacts for each contact,
Regarding 135A type electromagnetic switch, JIS C-8325 AC
According to Class 3 No. 1 (AC voltage 200V, closed circuit current
480A, breaking current 80A, switching frequency 1200 times/hour),
A 100,000-time opening/closing test was conducted, and the total amount of wear and tear on each of the six contacts was measured. Welding characteristic test: Use the circular contacts mentioned above for each contact, apply electricity to it for two cycles at an AC voltage of 120V and a current of 1200A, measure the welding force with a spring balance, and calculate the 10 measurements for each sample. The average value was determined. The measurement results in each of the above tests are shown in Table 1 below. Note that Nos. 14 and 15 are comparative examples in which the same type of contact material was used. (No.14) Ag87%-CdO13% (No.15) Ag80%-Ni 20%

【表】【table】

【表】 実施例 2 実施例1において、固定側接点試料としてニツ
ケル−タングステン・チタン複炭化物(WC50:
TiC50の固溶炭化物)−銀焼結板が用いられ、同
様に消耗特性試験および溶着特性試験が行われ
た。得られた結果は、次の表2に示される。
[Table] Example 2 In Example 1, nickel-tungsten-titanium double carbide (WC50:
A TiC50 solid solution carbide)-silver sintered plate was used, and wear characteristic tests and welding characteristic tests were similarly conducted. The results obtained are shown in Table 2 below.

【表】 比較例 実施例1において、固定側接点試料にニツケル
−銀焼結板が用いられ、同様に消耗特性試験およ
び溶着特性試験が行われた。得られた結果は、次
の表3に示される。
[Table] Comparative Example In Example 1, a nickel-silver sintered plate was used as the fixed side contact sample, and a wear characteristic test and a welding characteristic test were similarly conducted. The results obtained are shown in Table 3 below.

【表】 以上の結果から、次のようなことがいえる。 (1) 本考案に係る電気接点の耐消耗性は、従来用
いられていた同種接点よりなる電気接点のそれ
と比較して、同等乃至それ以上に良好であり、
例えばニツケル−炭化タングステン−銀系接点
の場合には、特にニツケル27〜48重量%、炭化
タングステン2〜3重量%および銀50〜70重量
%の変性ニツケル−銀系接点および銅7.5〜10
重量%の銅−銀系接点において、耐消耗性が著
しくすぐれていることが分る。 (2) 耐溶着性に関しても、従来から耐溶着性が良
いといわれている酸化カドミウム.銀系接点と
比較しても、本考案の電気接点は遜色がなく、
耐消耗性の場合と同じ混合割合の変性ニツケル
−銀系接点および銅7.5〜10重量%の銅−銀系
接点は特にすぐれた性質を示している。 (3) 本考案者が先に提案した電気接点、例えば固
定側接点にニツケル−銀系接点を用い、また可
動側接点に銅−銀系接点を用いた場合と比較し
て、固定側接点材料のニツケルの一部を炭化タ
ングステンまたはタングステン・チタン複炭化
物で置換することにより、明らかな耐消耗性お
よび耐溶着性の改善がみられる。 この原因について考察すると、炭化タングステ
ンまたはタングステン・チタン複炭化物の添加に
よる相手材への移転が防止されることが考えられ
る。一般に、相手材への移転が起ると、この例で
はニツケル−銀系接点部が消耗すると共に、その
表面の凹凸が大きくなつてゆく現象が生じ、接点
の寿命を低下させるが、本考案に係る接点材料で
は、この移転が有効に防止され、また耐溶着性を
向上させる。 これは、炭化タングステンまたはタングステ
ン・チタン複炭化物が高硬度であり、熱的安定性
も大きいため、銅、銀などの相手材金属材料との
濡れ性が悪いため、移転し難いのである。つま
り、ニツケル−銀系へこれらの成分を分散させる
と、耐熱性を向上させると共に、ニツケルの凝集
を防止しながら分散性を良好とし、ニツケル−銀
系地を強化させる働きをなす。このようにして、
この3成分系接点材料の相手材への移転が防止さ
れ、それにつれて接点表面に凹凸が形成されるの
も防止される。
[Table] From the above results, the following can be said. (1) The wear resistance of the electrical contact according to the present invention is equivalent to or better than that of electrical contacts made of conventionally used contacts of the same type;
For example, in the case of nickel-tungsten carbide-silver based contacts, in particular modified nickel-silver based contacts with 27-48% by weight of nickel, 2-3% by weight of tungsten carbide and 50-70% by weight of silver and 7.5-10% by weight of copper.
It can be seen that the abrasion resistance of the copper-silver based contacts is significantly superior. (2) Cadmium oxide has traditionally been said to have good welding resistance. Even compared to silver-based contacts, the electrical contacts of this invention are comparable.
Modified nickel-silver contacts with the same mixing proportions as for wear resistance and copper-silver contacts with 7.5 to 10% copper by weight show particularly good properties. (3) Compared to the electrical contacts previously proposed by the present inventor, for example, using a nickel-silver based contact for the fixed side contact and a copper-silver based contact for the movable side contact, the fixed side contact material is By replacing a portion of the nickel with tungsten carbide or tungsten-titanium double carbide, a clear improvement in wear resistance and welding resistance can be seen. Considering the cause of this, it is thought that the addition of tungsten carbide or tungsten/titanium double carbide prevents the transfer to the mating material. Generally, when transfer to the mating material occurs, in this example, the nickel-silver contact part wears out and the unevenness of its surface increases, reducing the lifespan of the contact. Such a contact material effectively prevents this transfer and also improves welding resistance. This is because tungsten carbide or tungsten-titanium double carbide has high hardness and high thermal stability, and has poor wettability with mating metal materials such as copper and silver, making it difficult to transfer. In other words, when these components are dispersed in the nickel-silver system, they improve the heat resistance, improve dispersibility while preventing nickel agglomeration, and serve to strengthen the nickel-silver base. In this way,
Transfer of the three-component contact material to the mating material is prevented, and as a result, formation of irregularities on the contact surface is also prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案に係る電気接点を設けた開閉
器の一態様の平面図であり、第2図はその正面図
である。 符号の説明、2……固定接触子、3……固定側
接点、4……可動接触子、5……可動側接点。
FIG. 1 is a plan view of one embodiment of a switch provided with electrical contacts according to the present invention, and FIG. 2 is a front view thereof. Explanation of symbols: 2... Fixed contact, 3... Fixed side contact, 4... Movable contact, 5... Movable side contact.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ニツケル10〜60重量%、炭化タングステンまた
はタングステン・チタン複炭化物1〜10重量%お
よび残部が銀よりなる変性ニツケル−銀系接点と
銅3〜20重量%および銀97〜80重量%よりなる銅
−銀系接点とを開閉接点としてなる電気接点。
Modified nickel consisting of 10 to 60% by weight of nickel, 1 to 10% by weight of tungsten carbide or tungsten-titanium double carbide, and the remainder silver - Silver-based contacts and copper consisting of 3 to 20% by weight of copper and 97 to 80% by weight of silver. An electrical contact that functions as an opening/closing contact with a silver-based contact.
JP5619284U 1984-04-17 1984-04-17 electrical contacts Granted JPS60168218U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5619284U JPS60168218U (en) 1984-04-17 1984-04-17 electrical contacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5619284U JPS60168218U (en) 1984-04-17 1984-04-17 electrical contacts

Publications (2)

Publication Number Publication Date
JPS60168218U JPS60168218U (en) 1985-11-08
JPS6348028Y2 true JPS6348028Y2 (en) 1988-12-12

Family

ID=30579554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5619284U Granted JPS60168218U (en) 1984-04-17 1984-04-17 electrical contacts

Country Status (1)

Country Link
JP (1) JPS60168218U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274046B2 (en) * 2008-02-21 2013-08-28 三洋電機株式会社 Power supply for vehicle

Also Published As

Publication number Publication date
JPS60168218U (en) 1985-11-08

Similar Documents

Publication Publication Date Title
US4018599A (en) Electrical contacts of dispersion strengthened gold
EP0083200B1 (en) Electrode composition for vacuum switch
US2470034A (en) Electric contact formed of a ruthenium composition
US2730594A (en) Electric contact
JPS6348028Y2 (en)
Stevens Powder-metallurgy solutions to electrical-contact problems
CA1066926A (en) Method of preparation of dispersion strengthened silver electrical contacts
CA1219024A (en) Vacuum interrupter contact material
GB2024257A (en) Contact for vacuum interrupter
JPH0151530B2 (en)
US3843856A (en) Contact for a vacuum switch of single phase alloy
US3225169A (en) Silver-refractory metal electrical contact having refractory metal carbide in the marginal layer of its active contact face
Lindmayer et al. The effect of unsymmetrical material combination on the contact and switching behavior
JPS5914218A (en) Contact material for vacuum breaker
US4695688A (en) Electrical contact construction
JPS6196621A (en) Manufacture of vacuum breaker contactor
JPH0216376B2 (en)
KR100531217B1 (en) Compound metal for electric contact
EP0440340A2 (en) Electrical contact materials and method of manufacturing the same
JPS6248740B2 (en)
JPS6097517A (en) Contact material
JPH0119606B2 (en)
JPS5854179B2 (en) electrical contact materials
JPS58157015A (en) Vacuum switch
JPH0118975B2 (en)