JPS6347984A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6347984A
JPS6347984A JP61193411A JP19341186A JPS6347984A JP S6347984 A JPS6347984 A JP S6347984A JP 61193411 A JP61193411 A JP 61193411A JP 19341186 A JP19341186 A JP 19341186A JP S6347984 A JPS6347984 A JP S6347984A
Authority
JP
Japan
Prior art keywords
crystal
sic
layer
added
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61193411A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugii
寿博 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61193411A priority Critical patent/JPS6347984A/en
Publication of JPS6347984A publication Critical patent/JPS6347984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To easily obtain a field effect transistor or a hot electron transistor which operates at a high speed in simple steps by forming a crystal made of SiC in a hetero junction on an Si crystal, and adding impurity atoms which becomes doners only to the SiC crystal. CONSTITUTION:A crystal 2 made of silicon carbide is formed in a hetero junction on a silicon crystal 1, and impurity atoms which becomes doners are added only to the crystal 2. For example, SiH4 and C3H8 are used as reaction gases on the Si substrate 1 and H2 is used as carrier gas, the layer 2 of SiC is formed by a vapor epitaxial growing method at 1000 deg.C of reaction temperature 100nm thick, nitrogen atoms are then ion implanted to the layer 2. Further, an aluminum gate electrode 4 is formed in a Schottky junction state on the layer 2. Furthermore, arsenic ions are implanted to the source, drain regions, an Ni metal electrode is formed by an alloying method thereon, and source and drain electrodes 3, 5 are formed in an ohmic junction state.

Description

【発明の詳細な説明】 〔概要〕 シリコン(Si)結晶と、これよりエネルギーバンドギ
ャップの大きい炭化珪素(SiC)結晶をヘテロ接合に
形成した構造の半導体装置であって、このSiCの結晶
層にのみ、ドナーとなる不純物原子が添加され、Si結
晶とSiC結晶のエネルギーバンドギャップの相違によ
りSiの結晶とSiCの結晶界面で、Si結晶側に発生
するエネルギーバンドギャップの窪みに蓄積された電子
を利用した電界効果型トランジスタである。
[Detailed Description of the Invention] [Summary] A semiconductor device having a structure in which a silicon (Si) crystal and a silicon carbide (SiC) crystal having a larger energy band gap are formed in a heterojunction, and the SiC crystal layer has a However, impurity atoms that serve as donors are added, and due to the difference in the energy band gap between the Si crystal and SiC crystal, electrons accumulated in the energy band gap depression generated on the Si crystal side at the interface between the Si crystal and the SiC crystal are This is a field-effect transistor used.

或いは、SiC結晶に添加した場合はドナーとなるが、
Si結晶に添加した場合はドナーとは成らない不純物原
子が、前記SiC結晶層に添加され、前記Si結晶には
予め、アクセプタとなる不純物原子が添加され、P−N
接合を設けたバイポーラ型のホットエレクトロントラン
ジスタである。
Alternatively, when added to SiC crystal, it becomes a donor, but
Impurity atoms that do not become donors when added to a Si crystal are added to the SiC crystal layer, and impurity atoms that become acceptors are added to the Si crystal in advance to form P-N.
This is a bipolar hot electron transistor with a junction.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に係り、特にSi結晶と、該Si結
晶よりエネルギーバンドギャップの大きいSiC結晶を
ヘテロ接合させて製造した半導体装置に関する。
The present invention relates to a semiconductor device, and more particularly to a semiconductor device manufactured by forming a heterojunction between a Si crystal and an SiC crystal having a larger energy band gap than the Si crystal.

IC1或いはLSIを形成する半導体装置を構成するト
ランジスタは、益々、高速化、微細化を図ることが要求
されている。
Transistors constituting semiconductor devices forming IC1 or LSI are increasingly required to be faster and smaller.

〔従来の技術〕[Conventional technology]

ガリウム−砒素(GaAs)の結晶と、アルミニウムー
ガリウム−砒素(Al)GaAs)の結晶とをヘテロ接
合に形成し、このGaAsとAgG a A sの間の
エネルギーハンドギヤツブの相違を利用した、電界効果
型トランジスタの一種である高電子移動移動度トランジ
スタ(HEMT)や、或いはこのエネルギーバンドギャ
ップの相違を利用したトランジスタの一4ffiのホッ
トエレクトロントランジスタ(HET)は周知である。
A gallium-arsenic (GaAs) crystal and an aluminum-gallium-arsenic (Al)GaAs) crystal are formed into a heterojunction, and the difference in energy hand gear between GaAs and AgGaAs is utilized. A high electron mobility transistor (HEMT), which is a type of field effect transistor, or a hot electron transistor (HET), which is a type of transistor that utilizes this difference in energy band gap, is well known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような半導体装置はGaAsの結晶のよ
うな化合物半導体結晶に、八ΩGaAsの結晶のような
三元の化合物半導体結晶層を分子線エピタキシャル法等
を用いて形成されており、そのヘテロ接合を形成するの
に大規模な装置を必要としたり、或いは煩雑な作業を必
要とする等問題が多い。
By the way, such a semiconductor device is formed by using a molecular beam epitaxial method or the like to form a ternary compound semiconductor crystal layer such as an 8Ω GaAs crystal on a compound semiconductor crystal such as a GaAs crystal. There are many problems such as requiring large-scale equipment or complicated work to form the .

そこで本発明は、GaAs結晶よりも低価格で容易に得
やすく、かつ一種類の半導体元素より構成されるSiの
結晶の上に比較的、簡単な装置で単結晶層が気相エピタ
キシャル成長方法で形成されやすいSiCの結晶層をヘ
テロ接合に形成し、このSiとSiCのへテロ接合を用
いた電界効果型トランジスタ、或いはバイポーラ型トラ
ンジスタを得ようするものである。
Therefore, the present invention aims to form a single-crystal layer using a relatively simple device using a vapor phase epitaxial growth method on a Si crystal, which is cheaper and easier to obtain than a GaAs crystal and is composed of one type of semiconductor element. The purpose is to form a SiC crystal layer, which is susceptible to oxidation, into a heterojunction, and to obtain a field effect transistor or a bipolar transistor using this heterojunction of Si and SiC.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、Si結晶にSiCよりなる結晶
がヘテロ接合に形成され、該炭化珪素結晶にのみ、ドナ
ーとなる不純物原子、例えば窒素原子が添加されて形成
されている。
In the semiconductor device of the present invention, a crystal made of SiC is formed in a heterojunction with a Si crystal, and an impurity atom serving as a donor, for example, a nitrogen atom, is added only to the silicon carbide crystal.

或いは前記Si結晶にアクセプタとなる不純物原子が予
め添加された後、前記炭化珪素結晶に注入するとドナー
となる不純物原子が前記炭化珪素結晶に添加して形成さ
れている。
Alternatively, impurity atoms that become acceptors are added to the Si crystal in advance, and then impurity atoms that become donors when implanted into the silicon carbide crystal are added to the silicon carbide crystal.

〔作用〕[Effect]

本発明の半導体装置は、Si結晶にSiCよりなる結晶
がヘテロ接合として形成され、該SiC結晶にのみ、ド
ナーとなる不純物原子が添加され、このSiC結晶層の
上にゲート電極が、SiC結晶に対して金属を用いてシ
ョットキー接合で形成されている。
In the semiconductor device of the present invention, a crystal made of SiC is formed as a heterojunction in a Si crystal, impurity atoms serving as a donor are added only to the SiC crystal, and a gate electrode is formed on the SiC crystal layer on the SiC crystal. On the other hand, it is formed using metal and a Schottky junction.

またSiの結晶層に対してはソースおよびドレイン電極
を形成し、SiとSiCのへテロ接合面のSt側に、S
tとSiCのエネルギーバンドギャップの相違により、
エネルギーの不連続となることで、SiC結晶に注入さ
れてイオン化されたドナーにより発生した電子が蓄積さ
れる窪みが形成されている。
In addition, source and drain electrodes are formed for the Si crystal layer, and S
Due to the difference in energy band gap between t and SiC,
The energy discontinuity forms a depression in which electrons generated by ionized donors injected into the SiC crystal are accumulated.

そしてSi中の電子を、前記したイオン化したドナーで
、Si中に注入されると散乱源となるドナーと分離して
高速で注入された電子が5ij5を通過するような電界
効果型トランジスタが得られる。
Then, a field effect transistor is obtained in which the electrons in Si are separated from the donor which becomes a scattering source when injected into Si using the ionized donor described above, and the injected electrons pass through 5ij5 at high speed. .

またSiC結晶、Si結晶、SiC結晶が三層構造に形
成され、エミッタ、ベース、コレクタ領域が形成され、
このSiC結晶のみ、ドナーとなる窒素原子が添加され
、Si結晶にはアクセプタとなるボロン(B)原子が予
め添加され、エミッタ領域を形成するSiCNと、ベー
ス領域を形成するSi層の間のエネルギーバンドギャッ
プの相違によって形成される高ポテンシャルエネルギー
のホットエレクトロンを、ベース中に注入して高速でベ
ース領域を通過させるようにする。
In addition, SiC crystal, Si crystal, and SiC crystal are formed in a three-layer structure, and emitter, base, and collector regions are formed.
Only this SiC crystal is doped with nitrogen atoms to serve as donors, and the Si crystal is pre-doped with boron (B) atoms to serve as acceptors. Hot electrons with high potential energy formed by the difference in band gaps are injected into the base and are caused to pass through the base region at high speed.

〔実施例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の半導体装置の第1の実施例を示す断面
図で図示するように、Si基板1上にモノシラン(Si
Ha)ガスとプロパンガス(C3H)とを反応ガスとし
て用い、水素ガスをキャリアガスとして用い、反応温度
を1000℃とした気相エピタキシャル成長法によりS
iCの結晶層2が100nIrlの厚さに形成され、前
記したSi基板1上にSiCの結晶層2がへテロ構造に
形成された後、このSjCの結晶層2に窒素原子がイオ
ン注入されている。
FIG. 1 is a sectional view showing a first embodiment of the semiconductor device of the present invention. As shown in FIG.
Ha) gas and propane gas (C3H) as reaction gases, hydrogen gas as a carrier gas, and a reaction temperature of 1000°C by vapor phase epitaxial growth.
After the iC crystal layer 2 is formed to a thickness of 100 nIrl and the SiC crystal layer 2 is formed in a heterostructure on the Si substrate 1 described above, nitrogen atoms are ion-implanted into the SjC crystal layer 2. There is.

更にSiCの結晶層2上にアルミニウム(八Ω)金fE
IWが蒸着法、およびホトリソグラフィ法を用いて所定
のパターンに形成され、ゲート電極4がショットキィ接
合の状態で形成されている。
Furthermore, aluminum (8Ω) gold fE is applied on the SiC crystal layer 2.
IW is formed into a predetermined pattern using a vapor deposition method and a photolithography method, and the gate electrode 4 is formed in a Schottky junction state.

更にソース、及びドレイン領域に砒素イオンが注入され
、その上にNiの金属電極をアロイ法で形成してソース
電極3とドレイン電極5とが、オーミック接合の状態で
形成されている。
Further, arsenic ions are implanted into the source and drain regions, and a Ni metal electrode is formed thereon by an alloying method, so that the source electrode 3 and the drain electrode 5 are formed in an ohmic contact state.

このような半導体装置のエネルギーバンドギャップの状
態図を第2図に示す。
FIG. 2 shows a phase diagram of the energy band gap of such a semiconductor device.

図示するように、エネルギーバンドギャップの大きいS
iC結晶2とSiC結晶2よりエネルギーバンドギャッ
プの狭いSiの結晶1との間の結晶境界面6にはエネル
ギーバンド幅の不連続となる箇所が生じ、Si結晶1側
に於いて、Siの伝導帯Ecの底のエネルギー値が、フ
ェルミレベルEFより下の位置になり、この箇所に窪み
7が生じる。
As shown in the figure, S with a large energy bandgap
At the crystal boundary surface 6 between the iC crystal 2 and the Si crystal 1, which has a narrower energy bandgap than the SiC crystal 2, a discontinuous point in the energy band width occurs, and on the Si crystal 1 side, the Si conduction The energy value at the bottom of band Ec is below the Fermi level EF, and a depression 7 is generated at this location.

そしてイオン化によって発生した電子8が前記した窪み
7内に蓄積される。
Electrons 8 generated by ionization are accumulated in the depression 7 described above.

そしてこの窪み7内に蓄積された電子8は、イオン9と
分離され、電子のみ単独の状態となり、この電子が、不
純物原子が添加されていない為にこの電子が衝突するキ
ャリアが無いSt結晶層1内を高速で通過し、そのため
に高速で動作する電界効果型トランジスタが得られる。
The electrons 8 accumulated in the recess 7 are separated from the ions 9 and become a single electron, and the electrons are transferred to the St crystal layer, which has no carriers to collide with since no impurity atoms are added. 1 at a high speed, resulting in a field effect transistor that operates at high speed.

また本発明の半導体装置の第2の実施例を第3図に示す
Further, a second embodiment of the semiconductor device of the present invention is shown in FIG.

第3図は本発明の半導体装置の要部を示す断面図で、図
示するように予めボロン等のアクセプタとなる不純物原
子が添加されたSiの結晶基板11上には、前記した気
相エピタキシャル成長法によりSiCの結晶層12が形
成されている。
FIG. 3 is a cross-sectional view showing the main part of the semiconductor device of the present invention. A crystal layer 12 of SiC is formed.

このSiCの結晶層12内には、該SiC結晶層12内
に添加された時にはドナーとなるが、Si結晶11内に
添加された時にはドナー、およびアクセプタと+8 成らない窒素原子を107cI112の原子濃度でSi
C結晶12内にイオン注入されている。
In this SiC crystal layer 12, nitrogen atoms, which become donors when added to the SiC crystal layer 12, but which do not form a donor and an acceptor when added into the Si crystal 11, have an atomic concentration of 107cI112. DeSi
Ions are implanted into the C crystal 12.

するとこのSi結晶11とSiC結晶12とのへテロ接
合面13には、P−N接合面が、正確に判然と形成され
る。
Then, a P-N junction plane is formed accurately and clearly at the heterojunction plane 13 between the Si crystal 11 and the SiC crystal 12.

そしてSi結晶基板11を所定の厚さにエツチング等に
より薄層化し、その下側に窒素原子が添加されたSiC
の結晶層14を形成すれば、狭いエネルギーバンドギャ
ップのP型のSi結晶11を、両側より広いエネルギー
バンドギャップのN型のSiC結晶12、14で挟んだ
構造となる。
Then, the Si crystal substrate 11 is thinned to a predetermined thickness by etching or the like, and the underside of the Si crystal substrate 11 is made into a thin layer with nitrogen atoms added thereto.
If the crystal layer 14 is formed, a structure will be obtained in which a P-type Si crystal 11 with a narrow energy bandgap is sandwiched between N-type SiC crystals 12 and 14 with a wider energy bandgap on both sides.

そして結晶層12をエミッタ、結晶11をベース、結晶
層14をコレクタとすれば、このエネルギーバンドギャ
ップの広いSiCの結晶12に注入されたエミッタの電
子が、そのエネルギーバンドギャップの広いことで、高
いポテンシャルエネルギーでベース層11を通過し、高
速で動作するホットエレクトロントランジスタが得られ
る。
If the crystal layer 12 is used as an emitter, the crystal 11 is used as a base, and the crystal layer 14 is used as a collector, the emitter electrons injected into the SiC crystal 12 with a wide energy band gap will have a high Potential energy passes through the base layer 11, resulting in a hot electron transistor that operates at high speed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の半導体装置によれば、高速
で動作する電界効果型トランジスタ、或いはホソトレク
トロントランジスタが、簡単な工程で容易に得られる効
果がある。
As described above, the semiconductor device of the present invention has the advantage that a field effect transistor or phototrectron transistor that operates at high speed can be easily obtained through a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の第1の実施例の要部構造
を示す断面図、 第2図は第1の実施例の半導体装置のエネルギーバンド
構造を示す模式図、 第3図は本発明の第2の実施例の要部構造を示す断面図
である。 図に於いて、
FIG. 1 is a cross-sectional view showing the main structure of the first embodiment of the semiconductor device of the present invention, FIG. 2 is a schematic diagram showing the energy band structure of the semiconductor device of the first embodiment, and FIG. FIG. 7 is a cross-sectional view showing the main structure of a second embodiment of the invention. In the figure,

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン(Si)結晶(1)に炭化珪素(SiC
)よりなる結晶(2)がヘテロ接合に形成され、該炭化
珪素結晶(2)にのみ、ドナーとなる不純物原子が添加
されていることを特徴とする半導体装置。
(1) Silicon carbide (SiC) in silicon (Si) crystal (1)
) is formed in a heterojunction, and an impurity atom serving as a donor is added only to the silicon carbide crystal (2).
(2)前記シリコン結晶に予めアクセプタとなる不純物
原子が添加され、更に前記炭化珪素結晶(2)にドナー
となる不純物原子が添加されていることを特徴とする特
許請求の範囲第1項記載の半導体装置。
(2) Impurity atoms serving as acceptors are added to the silicon crystal in advance, and further impurity atoms serving as donors are added to the silicon carbide crystal (2). Semiconductor equipment.
JP61193411A 1986-08-18 1986-08-18 Semiconductor device Pending JPS6347984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193411A JPS6347984A (en) 1986-08-18 1986-08-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193411A JPS6347984A (en) 1986-08-18 1986-08-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6347984A true JPS6347984A (en) 1988-02-29

Family

ID=16307511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193411A Pending JPS6347984A (en) 1986-08-18 1986-08-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6347984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317054A (en) * 1996-09-09 1998-03-11 Nissan Motor Power MOSFET having a heterojunction
WO1999010919A1 (en) * 1997-08-27 1999-03-04 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, process for producing the same, and semiconductor element containing silicon carbide substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106154A (en) * 1982-12-10 1984-06-19 Hitachi Ltd Semiconductor device
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Manufacture of sic field effect transistor
JPS61150272A (en) * 1984-12-24 1986-07-08 Sharp Corp Manufacture of silicon carbide semiconductor element
JPS61150271A (en) * 1984-12-24 1986-07-08 Sharp Corp Manufacture of silicon carbide semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106154A (en) * 1982-12-10 1984-06-19 Hitachi Ltd Semiconductor device
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Manufacture of sic field effect transistor
JPS61150272A (en) * 1984-12-24 1986-07-08 Sharp Corp Manufacture of silicon carbide semiconductor element
JPS61150271A (en) * 1984-12-24 1986-07-08 Sharp Corp Manufacture of silicon carbide semiconductor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317054A (en) * 1996-09-09 1998-03-11 Nissan Motor Power MOSFET having a heterojunction
JPH1084113A (en) * 1996-09-09 1998-03-31 Nissan Motor Co Ltd Field-effect transistor
GB2317054B (en) * 1996-09-09 1998-10-14 Nissan Motor Power mosfet having hetero junction
WO1999010919A1 (en) * 1997-08-27 1999-03-04 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, process for producing the same, and semiconductor element containing silicon carbide substrate
US6270573B1 (en) 1997-08-27 2001-08-07 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate

Similar Documents

Publication Publication Date Title
US4966860A (en) Process for producing a SiC semiconductor device
KR100642191B1 (en) Hetero-junction field effect transistor and process of production of same
JP2000106371A (en) Fabrication of silicon carbide semiconductor device
JPH0353563A (en) Semiconductor device composed of heterojunction bipolar transistor and manufacturing method of the same
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
JPH04278545A (en) Semiconductor device and manufacture thereof
US5196358A (en) Method of manufacturing InP junction FETS and junction HEMTS using dual implantation and double nitride layers
KR930011474B1 (en) Semiconductor device and manufacturing method thereof
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
JPS6347984A (en) Semiconductor device
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4631104B2 (en) Manufacturing method of semiconductor device
JP2004516655A (en) Method of making self-aligned bipolar junction transistor in silicon carbide and device made thereby
JPH0511656B2 (en)
JPS60136380A (en) Semiconductor device
JPS59222966A (en) Semiconductor device
JP4249874B2 (en) Semiconductor device
JPH0556849B2 (en)
JPS5847867B2 (en) Hand tie souchi
JPS61241972A (en) Compound semiconductor device
JP2819673B2 (en) Field effect transistor
JPH06101450B2 (en) Method for manufacturing semiconductor device
JP2834172B2 (en) Field effect transistor
JP2566558B2 (en) Semiconductor device
JP2004260118A (en) Semiconductor device, its manufacturing method, and semiconductor device application system