JPS6347910B2 - - Google Patents

Info

Publication number
JPS6347910B2
JPS6347910B2 JP15630380A JP15630380A JPS6347910B2 JP S6347910 B2 JPS6347910 B2 JP S6347910B2 JP 15630380 A JP15630380 A JP 15630380A JP 15630380 A JP15630380 A JP 15630380A JP S6347910 B2 JPS6347910 B2 JP S6347910B2
Authority
JP
Japan
Prior art keywords
circuit
pressure
output
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15630380A
Other languages
Japanese (ja)
Other versions
JPS5779263A (en
Inventor
Makoto Ozaki
Tadashi Hatsutori
Kimiaki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP15630380A priority Critical patent/JPS5779263A/en
Publication of JPS5779263A publication Critical patent/JPS5779263A/en
Publication of JPS6347910B2 publication Critical patent/JPS6347910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の着火限界を検出する内燃機
関用着火限界検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition limit detection device for an internal combustion engine that detects the ignition limit of an internal combustion engine.

このような内燃機関の着火限界を検出する手段
があれば、空燃比制御、EGR制御、点火時期制
御等に有利である。
If there is a means for detecting the ignition limit of such an internal combustion engine, it is advantageous for air-fuel ratio control, EGR control, ignition timing control, etc.

今着火限界検出装置の必要性について空燃比制
御を例にとつて説明する。
The necessity of the ignition limit detection device will now be explained using air-fuel ratio control as an example.

第1図は内燃機関の燃焼室に供給される混合気
と排気ガス成分、燃料消費率の関係をNOX
HC、COについて表わすグラフである。
Figure 1 shows the relationship between the air-fuel mixture supplied to the combustion chamber of an internal combustion engine, exhaust gas components, and fuel consumption rate .
This is a graph representing HC and CO.

第1図の領域(A)の理想空燃比近傍(失火して
HCの増える直前の完全燃焼する理想的空燃比)
に内燃機関の混合気を制御できるならば、排気ガ
ス中の有害成分のCO及びHCは最低となり、
NOXは、一般に最もよく使われる理論空燃比近
傍に較べて減少しているので、排気ガス浄化上有
利となる。更に、燃料消費率も、この理想空燃比
近傍で最低となつており、経済的にも有利であ
る。
Near the ideal air-fuel ratio in region (A) of Figure 1 (misfire
Ideal air-fuel ratio for complete combustion just before HC increases)
If the air-fuel mixture of an internal combustion engine can be controlled, the harmful components CO and HC in exhaust gas will be at a minimum, and
Since NOx is reduced compared to the vicinity of the stoichiometric air-fuel ratio which is generally most used, it is advantageous in purifying exhaust gas. Furthermore, the fuel consumption rate is also lowest near this ideal air-fuel ratio, which is economically advantageous.

従つて排気ガス浄化上有利で、経済上有利な理
想空燃比近傍に混合気を制御したい訳であるが現
実には内燃機関の運転条件の変化・変動に対応し
て常に混合気を失火直前の理想空燃比に保つこと
は困難なので、確実に混合気に着火させるために
理想空燃比よりかなり濃い所で使用されている。
Therefore, it is desirable to control the air-fuel mixture to near the ideal air-fuel ratio, which is advantageous for exhaust gas purification and economically advantageous, but in reality, in response to changes and fluctuations in the operating conditions of the internal combustion engine, the air-fuel mixture is always adjusted to the point just before a misfire. It is difficult to maintain the ideal air-fuel ratio, so in order to ensure that the air-fuel mixture ignites, it is used at a much richer air-fuel ratio than the ideal air-fuel ratio.

この問題を解決するためには、失火の起こる直
前の理想空燃比を検出する手段が必要である。従
来ある混合気の空燃比を直接検出する手段として
は、酸化ジルコニア等の金属酸化物半導体を用い
た空燃比検出器がある。しかし酸化ジルコニア空
燃比検出器は、理論空燃比近傍(第1図の空燃比
14.5〜15.0)しか検出できず、理想空燃比を検出
することができない。
In order to solve this problem, a means is needed to detect the ideal air-fuel ratio immediately before a misfire occurs. As a conventional means for directly detecting the air-fuel ratio of an air-fuel mixture, there is an air-fuel ratio detector using a metal oxide semiconductor such as zirconia oxide. However, the zirconia oxidized air-fuel ratio detector detects the air-fuel ratio near the stoichiometric air-fuel ratio (the air-fuel ratio in Figure 1).
14.5 to 15.0), and the ideal air-fuel ratio cannot be detected.

そこで間接的に失火直前の理想空燃比を検出す
ることが必要である。理想空燃比は、前述の様に
失火直前の完全燃焼する空燃比なので、失火直前
の状態(部分燃焼)が検出される空燃比よりわず
か濃い所が理想空燃比として検出される。
Therefore, it is necessary to indirectly detect the ideal air-fuel ratio immediately before the misfire. As described above, the ideal air-fuel ratio is the air-fuel ratio at which complete combustion occurs immediately before a misfire, so a point slightly richer than the air-fuel ratio at which a state immediately before a misfire (partial combustion) is detected is detected as the ideal air-fuel ratio.

即ち、失火直前の状態(部分燃焼)を検出する
検出器・着火限界検出器で理想空燃比を検出でき
る。
That is, the ideal air-fuel ratio can be detected by a detector/ignition limit detector that detects the state immediately before misfire (partial combustion).

この空燃比の例で見られる様に着火限界装置は
有用である。
As seen in this air/fuel ratio example, an ignition limiter is useful.

第2図は同じ内燃機関の条件で、燃焼状態の異
なる気筒内圧力波形を示す。
FIG. 2 shows cylinder pressure waveforms in different combustion states under the same internal combustion engine conditions.

第2図において完全燃焼した時の燃焼圧力の最
高値P1maxは、失火直前の部分燃焼した時の燃
焼圧力の最高値P2maxより大きい。そこで各燃
焼時の燃焼圧力の最高値Pimaxを求めて最高値
Pimaxを所定の値と比較して部分燃焼か完全燃
焼かを判定することによつて検出することを目的
とする。
In FIG. 2, the maximum value P 1 max of combustion pressure when complete combustion occurs is greater than the maximum value P 2 max of combustion pressure when partial combustion occurs immediately before misfire. Therefore, find the maximum value Pimax of combustion pressure during each combustion and calculate the maximum value.
The purpose is to detect by comparing Pimax with a predetermined value and determining whether it is partial combustion or complete combustion.

第3図は内燃機関の運転状況より同じ完全燃焼
状態でもPimaxの値が異なる例を示す。
FIG. 3 shows an example in which the value of Pimax differs even in the same complete combustion state depending on the operating condition of the internal combustion engine.

第3図において高負荷の燃焼に合う様に所定の
値(K一定)を決めると、軽負荷では完全燃焼し
たにもかかわらずP2maxが所定の値(K)より小さ
いので、失火直前の部分燃焼と判断されてしま
う。この様な矛循を無くすために最大点火進角以
前(圧縮行程だけが行なわれている)の固定角度
(θA)の時の筒内圧力PiθAを初期条件として求
めて、このPiθAでPimaxを割つて、その比を所
定値α(一定)と比較すると、第3図に示す様に
負荷にかかわらず常に失火直前の部分燃焼か完全
燃焼かを一定水準で判定できる様になる。
In Figure 3, if a predetermined value (K constant) is determined to suit high-load combustion, P 2 max is smaller than the predetermined value (K) even though complete combustion occurs under light loads, so It is judged to be a partial combustion. In order to eliminate this kind of contradiction, the in-cylinder pressure PiθA at a fixed angle (θA) before the maximum ignition advance (only the compression stroke is being performed) is determined as an initial condition, and Pimax is divided by this PiθA. Then, by comparing this ratio with a predetermined value α (constant), it becomes possible to always determine whether partial combustion or complete combustion immediately before a misfire occurs at a constant level, regardless of the load, as shown in FIG.

本発明の目的は、各燃焼時の燃焼圧力の最高値
Pimaxを求めると同時に、最大点火進角以前の
固定進角度θAの時の筒内圧力PiθAを求めて、こ
の両者の比(Pimax/PiθA)が所定値α以上で
あるか以下であるかによつて、完全燃焼か失火直
前の部分燃焼かを判定することによつて負荷等の
内燃機関の運転状況によらず常に着火限界を検出
する点にある。
The purpose of the present invention is to obtain the maximum combustion pressure during each combustion.
At the same time as determining Pimax, determine the cylinder pressure PiθA at a fixed advance angle θA before the maximum ignition advance angle, and determine whether the ratio of the two (Pimax/PiθA) is greater than or equal to a predetermined value α. The point is that the ignition limit is always detected regardless of the operating conditions of the internal combustion engine such as the load by determining whether it is complete combustion or partial combustion immediately before misfire.

以下本発明による内燃機関用着火限界検出装置
を実施例に従つて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The ignition limit detection device for an internal combustion engine according to the present invention will be described in detail below according to embodiments.

第4図は、本発明のブロツク図を示すものであ
り、1は4サイクル内燃機関の各々の気筒の全行
程中の2つの角度を検出する角度位置検出装置、
2は角度位置検出装置1の角度位置検出信号によ
り固定角度θAを演算する固定角度演算回路、3
は完全燃焼かあるいは失火直前の部分燃焼かを検
出する着火検出回路、4は内燃機関の気筒内の圧
力を検出する圧力検出器である。
FIG. 4 shows a block diagram of the present invention, in which numeral 1 indicates an angular position detection device for detecting two angles during the entire stroke of each cylinder of a four-stroke internal combustion engine;
2 is a fixed angle calculation circuit that calculates a fixed angle θA based on the angular position detection signal of the angular position detection device 1;
4 is an ignition detection circuit that detects complete combustion or partial combustion immediately before misfire, and 4 is a pressure detector that detects the pressure inside the cylinder of the internal combustion engine.

次に本発明による内燃機関用着火限界検出装置
の詳細回路を第5図〜第9図において説明する。
Next, detailed circuits of the ignition limit detection device for an internal combustion engine according to the present invention will be explained with reference to FIGS. 5 to 9.

第5図は固定角度演算回路の詳細回路を示す。
抵抗器220,221、コンデンサ222により
基準電位Vrefが作られ、以下に示す演算増巾器
28,213にそれぞれ抵抗器27,212を介
して供給される。
FIG. 5 shows the detailed circuit of the fixed angle calculation circuit.
A reference potential Vref is created by resistors 220, 221 and a capacitor 222, and is supplied to operational amplifiers 28, 213, which will be described below, via resistors 27, 212, respectively.

そして、固定角度演算回路2は、さらにNOT
回路215、充電制御回路21、放電制御回路2
2、“1”レベルの信号で導通するアナログスイ
ツチ23,24,29、充電用抵抗器25、放電
用抵抗器26、基準電位Vrefに接続されている
抵抗器27,212、入力抵抗器211、演算増
巾器28,213、コンデンサ210、AND回
路214で構成されている。そして抵抗器25,
26,27、コンデンサ210、および演算増巾
器28は、ミラー積分回路を構成しており、入力
電圧が基準電圧Vrefより低い時コンデンサ21
0が充電され、Vrefより高い時コンデンサ21
0が放電される。又、抵抗器211,212、演
算増巾器213は比較回路を構成している。また
上記アナログスイツチ23,24,29は電界効
果トランジスタで構成すると好適である。尚10
はキースイツチ、11は電源をなすバツテリ、
KSはキースイツチ10を介して電源11に接続
される電源端子である。
Then, the fixed angle calculation circuit 2 further performs NOT
Circuit 215, charging control circuit 21, discharge control circuit 2
2. Analog switches 23, 24, 29 that are turned on by a "1" level signal, charging resistor 25, discharging resistor 26, resistors 27, 212 connected to reference potential Vref, input resistor 211, It is composed of operational amplifiers 28 and 213, a capacitor 210, and an AND circuit 214. and resistor 25,
26, 27, a capacitor 210, and an operational amplifier 28 constitute a Miller integration circuit, and when the input voltage is lower than the reference voltage Vref, the capacitor 21
When 0 is charged and higher than Vref, capacitor 21
0 is discharged. Further, the resistors 211 and 212 and the operational amplifier 213 constitute a comparison circuit. Further, it is preferable that the analog switches 23, 24, and 29 be constructed of field effect transistors. Sho 10
is a key switch, 11 is a battery that provides power,
KS is a power supply terminal connected to a power supply 11 via a key switch 10.

第6図は固定角度演算回路2の充電制御回路2
1、放電制御回路22および角度位置検出回路1
の詳細を示す。第7図は本発明装置の動作を説明
するタイムチヤートを示す。充電制御回路21は
抵抗器211,212で構成され、その出力端子
Aには抵抗分割により基準電位Vrefより低い一
定電圧が取り出されるようになつている。
Figure 6 shows the charging control circuit 2 of the fixed angle calculation circuit 2.
1. Discharge control circuit 22 and angular position detection circuit 1
Show details. FIG. 7 shows a time chart explaining the operation of the apparatus of the present invention. The charging control circuit 21 is composed of resistors 211 and 212, and a constant voltage lower than the reference potential Vref is taken out from the output terminal A by resistance division.

また、放電制御回路22は抵抗器221,22
2で構成され、その出力端子Bには抵抗分割によ
り基準電位Vrefより常に高い一定電位が取り出
されるようにしてある。そして、固定角度演算回
路2によりクランク角度で一定角を示す固定角度
θAを求める。
The discharge control circuit 22 also includes resistors 221 and 22.
2, and a constant potential that is always higher than the reference potential Vref is taken out to the output terminal B by resistance division. Then, the fixed angle calculation circuit 2 determines a fixed angle θA that is a constant angle based on the crank angle.

次に、角度位置検出器1において、110は外
周に1個の突起部111を有するロータで内燃機
関の図示せぬデイストリビユータ軸に固定してあ
つて、このデイストリビユータ軸と共に回転する
ものである。12,13はロータ110の円周方
向に於いて所定角度ずらせて配設した第1、第2
の電磁ピツクアツプでロータ110の突起と対向
させてある。16,17は各電磁ピツクアツプ1
2,13に接続したトランジスタ、14,15は
抵抗器である。18,19はNAND回路でフリ
ツプフロツプ回路を構成しており、その一方の入
力はトランジスタ16のコレクタに他方の入力が
トランジスタ17のコレクタに接続されている。
そして、ロータ110はクランク軸の2回転で矢
印方向に1回転し、ロータ110の各突起が電磁
ピツクアツプ12,13を横切る時にこの各電磁
ピツクアツプ12,13は負に落ち込む第7図
a,bに示すごとき信号を発生する。従つて、各
電磁ピツクアツプ12,13は第10図の角度位
置M1M2を検出することになる。そして、この各
電磁ピツクアツプ12,13に負の信号が発生す
ると各トランジスタ16,17が導通状態とな
り、この各トランジスタ16,17の導通によつ
てNAND回路18,19よりなるフリツプフロ
ツプ回路が作動し、このフリツプフロツプ回路の
一方の出力端子1aには第7図cに示すごとき出
力が発生する。
Next, in the angular position detector 1, a rotor 110 has one protrusion 111 on its outer periphery, and is fixed to a distributor shaft (not shown) of an internal combustion engine, and rotates together with the distributor shaft. It is. Reference numerals 12 and 13 refer to first and second parts arranged at a predetermined angle in the circumferential direction of the rotor 110.
The electromagnetic pickup is opposed to the protrusion of the rotor 110. 16 and 17 are each electromagnetic pick-up 1
Transistors 2 and 13 are connected, and 14 and 15 are resistors. 18 and 19 are NAND circuits forming a flip-flop circuit, one input of which is connected to the collector of transistor 16, and the other input connected to the collector of transistor 17.
The rotor 110 rotates once in the direction of the arrow for every two revolutions of the crankshaft, and when each protrusion of the rotor 110 crosses the electromagnetic pick-ups 12, 13, each of the electromagnetic pick-ups 12, 13 dips into the negative direction as shown in FIGS. 7a and 7b. Generates a signal as shown. Therefore, each electromagnetic pickup 12, 13 detects the angular position M 1 M 2 in FIG. When a negative signal is generated in each electromagnetic pickup 12, 13, each transistor 16, 17 becomes conductive, and due to the conduction of each transistor 16, 17, a flip-flop circuit consisting of NAND circuits 18, 19 is activated. An output as shown in FIG. 7c is generated at one output terminal 1a of this flip-flop circuit.

第8図は着火検出回路3と圧力検出器4の詳細
図を示す。圧力検出器4は内燃機関の気筒に取り
付けた圧力センサであり、気筒の圧力上昇に伴い
出力電位が上昇するものである。
FIG. 8 shows a detailed diagram of the ignition detection circuit 3 and pressure detector 4. The pressure detector 4 is a pressure sensor attached to a cylinder of an internal combustion engine, and its output potential increases as the pressure of the cylinder increases.

着火検出回路3は最大圧力値Pimaxを検出す
る最大圧力値検出回路33と固定角度θAの時の
圧力値PiθAを検出する固定角度圧力値検出回路
32によつて、求めたPimax/PiθAが所定値α
より大きいか、小さいかを判定する判定回路34
によつて完全燃焼したか、失火直前の部分燃焼し
たかを検出する。
The ignition detection circuit 3 uses a maximum pressure value detection circuit 33 that detects the maximum pressure value Pimax and a fixed angle pressure value detection circuit 32 that detects the pressure value PiθA at a fixed angle θA, so that the obtained Pimax/PiθA is a predetermined value. α
A determination circuit 34 that determines whether the
Detects whether complete combustion or partial combustion immediately before misfire occurs.

このような着火検出回路3において31は、圧
力検出器4の信号を処理する処理回路であり、抵
抗器311,312,313,315,316,
317,319と演算増巾器314,318とで
構成されている。尚抵抗器313,317は基準
電位Vrefに接続されているそして、その出力は、
第7図gに示す様になる。又、35は、固定角度
演算回路2の出力29により第7図fに示す様な
固定角度θAから単安定出力(f)を発生させる単安
定発生回路であり、NOT回路351,355、
NAND回路354、抵抗器352、コンデンサ
353で構成される単安定回路で単安定出力(f)を
発生させ、また36はNOT回路361,365、
NAND回路364、抵抗器362、コンデンサ
363で構成される単安定回路で角度位置検出回
路1の出力1−aで第7図dに示される単安定出
力を発生させるものである。又、32はアナログ
スイツチ321、抵抗322、基準電位Vrefに
接続されるコンデンサ323、演算増幅器324
で構成されるホールド回路であり、固定角度θA
における圧力波形の値Piを第7図iで示す様に毎
回ホールドするものであつて、固定角度圧力値検
出回路をなすものである。33は演算増幅器33
1,337、ダイオード332、抵抗333,3
34、トランジスタ335、コンデンサ336で
構成されるピークデテクタ回路で最大圧力値検出
回路である。尚この回路33は基準電位Vrefに
接地されている。処理回路31の出力信号gがピ
ークデテクタ回路に入力され、演算増幅器331
とダイオード332とにより入力のピーク値が検
出され、抵抗333を通してコンデンサ336に
記憶される。一方、コンデンサ336の電荷は抵
抗334、トランジスタ335を通じて単安定出
力fにより毎回消去され、演算増幅器337の電
圧ホロウ回路にて第7図hにて示すごとき出力を
とり出す。この出力、すなわち毎回の圧力の最大
値Pmaxが抵抗器338,339で分割され、最
大圧力値検出回路33の出力はPimax/α(α>
1)となる。又、34は抵抗器341,342、
演算増幅器343で構成される比較回路とアナロ
グスイツチ344、抵抗器345、コンデンサ3
46、演算増幅器347で構成されるホールド回
路より構成される判定回路である。固定角度圧力
値検出回路32の出力iPθAと最大圧力値検出回
路53の出力Pimax/αとを入力としてPiθAよ
りPimax/αの方が大きい場合は比較回路の出
力、完全燃焼を表わす“1”のレベルの出力とな
り、これがホールド回路により単安定出力dにて
第8図jに示す様に取り出される。またPiθAよ
りPimax/αが小さい場合は、失火直前の部分
燃焼を表わす“0”のレベルの出力となり、同様
にホールド回路により取り出される。次に上述し
た実施例について第7図のタイムチヤートを援用
して本発明による着火限界検出装置の作動を説明
する。第7図においてTは上死点(Top Dead
Center)を表わす。角度位置検出装置1は、図
示していない内燃機関のクランク軸の回転に同期
して矩形パルスを発するものでその出力端子1a
に第7図cに示すごとく、M1〜M2の間“1”レ
ベル、M2−M1の間“0”レベルの出力を発し、
内燃機関の2回転当り1周期1パルスの出力を発
するものである。そして角度検出装置1の出力が
“1”レベルになると固定角度演算回路2のアナ
ログスイツチ23がオンする。このとき、NOT
回路215の出力が“0”レベルであるので、ア
ナログスイツチ24がオフとなり、また、AND
回路214の出力信号が“0”レベルでコンデン
サリセツト用のアナログスイツチ29がオフであ
るので、コンデンサ210は充電制御回路21に
より基準電位vrefよりM1の時点から第7図eに
示す様に充電されていく。但し、充電制御回路2
1の出力電圧Aは一定であるため充電電流は一定
である。このコンデンサ210の充電により演算
増幅器28の出力は基準電位Vrefより高くなる
ので、比較回路の出力は0レベルになる。
In such an ignition detection circuit 3, 31 is a processing circuit that processes the signal of the pressure detector 4, and includes resistors 311, 312, 313, 315, 316,
317, 319 and operational amplifiers 314, 318. Note that the resistors 313 and 317 are connected to the reference potential Vref, and their output is
The result will be as shown in Figure 7g. Further, 35 is a monostable generating circuit that generates a monostable output (f) from a fixed angle θA as shown in FIG.
A monostable circuit consisting of a NAND circuit 354, a resistor 352, and a capacitor 353 generates a monostable output (f), and 36 is a NOT circuit 361, 365,
A monostable circuit consisting of a NAND circuit 364, a resistor 362, and a capacitor 363 generates the monostable output shown in FIG. 7d from the output 1-a of the angular position detection circuit 1. Further, 32 is an analog switch 321, a resistor 322, a capacitor 323 connected to the reference potential Vref, and an operational amplifier 324.
This is a hold circuit consisting of a fixed angle θA.
The value Pi of the pressure waveform at is held each time as shown in FIG. 7i, and constitutes a fixed angle pressure value detection circuit. 33 is an operational amplifier 33
1,337, diode 332, resistor 333,3
34, a transistor 335, and a capacitor 336. The peak detector circuit is a maximum pressure value detection circuit. Note that this circuit 33 is grounded to the reference potential Vref. The output signal g of the processing circuit 31 is input to the peak detector circuit, and the operational amplifier 331
and diode 332, the peak value of the input is detected and stored in capacitor 336 through resistor 333. On the other hand, the charge in the capacitor 336 is erased each time by the monostable output f through the resistor 334 and the transistor 335, and the voltage hollow circuit of the operational amplifier 337 takes out an output as shown in FIG. 7h. This output, that is, the maximum pressure value Pmax each time, is divided by resistors 338 and 339, and the output of the maximum pressure value detection circuit 33 is Pimax/α (α>
1). Also, 34 is a resistor 341, 342,
A comparison circuit consisting of an operational amplifier 343, an analog switch 344, a resistor 345, and a capacitor 3
46, a determination circuit made up of a hold circuit made up of an operational amplifier 347. When the output iPθA of the fixed angle pressure value detection circuit 32 and the output Pimax/α of the maximum pressure value detection circuit 53 are input, if Pimax/α is larger than PiθA, the output of the comparison circuit is "1" indicating complete combustion. This becomes a level output, which is taken out by the hold circuit as a monostable output d as shown in FIG. 8j. Further, when Pimax/α is smaller than PiθA, the output is at a level of “0” representing partial combustion just before a misfire, and is similarly taken out by the hold circuit. Next, the operation of the ignition limit detection device according to the present invention will be explained with reference to the time chart of FIG. 7 for the above-mentioned embodiment. In Figure 7, T is Top Dead Center
Center). The angular position detection device 1 emits a rectangular pulse in synchronization with the rotation of the crankshaft of an internal combustion engine (not shown), and its output terminal 1a
As shown in Fig. 7c, the output is "1" level between M1 and M2 , and "0" level is output between M2 and M1 .
It emits an output of one pulse per period per two rotations of the internal combustion engine. When the output of the angle detection device 1 reaches the "1" level, the analog switch 23 of the fixed angle calculation circuit 2 is turned on. At this time, NOT
Since the output of the circuit 215 is at the "0" level, the analog switch 24 is turned off, and the AND
Since the output signal of the circuit 214 is at the "0" level and the analog switch 29 for resetting the capacitor is off, the capacitor 210 is charged by the charging control circuit 21 from the reference potential vref from the time point M1 as shown in FIG. 7e. It will be done. However, charging control circuit 2
Since the output voltage A of No. 1 is constant, the charging current is constant. This charging of the capacitor 210 causes the output of the operational amplifier 28 to become higher than the reference potential Vref, so that the output of the comparison circuit becomes 0 level.

次に、M2の時点で角度位置検出装置1の出力
端子1aの信号が0レベルになると、アナログス
イツチ23がオフになり、同時にアナログスイツ
チ24がオンになるので、コンデンサ210は放
電制御回路22の一定電位(B)による一定の放電電
流により第7図eで示す様に放電が開始される。
そして、このコンデンサ210の放電が終了した
時点で演算増幅器28の出力が基準電位Vrefよ
り低くなるので、比較回路の出力が反転して
“1”レベルになり、AND回路214の出力が
“1”レベルになるので、アナログスイツチ29
はオンになり、演算増幅器28の出力は第7図e
で示すように基準電位Vrefに一定に保たれる。
Next, when the signal at the output terminal 1a of the angular position detection device 1 becomes 0 level at the time M2 , the analog switch 23 is turned off and at the same time the analog switch 24 is turned on, so that the capacitor 210 is connected to the discharge control circuit 22. A discharge is started as shown in FIG. 7e by a constant discharge current due to a constant potential (B).
Then, when the discharge of the capacitor 210 is completed, the output of the operational amplifier 28 becomes lower than the reference potential Vref, so the output of the comparator circuit is inverted and becomes the "1" level, and the output of the AND circuit 214 becomes "1". level, so analog switch 29
is turned on, and the output of the operational amplifier 28 is as shown in FIG.
It is kept constant at the reference potential Vref as shown in .

この様に充電放電制御回路21,22の出力電
位A、Bが一定である為、充電電流と放電電流と
はいずれも一定であるため、機関回転数に関係な
く出力端子2aには常に一定の固定角度位置θA
において固定角度位置信号が発生する。
In this way, since the output potentials A and B of the charging and discharging control circuits 21 and 22 are constant, both the charging current and the discharging current are constant, so there is always a constant voltage at the output terminal 2a regardless of the engine speed. Fixed angle position θA
A fixed angular position signal is generated at.

また、着火検出回路3において第7図に示され
る単安定出力dとfとを作り、単安定出力fにて
圧縮行程中の固定角度θA毎に回定角度圧力値検
出回路32でPiθAを検出して、次のθAまで保持
して、このPiθAと最大圧力値検出回路33で検
出したPimax/αを、判定回路34で比較して、
その結果を単安定出力dにてM1から次のM1まで
保持する。従つてPiθAよりPimax/αが大きい
時、すなわちPimax/PiθAが所定値αより大き
いときは、完全燃焼を表わす“1”の出力を示
し、PiθAよりPimax/αが小さい時、すなわち
Pimax/PiθAが所定値αより小さいときは、失
火直前の部分燃焼を表わす“0”の出力を示す。
この様にして、Pimax、PiθAを求めてこの両者
で割り算したPimax/PiθAの値を所定値αと比
較することによつて、失火直前の部分燃焼を検出
することができる、即ち、着火限界を検出するこ
とができる。なお判定回路34の出力は図示しな
い制御装置あるいは表示装置に入力される。
In addition, the ignition detection circuit 3 generates monostable outputs d and f shown in FIG. 7, and the rotational angle pressure value detection circuit 32 detects PiθA at each fixed angle θA during the compression stroke using the monostable output f. The pressure is then held until the next θA, and the determination circuit 34 compares this PiθA with Pimax/α detected by the maximum pressure value detection circuit 33.
The result is held at the monostable output d from M 1 to the next M 1 . Therefore, when Pimax/α is larger than PiθA, that is, when Pimax/PiθA is larger than the predetermined value α, the output is “1” indicating complete combustion, and when Pimax/α is smaller than PiθA, that is, when Pimax/PiθA is larger than the predetermined value α,
When Pimax/PiθA is smaller than the predetermined value α, an output of “0” is shown, indicating partial combustion immediately before a misfire.
In this way, by calculating Pimax and PiθA and comparing the value of Pimax/PiθA, which is obtained by dividing both with the predetermined value α, it is possible to detect partial combustion immediately before a misfire, that is, to determine the ignition limit. can be detected. Note that the output of the determination circuit 34 is input to a control device or a display device (not shown).

上述した実施例は、一気筒だけの着火限界を検
出する検出器であるが、多気筒でも同様に行なう
ことができる。
Although the above-mentioned embodiment is a detector that detects the ignition limit of only one cylinder, it can be similarly performed with multiple cylinders.

第9図はロータ110の他の実施例110′を
示す。
FIG. 9 shows another embodiment 110' of rotor 110.

第9図において4気筒の例を挙げて説明する
と、角度位置検出装置1のロータ110を外周に
等間隔で4個の突起部111を有するロータ11
0′に交換して、内燃機関の2回転当り2周期2
パルスの矩形パルスを発する様に構成される。
To explain using a four-cylinder example in FIG.
0', 2 cycles per 2 revolutions of the internal combustion engine 2
It is configured to emit a rectangular pulse.

第10図は圧力検出器4および処理回路31の
詳細図を示す。
FIG. 10 shows a detailed diagram of the pressure detector 4 and the processing circuit 31.

第10図において処理回路31が加算機能を持
つ様に、抵抗311を各検出器41,42,4
3,44毎に4つの抵抗器3111,3112,
3113,3114を設け演算増巾器314と結
んで加算すると同様に測定できる。尚4気筒分単
純に加算しても、吸入行程、排気行程中の圧力の
変化は、小さいので他の気筒が大きく影響するこ
とはなく問題はなかつた。
In FIG. 10, a resistor 311 is connected to each detector 41, 42, 4 so that the processing circuit 31 has an addition function.
4 resistors 3111, 3112 every 3,44,
Similar measurements can be made by providing 3113 and 3114 and connecting them to the operational amplifier 314 for addition. Even if the pressure for four cylinders were simply added, the change in pressure during the intake stroke and exhaust stroke was small, so other cylinders did not have a large effect and there was no problem.

また上述した実施例において、固定角度θAの
検出を2つの電磁ピツクアツプ12,13とコン
デンサ210、充放電演算によつて行つたが、2
つの電磁ピークアツプの内、13(第7図のM2
の電磁ピツクアツプをずらして直接θAを検出す
るようにしてもよい。
Furthermore, in the embodiment described above, the fixed angle θA was detected using the two electromagnetic pickups 12 and 13 and the capacitor 210, and the charge/discharge calculation was performed.
Of the three electromagnetic peak ups, 13 (M 2 in Figure 7)
The electromagnetic pickup may be shifted to directly detect θA.

また上述の角度位置検出装置1として電磁ピツ
クアツプにより角度位置を検出するようにしたが
光電式あるいは、ポイント式でも同様に検出でき
る。
Further, although the angular position detection device 1 described above uses an electromagnetic pickup to detect the angular position, a photoelectric type or a point type can be used for detection as well.

以上述べた様に本発明装置によれば、内燃機関
の気筒内の最大圧力値Pmaxと混合気が爆発する
以前の固定角度θAにおける圧力PθAとの圧力の
比が所定の値α以上であるか、以下であるかを検
出することによつて、内燃機関の運転状況によら
ず常に一定水準で、失火直前の部分燃焼を検出す
ることができる。即ち常に一定水準で着火限界を
検出できるという優れた効果がある。
As described above, according to the device of the present invention, the pressure ratio between the maximum pressure value Pmax in the cylinder of the internal combustion engine and the pressure PθA at the fixed angle θA before the mixture explodes is equal to or greater than the predetermined value α. , or less, it is possible to detect partial combustion immediately before a misfire at a constant level regardless of the operating status of the internal combustion engine. That is, there is an excellent effect that the ignition limit can always be detected at a constant level.

従つて、前述の空燃比ばかりでなく、排気ガス
再循環量、点火時期等により引き起こされる着火
限界を幅広く検出することができるという効果が
ある。
Therefore, it is possible to detect a wide range of ignition limits caused by not only the above-mentioned air-fuel ratio but also the amount of exhaust gas recirculation, ignition timing, etc.

また本実施例はアナログで回路が構成されてい
るが、デイジタルで回路を構成しても同様に着火
限界を検出できることはもちろんである。
Further, in this embodiment, the circuit is constructed using an analog circuit, but it goes without saying that the ignition limit can be detected in the same manner even if the circuit is constructed digitally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の内燃機関における空燃比と排気
ガス成分及び燃料消費率の関係を示すグラフ、第
2図は一般の内燃機関の気筒内圧力波形で燃焼状
態による差を示すグラフ、第3図は、一般の内燃
機関の気筒内圧力波形で負荷状態による差を示す
グラフ、第4図は本発明装置の一実施例を示すブ
ロツク図、第5図、第6図、第8図、第9図およ
び第10図は、それぞれ本発明装置の詳細回路の
一実施例、第7図は、本発明装置の作動説明に供
するタイムチヤートを示す。 1……角度位置検出装置、2……固定角度演算
回路、3……着火検出回路、4……圧力検出器、
10……キースイツチ、12,13……電磁ピツ
クアツプ、21……充電制御回路、22……放電
制御回路、23,24,29……アナログスイツ
チ、32……固定角度圧力値検出回路、33……
最大圧力値検出回路、34……判定回路、11
0,110′……ロータ。
Figure 1 is a graph showing the relationship between the air-fuel ratio, exhaust gas components, and fuel consumption rate in a general internal combustion engine, Figure 2 is a graph showing the difference in cylinder pressure waveforms depending on the combustion state of a general internal combustion engine, and Figure 3 4 is a graph showing differences in cylinder pressure waveforms depending on load conditions in a general internal combustion engine; FIG. 4 is a block diagram showing an embodiment of the device of the present invention; FIGS. 5, 6, 8, and 9. 1 and 10 respectively show an example of a detailed circuit of the device of the present invention, and FIG. 7 shows a time chart for explaining the operation of the device of the present invention. 1...Angle position detection device, 2...Fixed angle calculation circuit, 3...Ignition detection circuit, 4...Pressure detector,
10... Key switch, 12, 13... Electromagnetic pickup, 21... Charge control circuit, 22... Discharge control circuit, 23, 24, 29... Analog switch, 32... Fixed angle pressure value detection circuit, 33...
Maximum pressure value detection circuit, 34...determination circuit, 11
0,110'...Rotor.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の気筒内圧力を検出する圧力検出器
と、該圧力検出器に接続され該気筒内圧力の最大
圧力値を検出する最大圧力値検出回路と、該最大
圧力値検出回路に接続され前記気筒内の混合気が
爆発する以前の所定の内燃機関角度位置における
前記気筒内圧力を検出する固定角度圧力値検出回
路と、前記最大圧力値検出回路および固定角度圧
力値検出回路で検出された圧力値の比と所定の値
とを比較し着火限界を検出する判定回路とを備え
たことを特徴とする内燃機関用着火限界検出装
置。
1 A pressure detector that detects the cylinder pressure of an internal combustion engine, a maximum pressure value detection circuit that is connected to the pressure detector and that detects the maximum pressure value of the cylinder pressure, and a pressure detector that is connected to the maximum pressure value detection circuit and that A fixed angle pressure value detection circuit that detects the pressure in the cylinder at a predetermined internal combustion engine angular position before the air-fuel mixture in the cylinder explodes, and the pressure detected by the maximum pressure value detection circuit and the fixed angle pressure value detection circuit. An ignition limit detection device for an internal combustion engine, comprising a determination circuit that compares a ratio of values with a predetermined value to detect an ignition limit.
JP15630380A 1980-11-06 1980-11-06 Ignition limit detector for internal combustion engine Granted JPS5779263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15630380A JPS5779263A (en) 1980-11-06 1980-11-06 Ignition limit detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15630380A JPS5779263A (en) 1980-11-06 1980-11-06 Ignition limit detector for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5779263A JPS5779263A (en) 1982-05-18
JPS6347910B2 true JPS6347910B2 (en) 1988-09-26

Family

ID=15624854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15630380A Granted JPS5779263A (en) 1980-11-06 1980-11-06 Ignition limit detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5779263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379211U (en) * 1986-11-12 1988-05-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917617B2 (en) * 1991-10-28 1999-07-12 トヨタ自動車株式会社 Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379211U (en) * 1986-11-12 1988-05-25

Also Published As

Publication number Publication date
JPS5779263A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
US4403505A (en) Ignition range detector for internal combustion engine
US5215067A (en) Misfire-detecting system for internal combustion engines
US4327689A (en) Combined warm-up enrichment, engine roughness and exhaust gas sensor control for EFI engine
US5349299A (en) Fuel supply misfire-detecting system for internal combustion engines
JPS5949426B2 (en) Ignition system for internal combustion engines
SE522232C2 (en) Procedure and device for event control in combustion engine
JPH063192Y2 (en) Ignition timing control device for internal combustion engine
JPS6157830A (en) Method and device for deciding on abnormal combustion
JPS6347910B2 (en)
JP2754507B2 (en) Misfire detection device for internal combustion engine
JPH0723582Y2 (en) Ignition timing control device for internal combustion engine
JP2505620B2 (en) Internal combustion engine misfire detection device
US4261318A (en) Ignition system for engines
JP3716947B2 (en) Cylinder discrimination device for internal combustion engine
JPS5846670B2 (en) NinenenkikanyoudenshikitenKajikichiyouseisouchi
JP3471373B2 (en) Gasoline engine combustion control device
JPH0239729B2 (en)
JP3572498B2 (en) Cylinder identification device for internal combustion engine
JP2946126B2 (en) Internal combustion engine combustion state monitoring device
JP2937531B2 (en) Misfire detection device for internal combustion engine
JP3333570B2 (en) Apparatus for detecting combustion roughness value and control apparatus for internal combustion engine
JPH0719151A (en) Ion current detecting device
JP2720999B2 (en) Ignition control device
JP2517605B2 (en) Combustion control device for internal combustion engine
JP2586435B2 (en) Knocking control device for internal combustion engine