JPS6347902A - Moisture-sensitive element - Google Patents

Moisture-sensitive element

Info

Publication number
JPS6347902A
JPS6347902A JP61192239A JP19223986A JPS6347902A JP S6347902 A JPS6347902 A JP S6347902A JP 61192239 A JP61192239 A JP 61192239A JP 19223986 A JP19223986 A JP 19223986A JP S6347902 A JPS6347902 A JP S6347902A
Authority
JP
Japan
Prior art keywords
moisture
humidity
zirconium phosphate
moisture sensitive
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61192239A
Other languages
Japanese (ja)
Other versions
JPH0447441B2 (en
Inventor
石沢 健喜
黒島 浩
享 中山
芳彦 定岡
酒井 義郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP61192239A priority Critical patent/JPS6347902A/en
Publication of JPS6347902A publication Critical patent/JPS6347902A/en
Publication of JPH0447441B2 publication Critical patent/JPH0447441B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水溶性ジルコニウム塩、リン酸及びLi、 
Na、 K、 Rb、又はCsを含む水)容性物質の混
合液相系から得られる結晶性及び/又は無定形リン酸ジ
ルコニウムを60℃以上で熱処理した物質を主成分とし
、雰囲気中の湿度の変化に応してインピーダンス値の変
化する感湿体に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a water-soluble zirconium salt, phosphoric acid and Li,
The main component is a substance obtained by heat-treating crystalline and/or amorphous zirconium phosphate obtained from a mixed liquid phase system of water-compatible substances containing Na, K, Rb, or Cs, and the humidity in the atmosphere is The present invention relates to a moisture-sensitive body whose impedance value changes in accordance with changes in the temperature.

〔従来の技術〕[Conventional technology]

従来、雰囲気中のン、v度に感応してインビルダンス値
が変化する感;湿体としては、A12(h 、Zr5i
Oz、MgAlzOn 、MgCrzOa等の金属酸化
物の多孔質体、LiC1飽和溶液等の電解質塩、或いは
セルロースや疎水ポリマーと親水ポリマーとの共重合ポ
リマー等の有機物質系のものがある。
Conventionally, the inbuilding dance value changes in response to the n and v degrees in the atmosphere; as a wet body, A12 (h, Zr5i
Porous bodies of metal oxides such as Oz, MgAlzOn and MgCrzOa, electrolyte salts such as LiCl saturated solution, and organic materials such as cellulose and copolymer of hydrophobic and hydrophilic polymers are available.

〔発明が解、失しようとする問題点〕[Problems that the invention attempts to solve or eliminate]

ところで上記感湿体のうち、金属酸化物は、執的、化学
的安定性に優れ、多孔質焼結体を容易に得られるとこう
(3温体としての利点を有しているが、現在のところ実
用化及び試作されている金属酸化物系の忌l?体のうち
、絶縁性のものは全体的にインピーダンス値が高く、特
に低湿度領域においては10@〜1109oh以上と高
い値を示すため、通常の検出回路では低湿度領域での湿
度測定が難しい。その解決策として、アルカリ金属塩を
添加し、イオン導電性を持たせてインピーダンス値を下
げる試みがなされている。しかし、その殆どの感湿体が
、水分等の吸着によって添加したアルカリ金属が溶離す
るなどのことから、経時変化及びヒステリシスが認めら
れ、信虻性に欠け、また応答速度が遅いう欠点がある。
By the way, among the above-mentioned moisture sensitive materials, metal oxides have excellent physical and chemical stability and can easily produce porous sintered bodies (they have the advantage of being 3-warm bodies, but the current However, among the metal oxide-based repellents that have been put into practical use and prototyped, those that are insulating generally have high impedance values, especially in low humidity regions, which show high values of 10 to 1109 ohms or more. It is difficult to measure humidity in low humidity areas with normal detection circuits.As a solution to this problem, attempts have been made to lower the impedance value by adding alkali metal salts to make them ionic conductive.However, most of these Since the moisture-sensitive element elutes the added alkali metal by adsorbing moisture, etc., changes over time and hysteresis are observed, and there are drawbacks such as lack of reliability and slow response speed.

本発明は、上記の問題点を解決するためのもので、全温
度領域、特に低湿度側でのインピーダンスが低く、その
ため湿度測定が容易であり、経時変化が少なく、ヒステ
リシスが無く、応答速度も速い感湿体を提供することを
目的とする。
The present invention is intended to solve the above problems, and has low impedance over the entire temperature range, especially on the low humidity side, making humidity measurement easy, with little change over time, no hysteresis, and fast response. The purpose is to provide a fast moisture sensitive body.

C問題点を解決するための手段〕 そのために本発明の感湿体は、水溶性ジルコニウム塩、
リン酸又はLi、 Na5K、 Rb、又はCsを含む
水溶性物質の混合液相系より得られる結晶性及び/又は
無定形リン酸ジルコニウムZr(M’ PO4) z、
χH2O(0<χ<.0(0<χ<20)  (M’=
Li、Na、K、Rb、又はCs)を熱処理して得られ
る物質を主成分とすることを特徴とする。
Means for Solving Problem C] To this end, the moisture sensitive body of the present invention contains a water-soluble zirconium salt,
Crystalline and/or amorphous zirconium phosphate Zr(M'PO4) obtained from a mixed liquid phase system of phosphoric acid or a water-soluble substance containing Li, Na5K, Rb, or Cs,
χH2O(0<χ<.0 (0<χ<20) (M'=
The main component is a substance obtained by heat-treating Li, Na, K, Rb, or Cs).

(作用〕 本発明では、水溶性ジルコニウム塩とリン酸の混合液相
中より得られたリン酸ジルコニウムZr(llPO−)
 t・ χ1hO(0<χ〈20)のH゛イオン、イオ
ン交換反応により他の陽イオンに交換することにより、
感湿体原料Zr(M’ POa)z ・zllzo  
(M’ □L+ % Na−、K −Rh、又はCs)
を得、この感ン品体原料を100〜1000 kg/c
dで圧縮・成形フJ口ニレた後、大気中60〜1000
℃で熱処理したものの両面に、例えば対向電極を設けて
サンドウィンチ型の感湿素子を構成する。この素子は、
イオン導電性により全湿度領域で低いインピーダンス値
を示し、特に低湿度側でインピーダンス値が低くなり、
通常の検出回路でも容易に湿度測定を行うことが可能と
なる。また感湿体原料Zr(M’ PO4)2、χH2
O(0<χ<tOの性質により、水分吸着等によるアル
カリ金属の溶離が少なく安定であるため、無定形量の多
い感湿体の中で若干ヒステリシスの認められるものがあ
るものの、殆ど経時変化及びヒステリシスが認められず
、また応答速度は、結晶性の高い感湿体で1〜2分以内
、無定形量の多い感湿体で2〜3分以内である。そして
無定形の存在量を少なくし、より結晶性を高めていくこ
とにより、ヒステリシス、経時変化を少なくし、応答速
度を速くすることができる。
(Function) In the present invention, zirconium phosphate Zr(llPO-) obtained from a mixed liquid phase of a water-soluble zirconium salt and phosphoric acid
By exchanging the H ion of t・χ1hO (0<χ<20) with other cations through an ion exchange reaction,
Humidity sensitive body raw material Zr(M' POa)z ・zllzo
(M' □L+ % Na-, K-Rh, or Cs)
100 to 1000 kg/c of this sensitive material raw material
After compression and molding with d, 60 to 1000 in the atmosphere
For example, counter electrodes are provided on both sides of the heat-treated material to form a sandwich-type moisture-sensitive element. This element is
Due to its ionic conductivity, it exhibits a low impedance value in all humidity ranges, and the impedance value is particularly low in the low humidity range.
Humidity measurement can be easily performed using a normal detection circuit. In addition, the moisture sensitive material Zr(M'PO4)2, χH2
O (Due to the property of 0 < and hysteresis is not observed, and the response time is within 1 to 2 minutes for a highly crystalline moisture sensitive material, and within 2 to 3 minutes for a moisture sensitive material with a large amount of amorphous. By reducing the amount of crystallinity and increasing the crystallinity, hysteresis and changes over time can be reduced and response speed can be increased.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

〔例1〕 感湿体原料の出発物質となる結晶性リン酸ジルコニウム
< Zr(lI[’o4) z ・2 +120 >は
以下に述へる2つの調製法で合成する。
[Example 1] Crystalline zirconium phosphate <Zr(lI['o4) z 2 +120>>, which is a starting material for a moisture sensitive material, is synthesized by the following two preparation methods.

1つは直接沈澱法で、ZrOCl2・811□0の水溶
液に過剰なiFを加えた後、更に、過剰な113POa
を加えマ2ガスを吹き込むことにより合成する。もう1
つはカロ弛フ流法で、ZrOCl2−81(20+ 1
(CI の水溶液にHiPO4+HCIの水溶液を加え
て得られたゲル状の無定形リン酸ジルコニウムを20℃
で数十時間保った後、!(、PO4及び水で洗浄し、更
にIIIPO,と共に数十時間加熱還流することにより
合成する。
One is the direct precipitation method, in which excess iF is added to an aqueous solution of ZrOCl2.811□0, and then excess 113POa is added.
It is synthesized by adding and blowing m2 gas. One more
One is the Calo relaxation flow method, in which ZrOCl2-81 (20 + 1
(Gel-like amorphous zirconium phosphate obtained by adding HiPO4 + HCI aqueous solution to CI aqueous solution was heated at 20°C.
After keeping it for dozens of hours,! (, PO4 and water, and further heated under reflux with IIIPO for several tens of hours to synthesize.

次いで、以上の2つの調製法で合成された結晶性リン酸
ジルコニウムを分散させた水溶液に、各アルカリ金属M
 (Li、 Na、 K、 Rb、又はCs)の水酸化
物の水溶液をPl+が11になるまで加え、全てのH゛
をM゛に交換し、濾過、洗浄後乾燥してさ湿体原料とす
る。圧力200kg/cfflで圧縮成形した後、厚さ
Q、6mm、5 X 5 +uの板状に加工し、更に、
第1図に示す熱処理条件に従い感湿体とする。
Next, each alkali metal M was added to an aqueous solution in which crystalline zirconium phosphate synthesized by the above two preparation methods was dispersed.
Add an aqueous solution of hydroxide (Li, Na, K, Rb, or Cs) until Pl+ reaches 11, exchange all H゛ with M゛, filter, wash, dry and use as a wet raw material. do. After compression molding at a pressure of 200 kg/cffl, it was processed into a plate shape of thickness Q, 6 mm, 5 x 5 + u, and further,
A moisture sensitive body was prepared according to the heat treatment conditions shown in FIG.

次に、第2図に示すように、上記の方法により得られた
感湿体1の表面にAuを茎着して電(玉2を構成し、こ
れにリード線3を取り付けてサンドウィンチ型感湿素子
を構成する。
Next, as shown in FIG. 2, Au is deposited on the surface of the moisture sensitive element 1 obtained by the above method to form an electrode (ball 2), and a lead wire 3 is attached to this to form a sand winch type. Constitutes a humidity sensing element.

こうして作製した感湿素子の雰囲気温度30℃、測定周
波数I KHzにおける相対湿度094.20%、60
%、90%でのインピーダンス値は第1図に示すように
なる。
The relative humidity of the humidity sensing element thus fabricated was 094.20% and 60% at an ambient temperature of 30°C and a measurement frequency of I KHz.
%, the impedance value at 90% is as shown in FIG.

図において、20%R1+では全ての素子が10’〜1
06ohmのインピーダンス値を示す。また、0H11
%では、寛2と隘3を除く全ての素子が4×1107o
h付近のインピーダンス値を示し、隘2と隘3の場合は
約3X10bobmのインピーダンス値を示す。
In the figure, at 20% R1+, all elements are 10' to 1
The impedance value is 0.06 ohm. Also, 0H11
%, all elements except Hiro 2 and Hiro 3 are 4×1107o
The impedance value is approximately 3×10 bobm for columns 2 and 3.

上記のような特性により、従来から問題となっている低
湿度側の低インピーダンス化を達成でき、湿度III定
tま通常の検出回路で可能になる。一方、高温度側では
90%R11で、患3を除く全ての素子が103〜10
 ’ ohm付近のインピーダンス値を示し、覧2と胤
3を除く素子では0%R1+から90%R1+の間でイ
ンピーダンス値は3〜4 ftj程度変化する。したが
って、全湿度領域で精度ある測定が可能となる。また、
第1図に示す13個のす。ぺての素子には増ン易、残湿
によるヒステリシスは認められなかった。障2と隅3の
素子は、0%R11から90%l1l(の間でのインピ
ーダンス値の変化は他と比較して1桁程度小さい。
Due to the above-mentioned characteristics, it is possible to achieve low impedance on the low humidity side, which has been a problem in the past, and it is possible to achieve constant humidity III with a normal detection circuit. On the other hand, on the high temperature side, at 90% R11, all elements except patient 3 were 103 to 10
' It shows an impedance value near ohm, and the impedance value changes by about 3 to 4 ftj between 0% R1+ and 90% R1+ for elements other than 2 and 3. Therefore, accurate measurement is possible in the entire humidity range. Also,
There are 13 slots shown in Figure 1. No hysteresis due to build-up or residual moisture was observed in Pete's element. For the elements at barrier 2 and corner 3, the change in impedance value between 0% R11 and 90% L11 is about one order of magnitude smaller than the other elements.

第3図は嵐13の素子の雰囲気温度30℃、35℃、4
0℃、45℃のインピーダンス特性を示す。横軸は相対
湿度、縦軸はインピーダンス値である。0%R1+から
50%R)I付近までは湿度が増すにつれて雰囲気温度
によるインピーダンス値の差が開く傾向が認められるが
、その差は小さい。この素子を温度補正回路無しで作動
させた場合も、誤差は±2.5%RH/10℃程度と小
さく、温度補正回路を付けた場合は誤差は±1,5%R
H/10℃程度である。他の隘1〜12の素子について
もすべて上記のような傾向が認められる。
Figure 3 shows the ambient temperature of Arashi 13 element at 30℃, 35℃, 4
Impedance characteristics at 0°C and 45°C are shown. The horizontal axis is relative humidity, and the vertical axis is impedance value. From 0%R1+ to around 50%R)I, there is a tendency for the difference in impedance values due to ambient temperature to increase as the humidity increases, but the difference is small. Even when this element is operated without a temperature compensation circuit, the error is as small as ±2.5%RH/10℃, and when a temperature compensation circuit is attached, the error is ±1.5%R.
It is about H/10°C. The above-mentioned tendency is also observed for all other elements Nos. 1 to 12.

第4図は遅13の素子のl易度変化に対する応答特性を
示し、横軸は応答時間、縦軸は出力電圧であり、雰囲気
温度30℃、測定周波数IKlf24こおけるもの゛で
ある。
FIG. 4 shows the response characteristics of the 13-element element with respect to changes in ease of use, where the horizontal axis is the response time and the vertical axis is the output voltage at an ambient temperature of 30° C. and a measurement frequency of IKlf24.

相対湿度を10%、30%、60%、90%と増湿して
応答性をみた後、逆に90%、60%、30%、10%
と残湿して応答性を見ると、応答速度は1〜2分以内で
あった。
After increasing the relative humidity to 10%, 30%, 60%, and 90% to check the response, conversely, increase the relative humidity to 90%, 60%, 30%, and 10%.
When looking at the response with residual humidity, the response speed was within 1 to 2 minutes.

〔例2〕 感湿体原料の出発物質となる無定形リン酸ジルコニウム
は以下の方法により調製する。Zr0C1□・8H20
の水溶液に過剰なH*PO4を加えて撹拌すると直ちに
無定形リン酸ジルコニウムが得られる。次いで例1と同
様な方法で全てのH゛を各アルカリ金属イオンM’  
(Li” 、Na” 、又はK”)に交換して感湿体原
料を得る。圧力100又は’l OOkg/cI11で
圧縮成形した後、jrJさ0.6 u、5×5鶴の板状
に加工する。更に第5図に示す熱処理条件に従って感湿
体を形成し、感湿素子は、例1と同様に第2図に示すサ
ンドウィンチ型とする。
[Example 2] Amorphous zirconium phosphate, which is a starting material for a moisture sensitive material, is prepared by the following method. Zr0C1□・8H20
When an excess of H*PO4 is added to an aqueous solution of and stirred, amorphous zirconium phosphate is immediately obtained. Then, in the same manner as in Example 1, all H' was converted to each alkali metal ion M'
(Li", Na", or K") to obtain a raw material for a moisture sensitive body. After compression molding at a pressure of 100 or 'lOOkg/cI11, a plate shape of 5 x 5 cranes with jrJ of 0.6 u is obtained. Further, a moisture sensitive element was formed according to the heat treatment conditions shown in FIG. 5, and the moisture sensitive element was of the sand winch type shown in FIG.

第5図はこうして作製した感湿素子の雰囲気温度30’
C1測定周波数lKH2、相対湿度0%、20%、60
%、90%でのインピーダンス値及び増湿、残ン易過程
間のヒステリシスの有無を示す図である。
Figure 5 shows the atmospheric temperature of the moisture-sensitive element manufactured in this way at 30'.
C1 measurement frequency lKH2, relative humidity 0%, 20%, 60
%, the impedance value at 90%, and the presence or absence of hysteresis between humidification and residual processes.

図において、例1の結晶性リン酸ジルコニウムを出発物
質とした時と違い、無定形リン酸ジルコニウムを出発物
質とした時は熱処理条件の違いによって得られた感湿体
の中にヒステリシスの認められるものがある。ヒステリ
シスの認められない素子の中で、阻15.16.17は
、0%R1iから90%RHの間でインピーダンス値が
10” ohm付近から10 ’ ohINまで2桁程
度変化する。また、寛20.21.25.26.27の
素子は0%R1(から90%1111の間でインピーダ
ンス値がlQ’ohm付近から10’ohm付近まで4
桁程度変化し、例1の素子と似た感湿特性が得られる。
In the figure, unlike when crystalline zirconium phosphate was used as the starting material in Example 1, when amorphous zirconium phosphate was used as the starting material, hysteresis was observed in the moisture sensitive material obtained due to the difference in heat treatment conditions. There is something. Among the elements with no hysteresis, the impedance value of the H15, 16, and 17 changes by about two orders of magnitude from around 10'' ohm to 10' ohIN between 0%R1i and 90%RH. .21.25.26.27 element has impedance value between 0%R1 (and 90%1111) from around lQ'ohm to around 10'ohm4
The difference is an order of magnitude, and moisture sensitivity characteristics similar to those of the device of Example 1 are obtained.

応答速度を例1と同様に10%R11−−30%1ul
l −−60%R1+ −−90%R11という増湿、
残湿過程で測定したところ、2〜3分以内となり結晶性
リン酸ジルコニウムを出発物質に用いたものより1分程
度遅い。
Change the response speed to 10%R11--30%1ul as in Example 1.
l −−60% R1+ −−90% R11 humidification;
When measured during the residual humidity process, it was within 2 to 3 minutes, which is about 1 minute slower than that using crystalline zirconium phosphate as the starting material.

〔例3] 例1、例2に示す方法に従って調製した結晶性と無定形
のリン酸ジルコニウムを混合して、感湿体原料の出発物
質とする。例1と同様な方法で得たリン酸ジルコニウム
中のH゛をずべで各アルカリ金属イオンM゛に交換して
1体原ネー(を得る。
[Example 3] Crystalline and amorphous zirconium phosphate prepared according to the methods shown in Examples 1 and 2 are mixed to form a starting material for a moisture sensitive material. All of the H in the zirconium phosphate obtained in the same manner as in Example 1 is exchanged with each alkali metal ion M to obtain a single raw material.

その原料より、例1、例2の場合と同様に、第2図に示
すサンドウィンチ型の感)■素子を構成する。
Using the raw materials, a sandwich-winch type element shown in FIG. 2 was constructed in the same manner as in Examples 1 and 2.

得られた素子の感湿特性は、処理温度が100℃以下で
は、ヒステリシスが若干認められるが、1000℃付近
の温度で熱処理するとヒステリシスはまったく認められ
ず、結晶性のリン酸ジルコニウムのみを出発物質として
得た感湿素子と同し特性が得られた。応答速度は、60
0 ’C以下の温度で熱処理した素子は3分程度、10
00℃付近で処理した素子は1〜2分以内で例1に示す
素子と同等である。
Regarding the moisture-sensitive characteristics of the obtained device, some hysteresis is observed when the processing temperature is below 100°C, but when heat-treated at a temperature around 1000°C, no hysteresis is observed, indicating that only crystalline zirconium phosphate is used as the starting material. The same characteristics as the moisture-sensitive element obtained as above were obtained. Response speed is 60
For devices heat-treated at temperatures below 0'C, the heating time is about 3 minutes, 10
Devices processed at around 00° C. are equivalent to the device shown in Example 1 within 1-2 minutes.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、出発
原料にリン酸ジルコニウムZr(M’ Po4)z・ 
χH20(0<χ< 20)  (M’ =Li、 N
a、、に、。
As is clear from the above description, according to the present invention, zirconium phosphate Zr(M'Po4)z.
χH20 (0<χ<20) (M' = Li, N
a,,,.

Rh、又はCs)を用いることで、そのもののイオン窩
電性により全湿度領域、特に低湿度側の低インピーダン
ス化を達成でき、更に、応答速度が速く、ヒステリシス
が無<、経時変化の小さい安定した感湿素子を得ること
ができる。
By using Rh or Cs), it is possible to achieve low impedance in all humidity ranges, especially on the low humidity side, due to its ion hole conductivity, and in addition, it has a fast response speed, no hysteresis, and is stable with little change over time. It is possible to obtain a moisture-sensitive element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による感湿体の一実施例の特性を示す図
、第2図は本発明による感湿体により構成した感湿素子
を示す図、第3図は本発明による感ンW体のインピーダ
ンス特性を示す図、第4図は本発明による感湿体の応答
特性を示す図、第5図は本発明による感湿体の他の実施
例の特性を示す図である。 1・・・感湿体、2・・・電極、3・・・リード線出 
 願  人  品川白煉瓦株式会社代理人 弁理士  
蛭 川 晶 信(外2名)第3図 舊 Z、QH 第4図 kHt
FIG. 1 is a diagram showing the characteristics of an embodiment of the moisture sensitive body according to the present invention, FIG. 2 is a diagram showing a moisture sensing element constructed from the moisture sensitive body according to the present invention, and FIG. 3 is a diagram showing the characteristics of an embodiment of the moisture sensitive body according to the present invention. FIG. 4 is a diagram showing the response characteristics of the moisture sensitive body according to the present invention, and FIG. 5 is a diagram showing the characteristics of another embodiment of the moisture sensitive body according to the present invention. 1... Moisture sensitive body, 2... Electrode, 3... Lead wire exit
Requester: Shinagawa Shirorenga Co., Ltd. Agent, Patent Attorney
Akira Hirukawa (2 others) Figure 3 Z, QH Figure 4 kHt

Claims (4)

【特許請求の範囲】[Claims] (1)水溶性ジルコニウム塩、リン酸及びLi、Na、
K、Rb、又はCsを含む水溶性物質の混合液相系より
得られる結晶性及び/又は無定形リン酸ジルコニウムZ
r(M^1PO_4)_2・χH_2O(0<χ<20
)(M^1=Li、Na、K、Rb、又はCs)を熱処
理して得られる物質を主成分とする感湿体。
(1) Water-soluble zirconium salt, phosphoric acid and Li, Na,
Crystalline and/or amorphous zirconium phosphate Z obtained from a mixed liquid phase system of water-soluble substances containing K, Rb, or Cs
r(M^1PO_4)_2・χH_2O(0<χ<20
) (M^1=Li, Na, K, Rb, or Cs).
(2)前記熱処理の温度は、60℃以上であることを特
徴とする特許請求の範囲第1項記載の感湿体。
(2) The moisture sensitive element according to claim 1, wherein the temperature of the heat treatment is 60° C. or higher.
(3)前記熱処理の温度を600℃以上にして得られる
焼結体M^1ZrP_2O_8を主成分とする特許請求
の範囲第1項記載の感湿体。
(3) The moisture-sensitive element according to claim 1, the main component of which is a sintered body M^1ZrP_2O_8 obtained by heating the heat treatment at a temperature of 600°C or higher.
(4)前記感湿体は、板状に加工され、その両面に対向
して一対の電極が設けられている特許請求の範囲第1項
乃至第3項のうち何れか1項記載の感湿体。
(4) The humidity sensing element according to any one of claims 1 to 3, wherein the humidity sensing element is processed into a plate shape, and a pair of electrodes are provided facing each other on both sides of the humidity sensing element. body.
JP61192239A 1986-08-18 1986-08-18 Moisture-sensitive element Granted JPS6347902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192239A JPS6347902A (en) 1986-08-18 1986-08-18 Moisture-sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192239A JPS6347902A (en) 1986-08-18 1986-08-18 Moisture-sensitive element

Publications (2)

Publication Number Publication Date
JPS6347902A true JPS6347902A (en) 1988-02-29
JPH0447441B2 JPH0447441B2 (en) 1992-08-04

Family

ID=16287969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192239A Granted JPS6347902A (en) 1986-08-18 1986-08-18 Moisture-sensitive element

Country Status (1)

Country Link
JP (1) JPS6347902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568747A (en) * 1992-01-13 1996-10-29 Lloyd; Robert H. Moisture sensor
CN105784786A (en) * 2015-01-09 2016-07-20 罗伯特·博世有限公司 Method and sensor device for detecting gaseous analytes and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143187A (en) * 1978-04-28 1979-11-08 Hitachi Ltd Moisture sensing element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143187A (en) * 1978-04-28 1979-11-08 Hitachi Ltd Moisture sensing element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568747A (en) * 1992-01-13 1996-10-29 Lloyd; Robert H. Moisture sensor
CN105784786A (en) * 2015-01-09 2016-07-20 罗伯特·博世有限公司 Method and sensor device for detecting gaseous analytes and method for producing the same

Also Published As

Publication number Publication date
JPH0447441B2 (en) 1992-08-04

Similar Documents

Publication Publication Date Title
JPH0242429B2 (en)
JP2789522B2 (en) Method for forming a chlorite-type tungsten oxide layer on a substrate and a humidity sensor element containing the chlorite-type tungsten oxide layer
JP4448243B2 (en) Phosphate ion selective electrode and method for producing the same
US5855849A (en) Solid state humidity sensor
JPS6156952A (en) Moisture sensitive resistor element
JPS60168044A (en) Moisture sensitive material
JPS6347902A (en) Moisture-sensitive element
JPS60188835A (en) Moisture sensitive material
US4424508A (en) Moisture sensitive element
Li et al. Lacunar pyrochlore-type tungsten oxides as humidity-sensing materials
JPS6344701A (en) Moisture-sensitive element
JPS5840801A (en) Humidity sensor element
CN101408522B (en) Manufacturing method of high molecule electric resistance type humidity sensitive element with super-branched structure
JPS6217361B2 (en)
TW305046B (en) Method of forming a pyrochlore-type tungsten oxide layer on a substrate
JPS6133372B2 (en)
JPS60251164A (en) Humidity sensitive material
JPS60247901A (en) Moisture sensitive material
JPH04152260A (en) Humidity sensor
JPH04147049A (en) Moisture sensor
JPH04143648A (en) Humidity sensor
JPH05196591A (en) Humidity sensor
JPH05119010A (en) Moisture sensor
JPH05119009A (en) Moisture sensor
WO1991013447A1 (en) Moisture sensor