JPS6347802B2 - - Google Patents

Info

Publication number
JPS6347802B2
JPS6347802B2 JP57160436A JP16043682A JPS6347802B2 JP S6347802 B2 JPS6347802 B2 JP S6347802B2 JP 57160436 A JP57160436 A JP 57160436A JP 16043682 A JP16043682 A JP 16043682A JP S6347802 B2 JPS6347802 B2 JP S6347802B2
Authority
JP
Japan
Prior art keywords
yarn
spun
solidification point
spinning
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57160436A
Other languages
Japanese (ja)
Other versions
JPS5953714A (en
Inventor
Kazuyuki Yabuki
Yoji Kawamura
Mitsuo Iwasaki
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Petcord Co Ltd
Original Assignee
Toyobo Petcord Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Petcord Co Ltd filed Critical Toyobo Petcord Co Ltd
Priority to JP16043682A priority Critical patent/JPS5953714A/en
Publication of JPS5953714A publication Critical patent/JPS5953714A/en
Publication of JPS6347802B2 publication Critical patent/JPS6347802B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱寸法安定性にすぐれた高配向未延伸
糸(所謂POY)及びPOYからの延伸糸の製造方
法に関するものであり、詳しくはフイラメント内
外層における分子鎖の配向度差の少ないPOYを
従来一般のPOYの紡糸速度よりも比較的低い紡
糸速度で製造する方法に関するものである。 POYが熱的に安定な構造を持つことは多くの
文献に示されており(例えば特公昭55−6729号公
報)、またPOYを延伸した繊維についても熱的に
安定であることが知られている(特開昭53−
58031号公報)。 かかるPOYを比較的低速で得ることは、スピ
ンドロー法を利用して延伸糸を得る場合に、最終
巻取速度を比較的低くすることができるので工業
的に有用である。比較的低速で高い配向度の
POYを得るために冷却気流の温度を常温より高
くする技術が特開昭53−31815号公報に開示され
ているが、該方法によればエネルギーコストの上
昇を伴い必ずしも工業的に有用とはいい難い。 本発明者らは、かかる問題を解決する手段とし
て、溶融紡糸方法において糸条を冷却するために
冷却風を用いるという常識を覆し、積極的に冷却
することなく紡糸する方法を想起するに至つた。 すなわち本発明は、熱可塑性樹脂を溶融紡糸す
る際、紡出糸条を積極的に冷却風を用いることな
く冷却固化し、固化点より下方20〜100cmの範囲
で糸条を集束して、1500m/分以上の速度で引取
ることを特徴とする熱寸法安定性のすぐれた合成
繊維の製造方法であり、ポリエチレンテレフタレ
ートを主成分とするポリエステル、ナイロン6、
ナイロン66等の熱可塑性樹脂を溶融紡糸して
POYを製造する場合に有用である。例えばPOY
を仮撚加工して衣料用に供する場合には、本発明
により製造されたPOYを用いると、POY特有の
フイラメント内及びフイラメント間、さらに糸の
長手方向の斑が少ないので延伸仮撚性が極めて良
好である。 本発明による紡糸方法をさらにスピンドロー法
と直結することは主に産業用の繊維の製造に際し
特に好適である。 熱可塑性樹脂、特にポリエチレンテレフタレー
トを主成分とする極限粘度(フエノール/テトラ
クロルエタン=6/4の溶媒中、30℃で測定)
0.70以上のポリエステルを、紡糸口金より単孔当
り吐出量を3.5g/分以下で溶融紡糸し、次いで
積極的に冷却風を用いることなく冷却固化し、固
化点における糸条張力が1.5×107〜7.5×
107dyne/cm2の間にあるように糸条を引き出し、
固化点より下方20〜100cmの範囲で糸条を集束し
て、1500m/分以上の速度で第1応力単離装置を
経て直ちにスピンドロー法により延伸を行なうこ
とにより、本発明者らによる先願特許(特願昭56
−194129号)に記載された熱寸法安定性及び化学
安定性にすぐれると同時に高強度を有するポリエ
ステル繊維を安価に得ることができる。 次にかかる繊維の製造方法及び技術的背景を説
明する。 積極的に冷却風を用いることなく紡糸すると、
糸条の冷却が遅延し固化点が紡糸口金より遠ざか
り糸条の固化点における張力が空気抵抗の増大に
伴つて増加し、得られるPOYの複屈折は増大す
る。また同時に固化点におけるフイラメント内外
層の温度差が著しく減少し、その結果紡出フイラ
メント内外層の分子鎖の配向度の差が著しく減少
する。しかして冷却風を用いる場合には、フイラ
メントの列間で冷却条件差が生じ、フイラメント
間の分子鎖の配向度差が発現し、特にノズルホー
ル数が多い紡糸口金を使用する場合には顕著とな
るが、冷却風を用いない本発明の方法によれば、
かかる問題が生じない。従つて得られたPOYの
フイラメント内外の均一性は極めて良好であり特
に延伸を施すに際し、最大延伸倍率が、同一の複
屈折平均値を示す従来技術によるPOYの場合よ
りも大となり得られる強度は必然的に高くなる。 本発明において積極的に冷却風を用いることな
く紡糸する方法とは、例えば『Man−Made
Fibers化学繊維 石川、温品共訳:丸善株式会
社(5.溶融紡糸の原理)』および『ポリエステル
繊維 横内、中村訳:コロナ社(P142〜143)』
に記載される如く、溶融紡糸に際し、冷却風を積
極的に用いることが常套手段として採用されるこ
とに相反して、本発明においては、紡出フイラメ
ントに垂直に吐き出す風の流れを積極的に停止し
て紡糸することおよび冷却筒(クーリングチムニ
ー)を用いながら、冷却風の供給を停止して紡糸
する方法である。尚新たに設備を設ける場合は、
原理的には単に溶融ポリマーを大気中に紡出すれ
ば良いのであるが、常法で用いられる程度の外気
から遮断された室内へ紡出するにしても紡出室内
に自然気流による糸条ゆれ等を防ぐために、糸条
をとり囲む少なくとも三方向を囲む隔壁を設けて
紡糸することが好ましい。 本発明の紡糸方法によれば工業生産に適すると
同時に糸物性のすぐれたPOYが得られる。さら
に特筆されるべき技術上の優位性は、冷却風を供
給するために要するエネルギーと供給装置が不要
であり、装置コストが大巾に軽減されることであ
る。 しかしながらかかる方法においては、紡出糸条
がひき起こす随伴流によつて、糸ゆれが大きくな
り、糸条長手方向にデニール斑を惹起する傾向が
あるW.Stein;Int.Text.Bull.、World Ed.、
Spinning(3)259(1981))。 そのため随伴流に起因する糸ゆれを防止する方
法について鋭意検討した結果、溶融紡出糸条が固
化した点より下方20〜100cmに糸条の集束装置を
設けることにより、随伴流に起因する糸ゆれを大
巾に低下させることができることを発見した。 本発明における糸条の集束位置は重要である。
(測定方法後述)集束位置がフイラメント固化点
より下方20cm未満の場合には、集束装置に糸条が
引つかかる現象が時折発生する。また集束位置が
固化点より下方100cmを超える場合は、随伴流に
よる糸ゆれが発生し本発明の効果が認められな
い。 本発明の方法により自動車タイヤ等のゴム補強
材として好適な高強力ポリエチレンテレフタレー
ト繊維を製造する場合には、ポリエチレンテレフ
タレートの極限粘度が0.7以上のものが好適であ
り、極限粘度が0.7未満の場合は高強度のポリエ
ステル繊維が得られず、ゴム補強材としての使用
目的に適合しない。また溶融紡糸の際、単孔吐出
量が3.5g/分を超える場合には紡出糸条のフイ
ラメントの内外層の分子鎖の配向度の差が増大
し、従つて高強度を有する低収縮ポリエステル繊
維が得られない。次に固化点における糸条張力が
1.5×107dyne/cm2以下の場合には、本発明の最も
重要な効果である低収縮性を有するポリエステル
繊維を得ることができない。さらに固化点におけ
る糸条張力が7.5×107dyne/cm2を超える場合にお
いては、紡出糸条はすでに結晶化(広角×線回折
法により判定)していることが認められ、かかる
紡出糸のフイラメント内複屈折が極めて大きくな
り、延伸後の繊維強度の低いポリエステル繊維と
なる。 また紡速を1500m/分以下にする場合は、繊維
の前配向性が低下し、その結果熱寸法安定性の優
れた繊維を得ることができない。 本発明の糸条の集束装置の数例を第1〜6図に
示す。第1図は広幅ガイドオイリング装置による
糸条の集束装置であり、第2〜4図は広幅ガイド
オイリング装置の詳細図である。第5図はローラ
オイリング装置を用いた集束装置の例である。第
6図はゴデツトロールを集束装置として用いた例
である。もちろん集束位置は上記の例に限定され
ず、糸条を集束させることができるものであれば
いかなる集束装置であつても良い。 次いで実施例に基づき本発明について説明す
る。 実施例 1 極限粘度1.0のポリエチレンテレフタレートレ
ンジをエクストルーダを用いて溶融し、表1に示
す条件下で紡糸した。かくして得られた糸A〜C
は、表1に示す如く、クエンチ風(積極的な冷却
風)を用いる従来技術による比較例Dに比し、よ
り低い紡糸速度でより高い複屈折値を有する
POYを得ることができると同時に、フイラメン
ト内及びフイラメント間の複屈折差が従来の
POYに比べ極めて小さくなり均質性にすぐれた
POYを得ることができる。またウスター斑U%
も従来法のものと同等の品質レベルのものが得ら
れる。
The present invention relates to highly oriented undrawn yarn (so-called POY) with excellent thermal dimensional stability and a method for producing drawn yarn from POY. This relates to a method for manufacturing at a relatively lower spinning speed than that of general POY. It has been shown in many documents that POY has a thermally stable structure (for example, Japanese Patent Publication No. 55-6729), and it is also known that fibers drawn from POY are thermally stable. (Unexamined Japanese Patent Publication No. 1973-
Publication No. 58031). Obtaining such POY at a relatively low speed is industrially useful because the final winding speed can be made relatively low when a drawn yarn is obtained using a spin draw method. Relatively slow and highly oriented
A technique for raising the temperature of the cooling air stream above room temperature in order to obtain POY is disclosed in Japanese Patent Application Laid-open No. 53-31815, but this method increases energy costs and is not necessarily industrially useful. hard. As a means to solve this problem, the present inventors overturned the common sense of using cooling air to cool the yarn in the melt spinning method, and came up with a method of spinning without actively cooling the yarn. . That is, in the present invention, when melt-spinning a thermoplastic resin, the spun yarn is cooled and solidified without actively using cooling air, and the yarn is bundled in a range of 20 to 100 cm below the solidification point, and the yarn is spun for 1500 m. This is a method for producing synthetic fibers with excellent thermal dimensional stability, which is characterized by drawing at a speed of 1/min or more.
Melt-spun thermoplastic resin such as nylon 66
Useful when manufacturing POY. For example, POY
When using POY for clothing after false twisting, the use of POY produced by the present invention results in extremely low stretch and false twisting properties, as there are fewer irregularities within and between the filaments, which are unique to POY, and in the longitudinal direction of the yarn. In good condition. Directly linking the spinning method according to the invention with a spin-drawing method is particularly suitable mainly for the production of industrial fibers. Intrinsic viscosity of thermoplastic resins, especially polyethylene terephthalate as the main component (measured at 30°C in a solvent of phenol/tetrachloroethane = 6/4)
0.70 or more is melt-spun from a spinneret at a discharge rate of 3.5 g/min or less per single hole, then cooled and solidified without actively using cooling air, so that the yarn tension at the solidification point is 1.5 x 10 7 ~7.5×
Pull out the yarn so that it is between 10 and 7 dyne/ cm2 ,
By focusing the yarns in the range of 20 to 100 cm below the solidification point and immediately drawing them by the spin draw method at a speed of 1500 m/min or more through the first stress isolation device, the present inventors' previous application Patent (patent application 1982)
194129), which has excellent thermal dimensional stability and chemical stability, as well as high strength, can be obtained at low cost. Next, the manufacturing method and technical background of such fibers will be explained. When spinning without actively using cooling air,
As the cooling of the yarn is delayed and the solidification point moves away from the spinneret, the tension at the solidification point of the yarn increases as air resistance increases, increasing the birefringence of the resulting POY. At the same time, the temperature difference between the inner and outer layers of the filament at the solidification point is significantly reduced, and as a result, the difference in the degree of orientation of molecular chains between the inner and outer layers of the spun filament is significantly reduced. However, when cooling air is used, differences in cooling conditions occur between rows of filaments, resulting in differences in the degree of orientation of molecular chains between filaments, which is particularly noticeable when using a spinneret with a large number of nozzle holes. However, according to the method of the present invention that does not use cooling air,
Such a problem does not occur. Therefore, the uniformity of the obtained POY inside and outside the filament is extremely good, and especially when it is stretched, the maximum stretching ratio is larger than that of POY produced by the prior art, which has the same average birefringence value, and the strength that can be obtained is inevitably becomes higher. In the present invention, the method of spinning without actively using cooling air means, for example, "Man-Made
Fibers chemical fibers co-translated by Ishikawa and Natsushina: Maruzen Co., Ltd. (5. Principles of melt spinning)” and “Polyester fibers Yokouchi and Nakamura translation: Corona Publishing (P142-143)”
As described in , contrary to the conventional method of actively using cooling air during melt spinning, in the present invention, the flow of air discharged perpendicularly to the spun filament is actively used. This is a method in which spinning is stopped and spinning is performed while the supply of cooling air is stopped while using a cooling chimney. If new equipment is to be installed,
In principle, it is sufficient to simply spin the molten polymer into the atmosphere, but even if it is spun into a room that is isolated from the outside air to the extent that is used in conventional methods, the yarn sways due to natural airflow inside the spinning chamber. In order to prevent such problems, it is preferable to provide partition walls surrounding the yarn in at least three directions before spinning. According to the spinning method of the present invention, POY which is suitable for industrial production and has excellent yarn physical properties can be obtained. A further technical advantage that should be noted is that the energy and supply equipment required to supply cooling air are unnecessary, and the equipment cost is greatly reduced. However, in such a method, the accompanying flow caused by the spun yarn tends to increase yarn wobbling and cause denier unevenness in the longitudinal direction of the yarn.W.Stein; Int.Text.Bull., World Ed.,
Spinning (3) 259 (1981)). Therefore, as a result of intensive studies on ways to prevent yarn wobbling caused by the accompanying flow, we found that by installing a yarn convergence device 20 to 100 cm below the point where the melt-spun yarn solidifies, the yarn wobbling caused by the accompanying flow can be prevented. discovered that it is possible to significantly reduce the The convergence position of the threads in the present invention is important.
(Measurement method will be described later) When the focusing position is less than 20 cm below the filament solidification point, a phenomenon in which the yarn gets caught in the focusing device sometimes occurs. Furthermore, if the convergence position is more than 100 cm below the solidification point, yarn sway occurs due to the accompanying flow, and the effect of the present invention is not recognized. When producing high-strength polyethylene terephthalate fiber suitable as a rubber reinforcing material for automobile tires etc. by the method of the present invention, it is preferable that the intrinsic viscosity of the polyethylene terephthalate is 0.7 or more, and if the intrinsic viscosity is less than 0.7, High-strength polyester fibers cannot be obtained and are not suitable for use as rubber reinforcing materials. In addition, during melt spinning, if the single-hole discharge rate exceeds 3.5 g/min, the difference in the degree of orientation of molecular chains between the inner and outer layers of the filament of the spun yarn increases, resulting in a low-shrinkage polyester with high strength. Fiber cannot be obtained. Next, the thread tension at the solidification point is
If it is less than 1.5×10 7 dyne/cm 2 , it is impossible to obtain a polyester fiber having low shrinkage, which is the most important effect of the present invention. Furthermore, if the yarn tension at the solidification point exceeds 7.5×10 7 dyne/cm 2 , it is recognized that the spun yarn has already crystallized (determined by wide-angle x-ray diffraction), and The intrafilament birefringence of the yarn becomes extremely large, resulting in a polyester fiber with low fiber strength after stretching. Furthermore, if the spinning speed is less than 1500 m/min, the pre-orientation of the fibers will decrease, and as a result, fibers with excellent thermal dimensional stability cannot be obtained. Several examples of the yarn converging device of the present invention are shown in FIGS. 1 to 6. FIG. 1 shows a yarn convergence device using a wide guide oiling device, and FIGS. 2 to 4 are detailed views of the wide guide oiling device. FIG. 5 is an example of a focusing device using a roller oiling device. FIG. 6 shows an example in which a godet roll is used as a focusing device. Of course, the focusing position is not limited to the above example, and any focusing device may be used as long as the yarn can be focused. Next, the present invention will be explained based on Examples. Example 1 A polyethylene terephthalate range having an intrinsic viscosity of 1.0 was melted using an extruder and spun under the conditions shown in Table 1. Thus obtained yarns A to C
As shown in Table 1, has a higher birefringence value at a lower spinning speed than Comparative Example D using the prior art using quenching air (active cooling air).
POY can be obtained, and at the same time, the birefringence difference within and between filaments is reduced compared to conventional
Extremely small compared to POY and has excellent homogeneity
You can get POY. Also, Worcester spot U%
Also, the same quality level as that of the conventional method can be obtained.

【表】【table】

【表】 * ノズル面から糸条の集束位置迄の垂直距離を言

実施例 2 本発明の重要な構成要件である糸条集束位置に
ついて検討した結果について示す。 実施例1のAと同一条件で紡糸し、該糸条の集
束位置を変化させた場合の紡出糸の固化点と集束
位置との距離とウスター斑U%との関係を第7図
に示す。第7図から明らかな如く集束位置は固化
点から下方に20〜100cmに位置することが、デニ
ール斑抑制の面から好ましいことがわかる。 実施例 3 実施例1のBと同一条件で紡糸
し、第1ゴデツトロール(常温)を通過せしめた
のち、直ちに550℃の高温加熱水蒸気を用いて
2.21倍に延伸し、周速4420m/minの第2ゴデツ
トロール(温度200℃)を通過せしめ、さらに周
速5080m/minの第3ゴデツトロール(温度220
℃)との間で1.149倍に延伸し、その後周速5000
m/minの第4ゴデツトロール(温度140℃)に
より1.6%リラツクスさせた後巻き取り、かくし
て得られたヤーンの特性を、特願昭56−194129号
公報の比較例1の繊維と比較して表2に示す。 比較例1の繊維は、極限粘度1.0、ジエチレン
グリコール含量1.0モル%、カルボキシル基含量
10当量/106gのポリエチレンテレフタレートを、
ポリマー温度310℃、単孔吐出量2.32g/分、ノ
ズルホール数190でポリマーをノズル口金より押
し出し、ノズルクエンチ距離30cmで風速0.4m/
sec、温度20℃の冷却風により糸条を冷却細化し、
700m/分の速度で紡出したものであつて、この
時の紡出糸の複屈折の平均値は0.002であり紡出
糸のフイラメント表面と中心の複屈折差は0.000
であり、該紡出糸を直ちに、一段目延伸温度95
℃、一段目延伸倍率3.96倍、二段目延伸温度160
℃、二段目延伸倍率1.25倍、三段目延伸温度220
℃、三段目延伸倍率1.15倍で延伸することにより
得られたものである。
[Table] *Example 2, which refers to the vertical distance from the nozzle surface to the yarn convergence position. The results of a study on the yarn convergence position, which is an important component of the present invention, are shown below. Fig. 7 shows the relationship between the distance between the solidification point and the convergence position of the spun yarn and the Worcester spot U% when spinning was carried out under the same conditions as A in Example 1 and the convergence position of the yarn was changed. . As is clear from FIG. 7, it is preferable for the focusing position to be located 20 to 100 cm below the solidification point from the viewpoint of suppressing denier unevenness. Example 3 Spinning was carried out under the same conditions as in Example 1 B, and after passing through the first Godettrol (room temperature), it was immediately spun using high-temperature heated steam at 550°C.
It was stretched 2.21 times and passed through a second godet roll (temperature 200°C) with a circumferential speed of 4420 m/min, and then passed through a third godet roll (temperature 220°C) with a circumferential speed of 5080 m/min.
℃) and then stretched 1.149 times at a peripheral speed of 5000.
The yarn was relaxed by 1.6% using a fourth godet roll (temperature: 140°C) at a speed of 1.5 m/min, and then wound up. Shown in 2. The fiber of Comparative Example 1 had an intrinsic viscosity of 1.0, a diethylene glycol content of 1.0 mol%, and a carboxyl group content.
10 equivalents/10 6 g of polyethylene terephthalate,
Polymer temperature is 310℃, single hole discharge rate is 2.32g/min, the number of nozzle holes is 190, the polymer is extruded from the nozzle cap, and the nozzle quench distance is 30cm and the wind speed is 0.4m/min.
sec, the yarn is cooled and thinned by cooling air at a temperature of 20℃,
It was spun at a speed of 700 m/min, and the average value of birefringence of the spun yarn at this time was 0.002, and the difference in birefringence between the filament surface and center of the spun yarn was 0.000.
The spun yarn was immediately subjected to a first drawing temperature of 95
°C, first stage stretching ratio 3.96 times, second stage stretching temperature 160
°C, second stage stretching ratio 1.25 times, third stage stretching temperature 220
It was obtained by stretching at a temperature of 1.15 times the third stage stretching ratio.

【表】 本発明による繊維は従来技術による比較例に比
し、熱安定性が極めて優れるものであることが認
められ、本発明の有用性は明らかである。 次に本発明の重要な技術ポイントである固化点
の測定方法について示す。 Zimmer社製外径測定器を用いてノズルから紡
出されたフイラメントの直径の変化挙動を測定
し、フイラメントの直径変化が認められなくなつ
た点を、完全固化点とする。(昭和57年度繊維学
会年次大会研究発表会講演旨集P52(1982)参照)
[Table] The fibers according to the present invention were found to have extremely superior thermal stability as compared to the comparative examples according to the prior art, and the usefulness of the present invention is clear. Next, a method for measuring the solidification point, which is an important technical point of the present invention, will be described. The change behavior of the diameter of the filament spun from the nozzle is measured using a Zimmer outer diameter measuring device, and the point at which no change in the diameter of the filament is observed is defined as the point of complete solidification. (Refer to P52 (1982) of the Proceedings of the Research Presentation at the 1982 Fiber Science Society Annual Conference)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は広幅ガイドオイリング装置を集束装置
として用いた本発明の例を示す説明図、第2図は
広幅ガイドオイリング装置を示す見取図、第3図
は広幅ガイドオイリング装置の平面図、第4図は
広幅ガイドオイリング装置のA−A断面図であ
る。第5図はローラオイリング装置を集束位置と
して用いた本発明の例を示す説明図であり、第6
図はゴデツトロールを集束装置として用いた後、
ガイドオイリング装置を用いる本発明の例を示し
た図である。第7図は固化点と集束位置の距離と
POYのウスター斑U%との関係を示した図であ
る。 1……紡糸口金、2……紡出糸、3,3′……
ガイドオイリング装置、4……ゴデツトロール、
5……固化点、6……集束位置。
Fig. 1 is an explanatory diagram showing an example of the present invention using a wide guide oiling device as a focusing device, Fig. 2 is a sketch showing the wide guide oiling device, Fig. 3 is a plan view of the wide guide oiling device, and Fig. 4 is a sectional view taken along line A-A of the wide guide oiling device. FIG. 5 is an explanatory diagram showing an example of the present invention using a roller oiling device as a focusing position;
The figure shows that after using Godetstrol as a focusing device,
1 is a diagram illustrating an example of the present invention using a guide oiling device; FIG. Figure 7 shows the distance between the solidification point and the focusing position.
It is a figure showing the relationship between POY and Worcester's spot U%. 1...Spinneret, 2...Spun yarn, 3,3'...
Guide oiling device, 4... Godetstrol,
5... Solidification point, 6... Focusing position.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂を溶融紡糸する際、紡出糸条を
積極的に冷却風を用いることなく冷却固化し、固
化点より下方20〜100cmの範囲で糸条を集束して、
1500m/分以上の速度で引取ることを特徴とする
熱寸法安定性のすぐれた合成繊維の製造方法。 2 特許請求の範囲第1項において、熱可塑性樹
脂がポリエチレンテレフタレートを主成分とする
ポリエステルである方法。 3 特許請求の範囲第1項において、熱可塑性樹
脂がナイロン6及び/又はナイロン66を主成分と
するポリアミドである方法。 4 ポリエチレンテレフタレートを主成分とする
極限粘度(フエノール/テトラクロルエタン6/
4の溶媒中、30℃で測定)0.70以上のポリエステ
ルを、紡糸口金より単孔当り吐出量を3.5g/分
以下で溶融紡糸し、次いで積極的に冷却風を用い
ることなく冷却し、固化点における糸条張力が
1.5×107〜7.5×107dyne/cm2の間にあるように糸
条を引き出し、固化点より下方20〜100cmの範囲
で糸条を集束して、1500m/分以上の速度で第1
応力単離装置を経て直ちにスピンドロー法により
延伸糸を得ることを特徴とする熱寸法安定性のす
ぐれたポリエステル繊維の製造方法。
[Claims] 1. When melt-spinning a thermoplastic resin, the spun yarn is cooled and solidified without actively using cooling air, and the yarn is focused in a range of 20 to 100 cm below the solidification point. ,
A method for producing synthetic fibers with excellent thermal dimensional stability, characterized by drawing at a speed of 1500 m/min or more. 2. The method according to claim 1, wherein the thermoplastic resin is polyester containing polyethylene terephthalate as a main component. 3. The method according to claim 1, wherein the thermoplastic resin is a polyamide containing nylon 6 and/or nylon 66 as a main component. 4 Intrinsic viscosity based on polyethylene terephthalate (phenol/tetrachloroethane 6/
Polyester (measured at 30°C in the solvent of No. 4) of 0.70 or more is melt-spun from a spinneret at a rate of 3.5 g/min or less per single hole, and then cooled without actively using cooling air to reach the solidification point. The yarn tension at
The yarn was pulled out at a speed of 1.5×10 7 to 7.5×10 7 dyne/cm 2 , and the yarn was collected within a range of 20 to 100 cm below the solidification point, and the first
A method for producing polyester fibers with excellent thermal dimensional stability, characterized by obtaining drawn yarns by a spin-draw method immediately after passing through a stress isolation device.
JP16043682A 1982-09-13 1982-09-13 Manufacture of synthetic fiber having excellent thermal dimensional stability Granted JPS5953714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16043682A JPS5953714A (en) 1982-09-13 1982-09-13 Manufacture of synthetic fiber having excellent thermal dimensional stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16043682A JPS5953714A (en) 1982-09-13 1982-09-13 Manufacture of synthetic fiber having excellent thermal dimensional stability

Publications (2)

Publication Number Publication Date
JPS5953714A JPS5953714A (en) 1984-03-28
JPS6347802B2 true JPS6347802B2 (en) 1988-09-26

Family

ID=15714888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16043682A Granted JPS5953714A (en) 1982-09-13 1982-09-13 Manufacture of synthetic fiber having excellent thermal dimensional stability

Country Status (1)

Country Link
JP (1) JPS5953714A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328072A (en) 1986-07-21 1988-02-05 Sumitomo Electric Ind Ltd Field effect transistor
DE69223706T2 (en) * 1991-03-28 1998-08-20 Asahi Chemical Ind FIELD EFFECT TRANSISTOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548767A (en) * 1977-06-15 1979-01-23 Hisaharu Kaji Calcium enriched soft drink
JPS54125721A (en) * 1978-03-16 1979-09-29 Unitika Ltd Manufacture of ultra-fine multi filament yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548767A (en) * 1977-06-15 1979-01-23 Hisaharu Kaji Calcium enriched soft drink
JPS54125721A (en) * 1978-03-16 1979-09-29 Unitika Ltd Manufacture of ultra-fine multi filament yarn

Also Published As

Publication number Publication date
JPS5953714A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
US5186879A (en) Spinning process for producing high strength, high modulus, low shrinkage yarns
JP2004511668A (en) Spin drawing method for producing polytrimethylene terephthalate partially drawn yarn
US5238740A (en) Drawn polyester yarn having a high tenacity and high modulus and a low shrinkage
EP0456505B1 (en) Apparatus for spinning synthetic melt spinnable polymers
JPS62243824A (en) Production of ultrafine polyester filament yarn
JPS6347802B2 (en)
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JPS6235481B2 (en)
EP0456496A2 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
JP2974263B2 (en) High-speed spinning method
KR940703942A (en) High Modulus Polyester Yarn for Tire Cords and Composites and Manufacturing Method Thereof
JP2000073230A (en) Production of polyester fiber
JPS61194218A (en) Production of polyester fiber
JPH03234811A (en) Melt spinning of polyester fiber
JPS6215321A (en) Production of modified cross-section combined filament polyester yarn
EP0456495A2 (en) A drawn polyester yarn having a high tenacity, a high initial modulus and a low shrinkage
JPS63526B2 (en)
KR100476658B1 (en) Manufacturing method of polyester shrink shrink blended yarn
JP3347377B2 (en) Multifilament manufacturing method
JP3333750B2 (en) Method for producing polyester fiber
KR100216966B1 (en) The manufacture method of the lumen yarn by the heat treatment
EP0456494A2 (en) An as-spun polyester yarn having small crystals and high orientation
KR100232726B1 (en) Process for preparing different shrinkage blended yarn
JPS6238442B2 (en)
KR100484119B1 (en) Manufacturing method of polyester microfilament yarn