JPS6347700A - Waste-heat utilizing device for reactor coolant purifying system - Google Patents

Waste-heat utilizing device for reactor coolant purifying system

Info

Publication number
JPS6347700A
JPS6347700A JP61189560A JP18956086A JPS6347700A JP S6347700 A JPS6347700 A JP S6347700A JP 61189560 A JP61189560 A JP 61189560A JP 18956086 A JP18956086 A JP 18956086A JP S6347700 A JPS6347700 A JP S6347700A
Authority
JP
Japan
Prior art keywords
reactor
cooling
reactor coolant
recirculation pump
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189560A
Other languages
Japanese (ja)
Inventor
和司 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61189560A priority Critical patent/JPS6347700A/en
Publication of JPS6347700A publication Critical patent/JPS6347700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子カプラント運転中に原子炉冷却材浄化系の
機器から生じる廃熱を利用することができる原子炉冷却
材浄化系の廃熱利用装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention provides a method for purifying nuclear reactor coolant that can utilize waste heat generated from equipment in the reactor coolant purification system during nuclear couplant operation. The present invention relates to a system waste heat utilization device.

(従来の技術) 一般に原子カプラントは、プラント運転中に原子炉内で
発生した核分裂生成物および原子炉内の腐食生成物を除
去するために原子炉冷却材浄化系が設けられている。こ
の浄化系の向きによって腐食生成物もしくは核分裂生成
物から発生する放射線番を低減することができる。
(Prior Art) Generally, a nuclear couplant is provided with a reactor coolant purification system to remove fission products and corrosion products generated within the reactor during plant operation. This orientation of the purification system can reduce radiation levels generated from corrosion or fission products.

ここで、第2図を参照して従来用いられている原子炉冷
却材浄化系の具体的な構成を説明する。
Here, a specific configuration of a conventionally used nuclear reactor coolant purification system will be explained with reference to FIG.

すなわち原子炉圧力容器1から循環ポンプ2によって取
り出された冷却材3の一部は、再生熱交換器4、非再生
熱交換器5を通り、粉末イオン交換樹脂の処理水温度等
の所定制限温度まで冷却され、さらに濾過脱塩装置6に
より浄化された後に再生熱交換器4で昇温され、原子炉
給水配管1aを介して再び原子炉圧力容器1内に戻る。
That is, a part of the coolant 3 taken out from the reactor pressure vessel 1 by the circulation pump 2 passes through the regenerative heat exchanger 4 and the non-regenerative heat exchanger 5, and reaches a predetermined limit temperature such as the temperature of the treated water of powdered ion exchange resin. After being further purified by a filtration and demineralization device 6, the temperature is raised by a regenerative heat exchanger 4, and then returned to the reactor pressure vessel 1 via the reactor water supply pipe 1a.

なお浄化される冷却材の流量は、通常、原子炉給水配管
の約1〜2%、Q大時は約4%の範囲内で、濾過脱塩装
置6人口に設けた調整弁7により流量調整される。
The flow rate of the coolant to be purified is normally within the range of about 1 to 2% of the reactor water supply piping, and about 4% in the case of large Q, and the flow rate is adjusted by the regulating valve 7 installed in the filtration and desalination equipment 6. be done.

再生熱交換器4は冷却材3の保有熱量の一部を回収し、
熱経済上の損失を最小限にするために設けられる。また
、非再生熱交換器5は、冷IJ材3の濾過脱塩装置6へ
の流入温度が通常49℃以下となるよう冷却する。冷却
操作は、原子炉補機冷却系8から、冷却水入口配管9を
経由して供給される冷却水によってなされる。冷却水の
流量は冷却水出口配管10に設けた温度調整弁11の弁
開度を温度制′n器12によって調整することにより制
御する。非再生熱交換器5で熱交換されて高温となった
冷却水は冷却水出口配管10を経てプラント系外に排出
される。
The regenerative heat exchanger 4 recovers a part of the heat held by the coolant 3,
Provided to minimize thermoeconomic losses. Further, the non-regenerative heat exchanger 5 cools the cold IJ material 3 so that the temperature at which it flows into the filtration and demineralization device 6 is usually 49° C. or lower. The cooling operation is performed using cooling water supplied from the reactor auxiliary cooling system 8 via the cooling water inlet pipe 9. The flow rate of the cooling water is controlled by adjusting the opening degree of a temperature regulating valve 11 provided in the cooling water outlet pipe 10 using a temperature controller 12. The cooling water that has undergone heat exchange in the non-regenerative heat exchanger 5 and has reached a high temperature is discharged to the outside of the plant system through a cooling water outlet pipe 10.

一方、原子炉圧力容器1の下部にはウェットモータ型の
原子炉内再循環ポンプ13が複数基配置され、この原子
炉内再循環ポンプ13は原子炉圧力容器1内の冷却材3
を強制循環することにより、原子炉出力すなわち蒸気の
発生を有効に制御する。
On the other hand, a plurality of wet motor-type reactor recirculation pumps 13 are arranged in the lower part of the reactor pressure vessel 1 .
Through forced circulation, reactor output, or steam generation, is effectively controlled.

また原子炉内再循環ポンプ13の運転時における電動機
の昇熱を防止するために各原子炉内再循環ポンプ13に
は一対の冷却ループ配管14を介して再循環ポンプ冷却
器15が1台ずつ付設されている。再循環ポンプ冷却器
15は、原子炉補機冷却系8に接続されており、冷却ル
ープ配管14を循環する電動様用冷却水と、原子炉補機
冷却系8からの供給水とが熱交換するように構成されて
いる。
In order to prevent the electric motor from heating up during operation of the reactor recirculation pump 13, each reactor recirculation pump 13 is connected to a recirculation pump cooler 15 via a pair of cooling loop pipes 14. It is attached. The recirculation pump cooler 15 is connected to the reactor auxiliary cooling system 8, and the electric cooling water circulating through the cooling loop piping 14 and the water supplied from the reactor auxiliary cooling system 8 exchange heat. is configured to do so.

(発明が解決しようとする問題点) しかしながら原子炉内再循環ポンプ13の電vJ機に対
する冷却能力によって、原子炉内再循環ポンプ13のポ
ンプ容量が制限される問題があった。すなわち、原子炉
補刷冷却系8から供給される冷却水の温度が約35℃と
比較的高く、これに伴って冷却ループ配管14.を流通
する冷却水温も高くならざるを得す、従って電動機の冷
却能力に限界を生じ、その限界値に応じて、電動機の言
合が設定されていた。そのため、冷却材の強制循環を良
好に実施するためには発熱量が少なく小言aの原子炉内
再循環ポンプ13を複数台装備する必要があった。
(Problems to be Solved by the Invention) However, there is a problem in that the pump capacity of the reactor recirculation pump 13 is limited by the cooling capacity of the reactor recirculation pump 13 for the electric VJ machine. That is, the temperature of the cooling water supplied from the reactor reprint cooling system 8 is relatively high at approximately 35° C., and accordingly, the temperature of the cooling water supplied from the reactor reprint cooling system 8 is relatively high, and accordingly, the cooling loop piping 14. The temperature of the cooling water flowing through the motor must also rise, which puts a limit on the cooling capacity of the motor, and the specifications of the motor have been set according to this limit. Therefore, in order to effectively perform forced circulation of the coolant, it was necessary to install a plurality of in-reactor recirculation pumps 13, which have a small calorific value.

ちなみに原子炉内再循環ポンプ13の電動機の健全性を
維持するためには、冷却ループ配管14を通り電動傾に
流入する冷却水の水温を約60℃以下に制御する必要が
ある。この温度限界によって、電vJ様の高負荷運転が
規制されていた。冷却能力を増進するために新たな冷n
1設備を設けることは、設備費、管理上の問題を生起す
るため、何らかの対策が望まれていた。
Incidentally, in order to maintain the health of the electric motor of the reactor recirculation pump 13, it is necessary to control the temperature of the cooling water flowing into the electric tilt through the cooling loop piping 14 to about 60° C. or lower. Due to this temperature limit, high-load operation of the electric vJ was regulated. New cold n to increase cooling capacity
Providing one facility would cause equipment costs and management problems, so some kind of countermeasure was desired.

一方、原子炉冷却材浄化系の非再生熱交換器5において
、原子炉冷却材3と熱交換して、昇温された温水は、冷
却水出口配管10を経てプラント系外へそのまま放出さ
れてJ3す、その保有熱aは、無益のまま完棄されてい
た。従フて冷却水自体の節減およびプラント全体の熱経
済上の損失を最小にするために前述の放出された熱予を
できるだけ回収して有効利用する方策が模索されていた
On the other hand, in the non-regenerative heat exchanger 5 of the reactor coolant purification system, the hot water that has been heated by exchanging heat with the reactor coolant 3 is discharged directly to the outside of the plant system via the cooling water outlet pipe 10. J3's retained heat a was completely discarded without any use. Therefore, in order to save the cooling water itself and to minimize the thermal economic loss of the entire plant, measures have been sought to recover and effectively utilize the aforementioned released heat as much as possible.

本発明は上記のような点に鑑み、原子炉本体の熱循環系
、および冷却系の機能を損うことなく、また、新たに熱
源または冷却設廂を設けることなく、原子炉冷却材浄化
系の非再生熱交換器で発生する廃熱を有効に利用して、
原子炉内再循環ポンプの電動機の冷却を効率的に実施で
きるようにした原子炉冷却材浄化系の廃熱利用装置を提
供することを目的とする。
In view of the above points, the present invention has been developed to improve the reactor coolant purification system without impairing the functions of the thermal circulation system and cooling system of the reactor main body, and without providing a new heat source or cooling equipment. By effectively utilizing the waste heat generated in non-regenerative heat exchangers,
It is an object of the present invention to provide a waste heat utilization device for a reactor coolant purification system that can efficiently cool the electric motor of a recirculation pump in a nuclear reactor.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成づ゛るために本発明に係る原子炉冷却材
浄化系の廃熱利用装置は、原子炉冷却材浄化系に原子炉
冷却材を冷ル1する非再生熱交換器を備え、前記非再生
熱交換器にて原子炉冷却材ど熱交換されて加温される渇
水側を、吸収式冷凍機の再生器に接続するとともに、上
記吸収式冷凍機の蒸発器を原子炉内再循環ポンプの再循
環ポンプ冷却器に接続したことを要目としている。
(Means for Solving the Problems) In order to achieve the above object, the waste heat utilization device for the reactor coolant purification system according to the present invention cools the reactor coolant to the reactor coolant purification system. A non-regenerative heat exchanger is provided, and the drought side, which is heated by exchanging heat with the reactor coolant in the non-regenerative heat exchanger, is connected to the regenerator of the absorption chiller, and the absorption chiller is equipped with a non-regenerative heat exchanger. The key point is that the evaporator of the refrigerator is connected to the recirculation pump cooler of the recirculation pump in the reactor.

(作用) 上記構成によれば原子炉冷却材浄化系の非再生熱交換器
で得られた温水を吸収式冷凍機の再生器へ熱源として供
給し、一方冷凍機の蒸発器で得られた冷水を原子炉内再
循環ポンプの冷却水として供給するので、非再生熱交換
器で発生した廃熱が有効に活用できると同時に冷凍機に
おける再生効率を高めることができる。
(Function) According to the above configuration, the hot water obtained in the non-regenerative heat exchanger of the reactor coolant purification system is supplied to the regenerator of the absorption chiller as a heat source, while the cold water obtained in the evaporator of the chiller is supplied as a heat source. Since it is supplied as cooling water to the recirculation pump in the reactor, the waste heat generated in the non-regenerative heat exchanger can be effectively used, and at the same time, the regeneration efficiency in the refrigerator can be increased.

また、冷凍機の蒸発器で得られた冷水の水温は、従来冷
却用に使用されていた原子炉補機給水の水温よりはるか
に低いため、再循環ポンプ冷却器における冷却能力が飛
躍的に向上する。従って、原子炉内再循環ポンプの高負
荷連続運転も可能となる。また廃熱を有効に回収利用で
きるのでプラント全体における熱収支が改善される。
In addition, the temperature of the cold water obtained in the evaporator of the refrigerator is much lower than the water temperature of the reactor auxiliary equipment feed water that was conventionally used for cooling, so the cooling capacity of the recirculation pump cooler has been dramatically improved. do. Therefore, continuous high-load operation of the reactor recirculation pump is also possible. Furthermore, since waste heat can be effectively recovered and used, the heat balance of the entire plant is improved.

(実施例) 以下、本発明の一実施例を添付図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明に係る原子炉冷却材浄化系の廃熱利用装
置の構成を示す系統図である。
FIG. 1 is a system diagram showing the configuration of a waste heat utilization device for a reactor coolant purification system according to the present invention.

原子炉圧力容器1から循環ポンプ2によって、取り出さ
れた冷却材3の一部は、再生熱交換器4および非再生熱
交換器5で所定温度以下に冷却された模に滅過脱塩装置
6に導入されそこでイオン交換等の手段により浄化され
た後、再生熱交換器4で昇温されて、原子炉給水配管1
aを介して再び原子炉圧力容器1内に還流される。
A part of the coolant 3 taken out from the reactor pressure vessel 1 by the circulation pump 2 is cooled down to a predetermined temperature or lower in the regenerative heat exchanger 4 and the non-regenerative heat exchanger 5, and then transferred to the sterilization desalination device 6. After being purified there by means such as ion exchange, the temperature is raised in the regenerative heat exchanger 4, and the reactor water supply pipe 1
It is returned to the reactor pressure vessel 1 via a.

非再生熱交換器5には熱交換管としての冷却管16が収
容され、この冷却管16の一端は、冷却水入口配管9を
経て、原子炉補機冷・部系8に接続され、冷却管16の
他端は、冷却水出口配管10および温水供給管18を経
て、吸収式冷凍機19に接続される。非再生熱交換器5
の冷却管16には原子炉補機冷却系8から冷却水入口配
管9を経由して冷却水が供給され、ここで冷却水は熱交
換して加熱され、温水となって冷却水出口配管10に導
かれる。
A cooling pipe 16 as a heat exchange pipe is accommodated in the non-regenerative heat exchanger 5, and one end of this cooling pipe 16 is connected to the reactor auxiliary cooling system 8 through a cooling water inlet pipe 9, and is connected to the cooling system 8 for cooling. The other end of the pipe 16 is connected to an absorption refrigerator 19 via a cooling water outlet pipe 10 and a hot water supply pipe 18 . Non-regenerative heat exchanger 5
Cooling water is supplied from the reactor auxiliary equipment cooling system 8 to the cooling pipe 16 via the cooling water inlet pipe 9, where the cooling water is heated by heat exchange and becomes hot water, which is then passed through the cooling water outlet pipe 10. guided by.

また冷却水出口配管10には、温度調整弁11が設けら
れており、この温度調整弁11の開度は、非再生熱交換
器5の下流側に設けた温度制御I器12によって制御さ
れる。そして冷却水の流量を適正に維持することによっ
て、濾過脱塩装置6に流入する冷却材3の温度を所定値
以下に保っている。
Further, the cooling water outlet pipe 10 is provided with a temperature adjustment valve 11, and the opening degree of this temperature adjustment valve 11 is controlled by a temperature control device 12 provided downstream of the non-regenerative heat exchanger 5. . By maintaining the flow rate of the cooling water appropriately, the temperature of the coolant 3 flowing into the filtration and demineralization device 6 is kept below a predetermined value.

一方上記温度調整弁11の下流側に開閉弁17が設けら
れ、その開閉弁17の1次側から温水供給管18が分岐
されており、非再生熱交換器5で加熱された温水は温水
供給管18を通り吸収式冷凍機19の再生器19aに送
給される。再生器19aでは凝縮器19c内を通る冷却
水と熱交換し、ここで熱交換された温水は、温水戻り管
20を通り、開閉弁17の2次側に戻る。また上記吸収
式冷凍機19の吸収器19bおよび凝縮器19cは冷却
水配管21で順次接続される。この冷却水配管21を通
って案内される冷却水は吸収519bで吸熱して温度上
昇し、続いて凝縮器19cに案内されてここで放熱し、
凝縮される。
On the other hand, an on-off valve 17 is provided downstream of the temperature adjustment valve 11, and a hot water supply pipe 18 is branched from the primary side of the on-off valve 17, and the hot water heated by the non-regenerative heat exchanger 5 is supplied to the hot water supply pipe 18. It passes through the pipe 18 and is fed to the regenerator 19a of the absorption refrigerator 19. The regenerator 19a exchanges heat with the cooling water passing through the condenser 19c, and the heat-exchanged hot water passes through the hot water return pipe 20 and returns to the secondary side of the on-off valve 17. Further, the absorber 19b and condenser 19c of the absorption refrigerator 19 are sequentially connected through a cooling water pipe 21. The cooling water guided through the cooling water pipe 21 absorbs heat at the absorption 519b and rises in temperature, and is then guided to the condenser 19c where it radiates heat.
Condensed.

さらに、上記吸収式冷凍機19には吸収器19bと熱交
換可能に蒸発器19dが設けられており、蒸発器19d
内を通る水は吸収器19bにより冷却され、冷却された
冷水は冷水供給管22を経て再循環ポンプ冷却器15に
供給される。供給された冷水は、ここで原子炉内再循環
ポンプ13の電動機を冷却した冷却ループ配管14内の
冷却水と、熱交換して温度上昇した後に、冷水戻り管2
3を通って再び吸収式冷凍機19の蒸発器19dに戻る
ように構成されいる。
Further, the absorption refrigerator 19 is provided with an evaporator 19d capable of exchanging heat with the absorber 19b.
The water passing therethrough is cooled by the absorber 19b, and the cooled cold water is supplied to the recirculation pump cooler 15 via the cold water supply pipe 22. The supplied cold water exchanges heat with the cooling water in the cooling loop piping 14 that has cooled the electric motor of the reactor recirculation pump 13, and after the temperature rises, it is transferred to the cold water return pipe 2.
3 and returns to the evaporator 19d of the absorption refrigerator 19 again.

上記構成において、非再生熱交換器5に供給され、冷却
材3との熱交換によって加温された温水は、冷却水出口
配管10を経由し、常時閉止している1FflflJ]
弁17の1次側から分岐する温水供給管18に流入し、
吸収式冷凍機19の再生器19aに加熱源として供給さ
れる。
In the above configuration, the hot water supplied to the non-regenerative heat exchanger 5 and heated by heat exchange with the coolant 3 passes through the cooling water outlet pipe 10, which is always closed.
Flows into the hot water supply pipe 18 branching from the primary side of the valve 17,
It is supplied to the regenerator 19a of the absorption refrigerator 19 as a heating source.

温水は再生器19 aにて熱を放出して温度を下げ、次
に温水戻り管20を通り、開閉弁17の2次側に流入し
、最終的にプラント外に排出される。
The hot water releases heat in the regenerator 19a to lower its temperature, then passes through the hot water return pipe 20, flows into the secondary side of the on-off valve 17, and is finally discharged outside the plant.

一方、吸収式冷凍機19では、図示しない冷媒ポンプお
よび吸収液ポンプの駆動によって洒発器19dにおいて
冷凍作用が開始される。ずなわち冷水戻り管23を流通
してきた冷水は伝熱管24内を通る際に急冷され、この
冷水は再び冷水供給管22を通り、再循環ポンプ冷!A
器15へ供給される。再循環ポンプ冷却器15では、原
子炉内再循環ポンプ13の電動機を冷却した冷却ループ
配管14内の冷却水と熱交換がなされ、電動機は所定温
度以下に維持される。また再循環ポンプ冷却器15で加
温された冷水は、冷水戻り管23を通り、再び吸収式冷
凍n19の蒸発器19dに戻る。
On the other hand, in the absorption refrigerator 19, a refrigerating action is started in the filter generator 19d by driving a refrigerant pump and an absorption liquid pump (not shown). That is, the cold water flowing through the cold water return pipe 23 is rapidly cooled when passing through the heat transfer pipe 24, and this cold water passes through the cold water supply pipe 22 again and is cooled by the recirculation pump! A
is supplied to the container 15. In the recirculation pump cooler 15, heat is exchanged with the cooling water in the cooling loop piping 14 that has cooled the electric motor of the in-reactor recirculation pump 13, and the electric motor is maintained at a predetermined temperature or lower. Further, the cold water heated by the recirculation pump cooler 15 passes through the cold water return pipe 23 and returns to the evaporator 19d of the absorption refrigerator n19 again.

このようにして、従来、プラント運転時において、無益
にプラント外に放出されていた原子炉冷却材浄化系の非
再生熱交換器における廃熱を有効に利用し、吸収式冷凍
機を介して原子炉内再循環ポンプの電動機の冷却が効率
的にできる。
In this way, the waste heat in the non-regenerative heat exchanger of the reactor coolant purification system, which was conventionally wastefully discharged outside the plant during plant operation, can be effectively utilized and transferred to the atomic energy via the absorption chiller. The electric motor of the furnace recirculation pump can be cooled efficiently.

なお上記実施例において、非再生熱交換器5出口におけ
る温水の温度を約90℃、最大流?240m3/Hの割
合で吸収式冷凍機1つの再生器19aに供給し、そこで
約82℃の渇水に変えると設定すると、吸収式冷凍機1
9の除熱性能は約500冷凍トン(USRT)となる。
In the above embodiment, the temperature of the hot water at the outlet of the non-regenerative heat exchanger 5 was set to approximately 90°C, and the maximum flow rate was set to approximately 90°C. If it is set that the water is supplied to the regenerator 19a of one absorption chiller at a rate of 240 m3/H and the water is changed to a dry state of approximately 82°C, then the absorption chiller 1
The heat removal performance of No. 9 is approximately 500 refrigeration tons (USRT).

一方、原子炉内再循環ポンプ13の’FX ljJ機の
冷却を行う再循環ポンプ冷却器の冷却負荷は最大400
冷凍トン(USRT)程度であるので上記仕様の吸収式
冷凍機であれば充分対応できる。
On the other hand, the cooling load of the recirculation pump cooler that cools the 'FX ljJ machine of the reactor recirculation pump 13 is up to 400.
Since it is approximately 1000 ton (USRT) of refrigeration, an absorption chiller with the above specifications can be used satisfactorily.

なお吸収式冷凍機と再循環ポンプ冷却器とを接続する冷
水配管は、第1図の実施例においては、冷水が相互に循
環するように閉ループ状に形成されているので、循環す
る冷水の絶対量が節減される。
In the embodiment shown in Fig. 1, the cold water piping connecting the absorption chiller and the recirculation pump cooler is formed in a closed loop so that the cold water circulates between them. Volume is saved.

一方、冷水が外部から逐次補給され、その水温が比較的
低く、冷却操作における熱収支上右利な場合は、循環す
る閉ループ状の配管ではなく、一過性の通水系として冷
却配管を形成することもできる。この場合は、再循環ポ
ンプ冷却器における伝熱勾配が大きくなるため、冷却能
力が向上する。
On the other hand, if cold water is supplied from outside sequentially and the water temperature is relatively low, which is advantageous for the heat balance in cooling operations, the cooling piping is formed as a temporary water flow system rather than a circulating closed loop piping. You can also do that. In this case, the heat transfer gradient in the recirculation pump cooler increases, thereby improving the cooling capacity.

また、再循環ポンプ冷却器は、原子炉運転中は継続して
作動し、一方原子炉冷却材浄化系も同時に運転されてお
り、原子炉出力に対応した廃熱量が生成し、原子炉内再
循環ポンプの゛電動機の冷1fl能力も比例して増減す
るため、出力変化に対応し易い利点がある。
In addition, the recirculation pump cooler operates continuously during reactor operation, and the reactor coolant purification system is also operated at the same time. Since the 1 fl cooling capacity of the motor of the circulation pump also increases or decreases in proportion, it has the advantage of being able to easily respond to changes in output.

さらに本実施例では、再循環ポンプ冷却器の冷却水とし
て吸収式冷凍様で生成した冷水を使用しており、この冷
水は従来の原子炉補機給水の水温よりも充分低い温度を
有しているので、再循環ポンプ冷却器における冷却能力
が向上する。従って、原子炉内再循環ポンプの叶全性の
維持が図れるとともに、再循環ポンプの“電動機容量を
上記吸収式冷凍機の冷凍能力の上限値まで増大すること
ができる。従って、原子炉内再循環ポンプの高負荷運転
が可能となり炉心における冷却材循rAmを増加するこ
とができるため、原子炉の運転性能を向上させることが
できる。
Furthermore, in this embodiment, cold water generated by absorption refrigeration is used as the cooling water for the recirculation pump cooler, and this cold water has a temperature sufficiently lower than that of conventional reactor auxiliary equipment feed water. This improves the cooling capacity in the recirculation pump cooler. Therefore, the integrity of the reactor recirculation pump can be maintained, and the motor capacity of the recirculation pump can be increased to the upper limit of the refrigerating capacity of the absorption chiller. Since the circulation pump can be operated under high load and the coolant circulation rAm in the reactor core can be increased, the operating performance of the nuclear reactor can be improved.

また原子炉内再循環ポンプの電動11台当りの循環容量
を増大させることができることから、従来原子炉圧力容
器に複数台に分散して装備されていた原子炉再循環ポン
プの台数を低減することができる。また電動機容61が
変わらないものとずれば、再循環ポンプ冷却器を小型化
できるので、狭い空間である原子炉−欠格納容器内の機
器配置の設計上極めて有利となる。
In addition, since the circulation capacity per 11 electric reactor recirculation pumps can be increased, the number of reactor recirculation pumps that were conventionally installed in multiple units in the reactor pressure vessel can be reduced. Can be done. Further, if the electric motor capacity 61 is changed from the same, the recirculation pump cooler can be downsized, which is extremely advantageous in designing the equipment arrangement inside the reactor containment vessel, which is a narrow space.

本実施例によれば、タービン等を駆動させる高温の熱循
環系などの原子炉の本来の機能に影響を及ぼすこともな
く、また新たに冷熱源を求めることもなく、原子炉冷却
材浄化系の非再生熱交換器の廃熱を冷凍機を介して原子
炉再循環ポンブの電動機の冷却に対して有効に利用でき
るので原子カプラント全体の熱経済上の損失を低減させ
ることができる。
According to this embodiment, the reactor coolant purification system does not affect the original functions of the reactor, such as the high-temperature thermal circulation system that drives the turbines, etc., and does not require a new cold source. Since the waste heat of the non-regenerative heat exchanger can be effectively used for cooling the electric motor of the reactor recirculation pump via the refrigerator, the thermal economic loss of the entire nuclear couplant can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上の説明の通り、本発明によれば、非再生熱交換品で
得られた廃熱を吸収式冷凍機によって冷水に変え、その
冷水を原子炉内再循環ポンプの冷却水として供給するの
で、廃熱が有効に回収利用されプラント全体における熱
収支が改善される。
As explained above, according to the present invention, waste heat obtained from non-regenerative heat exchange products is converted into cold water by an absorption chiller, and the cold water is supplied as cooling water for the recirculation pump in the reactor. Waste heat is effectively recovered and used, improving the heat balance of the entire plant.

また、冷凍機の蒸発器で得られる冷水の水温は従来の原
子炉補機給水よりはるかに低いため、再循環ポンプ冷1
1器における冷却能力を大幅に向上させることができる
。従って原子炉内再循環ポンプの高負荷連続運転、ポン
プ本体の小型化、設置基数の低減が可能となる。
In addition, the temperature of the cold water obtained in the refrigerator evaporator is much lower than that of conventional reactor auxiliary equipment water supply, so the recirculation pump cooling 1
The cooling capacity in one device can be significantly improved. Therefore, it is possible to operate the in-reactor recirculation pump continuously under high load, downsize the pump body, and reduce the number of units installed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実論例の構成を示す系統図、第2
図は従来の原子炉冷却材浄化系廻りの構成を示す系統図
である。 1・・・原子炉圧力容器、1a・・・原子炉給水配管、
2・・・循環ポンプ、3・・・冷却材、4・・・再生熱
交換器、5・・・非再生熱交換器、6・・・濾過脱塩装
置、7・・・調整弁、8・・・原子炉補磯冷却系、9・
・・冷却水入口配管、10・・・冷却水出口配管、11
・・・温度調整弁、12・・・温度制御器、13・・・
原子炉内再循環ポンプ、14・・・冷却ループ配管、1
5・・・再循環ポンプ冷却器、16・・・冷却管、17
・・・開閉弁、18・・・温水供給管、19・・・吸収
式冷凍機、19a・・・再生器、19b・・・吸収器、
19c・・・凝縮器、19d・・・蒸発器、20・・・
温水戻り管、21・・・冷却水配管、22・・・冷水供
給管、23・・・冷水戻り管、24・・・伝熱管。 代理人弁理士  則 近 憲 佑 同        三  俣  弘  文第1図
FIG. 1 is a system diagram showing the configuration of one practical example of the present invention, and FIG.
The figure is a system diagram showing the configuration of a conventional reactor coolant purification system. 1... Reactor pressure vessel, 1a... Reactor water supply piping,
2... Circulation pump, 3... Coolant, 4... Regenerative heat exchanger, 5... Non-regenerative heat exchanger, 6... Filtration desalination device, 7... Regulating valve, 8 ...Reactor auxiliary cooling system, 9.
...Cooling water inlet piping, 10...Cooling water outlet piping, 11
...Temperature adjustment valve, 12...Temperature controller, 13...
In-reactor recirculation pump, 14...Cooling loop piping, 1
5... Recirculation pump cooler, 16... Cooling pipe, 17
... Opening/closing valve, 18... Hot water supply pipe, 19... Absorption refrigerator, 19a... Regenerator, 19b... Absorber,
19c... Condenser, 19d... Evaporator, 20...
Hot water return pipe, 21... Cooling water pipe, 22... Cold water supply pipe, 23... Cold water return pipe, 24... Heat transfer tube. Representative Patent Attorney Noriyuki Chika Yudo Hirofumi Mimata Figure 1

Claims (1)

【特許請求の範囲】 1、原子炉冷却材浄化系に原子炉冷却材を冷却する非再
生熱交換器を備えた原子炉冷却材浄化系の廃熱利用装置
において、前記非再生熱交換器にて原子炉冷却材と熱交
換されて加温される温水側を、吸収式冷凍機の再生器に
接続するとともに、上記吸収式冷凍機の蒸発器を原子炉
内再循環ポンプの再循環ポンプ冷却器に接続したことを
特徴とする原子炉冷却材浄化系の廃熱利用装置。 2、吸収式冷凍機と再循環ポンプ冷却器とは、冷水が相
互に循環するように閉ループ状に形成した冷水配管によ
って接続される特許請求の範囲第1項記載の原子炉冷却
材浄化系の廃熱利用装置。
[Scope of Claims] 1. In a waste heat utilization apparatus for a reactor coolant purification system, the reactor coolant purification system is equipped with a non-regenerative heat exchanger for cooling the reactor coolant, wherein the non-regenerative heat exchanger The hot water side, which is heated by exchanging heat with the reactor coolant, is connected to the regenerator of the absorption chiller, and the evaporator of the absorption chiller is connected to the recirculation pump cooling of the recirculation pump in the reactor. A waste heat utilization device for a nuclear reactor coolant purification system characterized by being connected to a reactor coolant purification system. 2. In the reactor coolant purification system according to claim 1, the absorption chiller and the recirculation pump cooler are connected by a cold water pipe formed in a closed loop so that the cold water mutually circulates. Waste heat utilization equipment.
JP61189560A 1986-08-14 1986-08-14 Waste-heat utilizing device for reactor coolant purifying system Pending JPS6347700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189560A JPS6347700A (en) 1986-08-14 1986-08-14 Waste-heat utilizing device for reactor coolant purifying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189560A JPS6347700A (en) 1986-08-14 1986-08-14 Waste-heat utilizing device for reactor coolant purifying system

Publications (1)

Publication Number Publication Date
JPS6347700A true JPS6347700A (en) 1988-02-29

Family

ID=16243372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189560A Pending JPS6347700A (en) 1986-08-14 1986-08-14 Waste-heat utilizing device for reactor coolant purifying system

Country Status (1)

Country Link
JP (1) JPS6347700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659219A1 (en) * 2003-06-30 2006-05-24 Oji Paper Company Limited Coated paper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659219A1 (en) * 2003-06-30 2006-05-24 Oji Paper Company Limited Coated paper
US7160608B2 (en) * 2003-06-30 2007-01-09 Oji Paper Co., Ltd. Coated paper

Similar Documents

Publication Publication Date Title
US4144723A (en) Power plant secondary coolant circuit
CN112333989A (en) Microchannel liquid cooling coupling air cooling system suitable for high heat density data center
JPS6347700A (en) Waste-heat utilizing device for reactor coolant purifying system
CN215295422U (en) Heating type lithium bromide absorption heat pump unit
CN108726520A (en) A kind of afterheat of reducing furnace recovery system
KR102176826B1 (en) Apparatus for cooling spent nuclear fuel and method for cooling spent nuclear fuel using the same
CN208776322U (en) A kind of afterheat of reducing furnace recovery system
JPS6275299A (en) Condenser exhaust-heat utilizer for nuclear power plant
CN214279619U (en) Containment heat exporting system
CN220582786U (en) Variable temperature waste heat recovery system based on lithium bromide unit
CN115565706A (en) Spent fuel storage pool cooling and purifying system combined with organic flash evaporation circulation
JPH061139B2 (en) Cold / hot water production facility
JPS60164178A (en) Solar heat collecting device
CN219063808U (en) Industrial water waste heat utilization system for thermal power plant
CN212058376U (en) Cold end cooling and recovering device of indirect cooling tower
CN217699211U (en) Outer circulation ethoxylation reaction heat regulation and control system
JP2022121782A (en) Heat supply system and heat supply method
JPH05144452A (en) Fuel cell power generating system
JPH02168573A (en) Fuel battery power generating system
JPS59190695A (en) Device for utilizing waste heat of reactor coolant clean-up system
JPS6334464A (en) Cooling hot-water supply device
Wooton et al. METHOD FOR CONTROLLING THE COOLING OF A NUCLEAR POWER REACTOR
CN112696844A (en) Heat pump type utilization system for waste heat of hydrogen cooling generator
JPS58150733A (en) Solar cooling/heating device
JPS61117482A (en) Boiling water type reactor