JPS6347637A - Quantitative analysis of steam - Google Patents
Quantitative analysis of steamInfo
- Publication number
- JPS6347637A JPS6347637A JP61191129A JP19112986A JPS6347637A JP S6347637 A JPS6347637 A JP S6347637A JP 61191129 A JP61191129 A JP 61191129A JP 19112986 A JP19112986 A JP 19112986A JP S6347637 A JPS6347637 A JP S6347637A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- infrared
- furnace
- steam
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004445 quantitative analysis Methods 0.000 title claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000010521 absorption reaction Methods 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 25
- 230000003595 spectral effect Effects 0.000 claims description 13
- 238000005452 bending Methods 0.000 claims description 3
- 239000000523 sample Substances 0.000 abstract description 16
- 238000000862 absorption spectrum Methods 0.000 abstract description 13
- 238000011088 calibration curve Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 abstract description 6
- 239000013307 optical fiber Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 94
- 238000003860 storage Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、水蒸気ガスの定量分析方法に関し、特に冶
金反応炉、精錬炉、凝固装置、ガス発生炉等の炉内の気
体中に存在する水蒸気ガスを定量分析する場合等に使用
される水蒸気ガスの定量分析方法に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for quantitatively analyzing water vapor gas, and in particular, the present invention relates to a method for quantitatively analyzing water vapor gas, which is present in gases in furnaces such as metallurgical reactors, smelting furnaces, solidification equipment, and gas generating furnaces. The present invention relates to a method for quantitatively analyzing water vapor gas, which is used when quantitatively analyzing water vapor gas.
(従来の技術とその問題点)
炉内の気体中に存在する水蒸気ガス量の測定は、炉内に
挿入したプローブ(ゾンデ)を介して、炉内圧と炉外圧
(大気圧)の差により炉内ガスを吸引採取し、その採取
ガスに対し以下に述べる定量分析法を施して水蒸気ガス
量を求めている。(Conventional technology and its problems) The amount of water vapor present in the gas inside the furnace can be measured using a probe (sonde) inserted into the furnace. The internal gas is sampled by suction, and the sampled gas is subjected to the quantitative analysis method described below to determine the amount of water vapor gas.
すなわち、第1の方法は、採取ガスを室温まで冷却し、
生成した水分量から炉内の水蒸気ガス量を求める方法で
ある。また、第2の方法は、%jFFに保持したシリカ
ゲル等の吸水部材に採取ガスを吸収させ、その吸収部材
の吸収前後の用徂差から炉内の水蒸気ガスmを求める方
法である。ざらに、第3の方法は、採取ガスをガスクロ
マトグラフィ等の買置分析器に導き、同礪器による質量
分析により炉内に存在するガス状の水分子を連続的に測
定する方法である。That is, the first method is to cool the collected gas to room temperature,
This method calculates the amount of steam gas in the furnace from the amount of water produced. The second method is to absorb the sampled gas into a water absorption member such as silica gel held at %jFF, and determine the water vapor gas m in the furnace from the difference in the amplitude of the absorption member before and after absorption. Roughly speaking, the third method is to introduce the sampled gas to an analyzer such as gas chromatography, and continuously measure gaseous water molecules present in the furnace by mass spectrometry using the same analyzer.
しかしながら、上記の測定方法では、採取した炉内ガス
が、炉内高温域から炉外室温域までの急激な温度降下を
経験するために、採取ガスの変質や東線が生じ、実際に
炉内ガス中に存在する水蒸気ガス層を測定したことには
ならないという問題を有していた。また、ガス状の水分
子を液体状の水分に変換して測定する方法であるため、
採取ガスが計測機器に至るまでの途中で一部凝縮し、測
定精度が損われるという問題も有していた。しかも、上
記ガス測定操作がバッチ方式のため、炉内ガスの過渡的
なまた瞬時の変化を追跡し測定することが原理的に不可
能であった。However, in the above measurement method, the sampled gas inside the furnace experiences a rapid temperature drop from the high temperature area inside the furnace to the room temperature outside the furnace, which causes deterioration and easting of the sampled gas, which actually occurs inside the furnace. This method had a problem in that it did not measure the water vapor gas layer present in the gas. In addition, since it is a method that converts gaseous water molecules into liquid water,
There was also the problem that some of the sampled gas condensed on the way to the measuring equipment, impairing measurement accuracy. Moreover, since the gas measurement operation described above is a batch method, it is theoretically impossible to track and measure transient or instantaneous changes in the gas in the furnace.
(発明の目的)
この発明は、上記問題を解決するためになされたもので
、高炉などの空間内に存在する水蒸気ガスを連続的に、
しかもN度良く定量分析することのできる水蒸気ガスの
定母分析方法を提供することを目的とする。(Purpose of the invention) This invention was made to solve the above problem, and it is possible to continuously collect steam gas existing in a space such as a blast furnace.
Moreover, it is an object of the present invention to provide a method for constant analysis of water vapor gas which can perform quantitative analysis with good N degree.
(目的を達成するための手段)
上述の目的を達成するため、この発明の水蒸気ガスの定
槌分析方法では、気体中に含まれる水分子の全対称変角
撮動に起因する赤外吸収スペクトル特性を測定し、この
赤外吸収スペクトル特性に基づき吸引強度を算出して水
蒸気ガスRを求めるようにしている。(Means for Achieving the Object) In order to achieve the above-mentioned object, the water vapor gas fixed hammer analysis method of the present invention uses an infrared absorption spectrum resulting from fully symmetrical angle imaging of water molecules contained in the gas. The water vapor gas R is obtained by measuring the characteristics and calculating the suction strength based on the infrared absorption spectrum characteristics.
(実施例)
この発明の具体的実施例を説明するに先立ち、まずこの
発明の原理について簡単に説明する。この発明に係る高
炉内等に存在する水蒸気ガス聞の定置分析技術は、赤外
スペクトルバンドの吸収強度と水分子濃度との間に下記
(1)式に示すランバート・ベール(Lambert−
Beer)の法則が成立することを利用し、まず吸収強
度を求め、その吸収強度から水分子濃度を導き出すよう
にしている。(Embodiments) Before describing specific embodiments of the present invention, the principle of the present invention will be briefly explained. The stationary analysis technology of water vapor gas present in a blast furnace, etc. according to the present invention is based on the Lambert-Beer equation shown in the following equation (1) between the absorption intensity of the infrared spectral band and the water molecule concentration.
Taking advantage of the fact that Beer's law holds true, the absorption intensity is first determined, and the water molecule concentration is derived from the absorption intensity.
但し、I : 入射光の強度
■ = 透過光の強度
k : 吸収係数
C: 試料濃度((+#り
d : 試料厚さくα)
ところで、光吸収の原因となる水分子の基準振動には3
種類が存在し、すなわち全対称伸縮振動ν 、全対称変
角撮動ν2および逆対称伸縮振動ν3がある。このうち
、本願は全対称変角撮動ν2に看目し、同振動数の吸収
スペクトルバンドの吸収強度を求めて、その吸収強度か
ら炉内における水分子濃度を導き出すようにしている。However, I: intensity of incident light ■ = intensity of transmitted light k: absorption coefficient C: sample concentration ((+#rid: sample thickness α) By the way, the standard vibration of water molecules that causes light absorption has 3
There are several types, namely the fully symmetric stretching vibration ν, the fully symmetric bending vibration ν2 and the antisymmetric stretching vibration ν3. Of these, in the present application, the total symmetrical angle imaging ν2 is taken into consideration, the absorption intensity of the absorption spectrum band having the same frequency is determined, and the water molecule concentration in the reactor is derived from the absorption intensity.
なお、全対称伸縮振動ν1と逆対称伸縮振動ν3による
吸収スペクトルは、強度が弱いため、これらを水蒸気ガ
スの定量分析に利用することは困難である。Note that the absorption spectra of the all-symmetrical stretching vibration ν1 and the anti-symmetrical stretching vibration ν3 have weak intensities, so it is difficult to utilize them for quantitative analysis of water vapor gas.
第1図は炉内に存在する水蒸気ガスを定量分析するため
の装置を模式的に示している。同図に示すように、この
分析装置は、炉1内で発生した赤外吸収光を炉外へ導き
出すためのプローブ2と、このプローブ2により得られ
た赤外吸収光を用いて赤外吸収スペクトル特性を得る赤
外分光器3と、この赤外分光器3により求められた赤外
吸収スペクトル特性に基づき吸収強度を算出して炉内の
水蒸気ガスけを求める計算機4とを備える。FIG. 1 schematically shows an apparatus for quantitatively analyzing water vapor gas present in a furnace. As shown in the figure, this analyzer uses a probe 2 for guiding infrared absorption light generated in a furnace 1 out of the furnace, and an infrared absorption light obtained by this probe 2. It includes an infrared spectrometer 3 that obtains spectral characteristics, and a calculator 4 that calculates the absorption intensity based on the infrared absorption spectral characteristics determined by the infrared spectrometer 3 to determine the steam gas inside the furnace.
つぎに、プローブ2の詳細を説明する。Next, details of the probe 2 will be explained.
第2図はプローブ2の前部拡大断面図を示し、第3図は
その後部断面図を示す。FIG. 2 shows an enlarged front sectional view of the probe 2, and FIG. 3 shows a rear sectional view thereof.
同図に示すように、プローブ2は、その本体胴部5が三
重の円筒構造をなしている。この本体胴部5の先端に取
付けられた本体頭部6の内部にはガス貯溜部7が形成さ
れ、このガス貯溜部7の中間部には、被分析ガスを導入
、導出する通気路8が設けられており、この通気路8に
よって上記ガス貯溜部7は外部に開口している。As shown in the figure, the main body 5 of the probe 2 has a triple cylindrical structure. A gas reservoir 7 is formed inside the main body head 6 attached to the tip of the main body body 5, and a ventilation passage 8 for introducing and extracting the gas to be analyzed is formed in the middle of the gas reservoir 7. The gas storage section 7 is opened to the outside through the ventilation path 8.
一方、本体胴部5の中心に形成された中空部9は胴部後
端まで延びており、この中空部9は前端で上記ガス貯溜
部7と連通している。ガス貯溜部7の前端には、光源と
して、例えばセラミックヒータなどからなる遠赤外線放
射体10が設けられている。また、上記中空部9の前端
近傍にはガス貯溜部7を挟んで遠赤外線放射体10と対
向し合う位置に、受光手段として例えばZn Seレン
ズなどの遠赤外光用レンズ11が設けられている。On the other hand, a hollow portion 9 formed at the center of the main body body portion 5 extends to the rear end of the body portion, and this hollow portion 9 communicates with the gas storage portion 7 at the front end. At the front end of the gas storage section 7, a far-infrared radiator 10 made of, for example, a ceramic heater is provided as a light source. Further, near the front end of the hollow portion 9, a far-infrared lens 11 such as a Zn Se lens is provided as a light receiving means at a position facing the far-infrared radiator 10 with the gas storage portion 7 in between. There is.
この遠赤外線放射体10は、本体内を通る導線りを介し
て外部の電源装置(図示せず)に接続され、この電源装
置からの電力供給により加熱される一方、同様に本体内
を経て接続される熱雷対12によってその温度が監視さ
れ、それによって供給電力を調整することにより常に一
定の温度を保つように構成される。したがって、この遠
赤外線放射体10からは、常に均一な遠赤外光が放射さ
れる。This far-infrared radiator 10 is connected to an external power supply device (not shown) via a conductive wire passing through the main body, and is heated by power supplied from this power supply device. The temperature is monitored by a thermal lightning pair 12, and the power supply is adjusted accordingly to maintain a constant temperature. Therefore, uniform far-infrared light is always emitted from this far-infrared radiator 10.
さらに、上記遠赤外光用レンズ11は、本体調部5の中
空部9内に進退自在に設けられた円筒状マウント13の
前端に固定され、この遠赤外光用レンズ11からその焦
点距離だけ離れた上記マウント13の後端部に、受光出
力導出路として例えばKR8−5などの遠赤外光用ファ
イバ14が接続される。そして、この遠赤外光用ファイ
バ14はファイバ収容管14aの中に収容されており、
本体胴部5の中空部9を経て外部の赤外分光器3(第1
図)へ接続される。Further, the far-infrared lens 11 is fixed to the front end of a cylindrical mount 13 that is provided in the hollow part 9 of the main body part 5 so as to be freely movable. A far-infrared fiber 14, such as KR8-5, is connected to the rear end of the mount 13, which is separated by a distance from the mount 13, as a light receiving output output path. This far-infrared fiber 14 is housed in a fiber housing tube 14a,
The external infrared spectrometer 3 (first
(Figure).
また、本体胴部5の三重円筒構造部のうち、最内円筒5
a、中間円筒5bおよび最外円筒5cの間のそれぞれの
空隙は、冷却水循環路15の往路および復路として使用
される。すなわち、最内円筒5aと中間円筒5bとの間
の空隙間が循環往路15aとなって、この中を冷却水が
本体頭部6の方向に向って流れ、中間円筒5bの端部付
近に設けられた連通口Aを介して、図中波線矢印で示す
ように冷却水が折返す。そして、中間円筒5bと最外円
筒5Cとの間の空隙を循環復路15bとして、この冷W
水は図の右方へと戻るようになっている。In addition, among the triple cylindrical structure portion of the main body portion 5, the innermost cylinder 5
The gaps between the intermediate cylinder 5b and the outermost cylinder 5c are used as an outgoing path and a returning path of the cooling water circulation path 15. That is, the gap between the innermost cylinder 5a and the intermediate cylinder 5b becomes a circulation path 15a, through which the cooling water flows toward the main body head 6. The cooling water is turned back through the communication port A as shown by the wavy line arrow in the figure. Then, the gap between the intermediate cylinder 5b and the outermost cylinder 5C is used as a circulation return path 15b to
The water returns to the right side of the diagram.
一方、第3図に示すように、本体胴部5の後端部におい
て、上記循環往路15aおよび循環復路15bにそれぞ
れ形成された冷却水入口15Gおよび冷部水出口15(
jは、図示しない外部の冷n1水供給装置に接続され、
この冷却水循環系によって、高温の高炉内においてもこ
のプローブが耐えうるように構成されている。On the other hand, as shown in FIG. 3, at the rear end of the main body 5, a cooling water inlet 15G and a cold section water outlet 15 (
j is connected to an external cold n1 water supply device (not shown),
This cooling water circulation system allows this probe to withstand even the inside of a high-temperature blast furnace.
また本体胴部5の後端部において、上記中空部9に連通
するガス導入管9aが形成され、中空部9が前記ガス貯
溜部7へ基準ガス(後述する)を導入するためのガス導
入路となるように構成され企。さらに、中空部9を経て
本体胴部5の後端より外部に延びる前記遠赤外光用ファ
イバ14は、本体胴部5の後端における中空部9の気密
を損うことなく進退可能とされており、その進退動作に
より円筒状マウント13(第2図)の前端の遠赤外光用
レンズ11で、前記ガス貯溜部7と中空部9との連通部
16を開閉するように構成されている。Further, a gas introduction pipe 9a communicating with the hollow part 9 is formed at the rear end of the main body body 5, and the hollow part 9 is a gas introduction passage for introducing a reference gas (described later) into the gas storage part 7. It is structured and planned to be. Further, the far-infrared fiber 14 extending outward from the rear end of the main body body 5 through the hollow part 9 can move forward and backward without impairing the airtightness of the hollow part 9 at the rear end of the main body body 5. The far-infrared lens 11 at the front end of the cylindrical mount 13 (FIG. 2) opens and closes the communication section 16 between the gas storage section 7 and the hollow section 9 by its forward and backward movements. There is.
つぎに、この分析装置を用いた水蒸気ガスの足口分析の
手順について説明する。Next, the procedure for water vapor gas foot analysis using this analyzer will be explained.
(1) まず、プローブ2を炉1内へ挿入した後、第
2図に示すようにガス貯溜部7と中空部9との連通部1
6を開放した状態でガス導入管9a(第3図)および中
空部9を経てガス貯溜部7へ水蒸気ガス成分を一切含ま
ない基準ガスを導入する。(1) First, after inserting the probe 2 into the furnace 1, as shown in FIG.
6 is open, a reference gas containing no water vapor gas component is introduced into the gas storage section 7 through the gas introduction pipe 9a (FIG. 3) and the hollow section 9.
これによりガス貯溜部7に流入していた炉内ガスは排除
され、ガス貯溜部7内は基準ガスで満たされる。基準ガ
スとしては、遠赤外域での光吸収性がなく、高炉内の高
温によっても熱分解の生じないHe、Arなどの不活性
ガスを使用するのが好ましい。As a result, the furnace gas that had flowed into the gas storage section 7 is removed, and the inside of the gas storage section 7 is filled with the reference gas. As the reference gas, it is preferable to use an inert gas such as He or Ar that does not absorb light in the far infrared region and does not undergo thermal decomposition even at high temperatures in the blast furnace.
(2) ガス貯溜部7内に基準ガスが満たされた時点
で、遠赤外線放射体10より放射されて上記基準ガスを
透過してくる遠赤外光を基準光として遠赤外光用レンズ
11で集光し、その受光出力を遠赤外光用ファイバ14
で赤外分光器3(第1図)へ導入して、このときの基準
光の放射強度スペクトル(すなわち、前記(1)式の各
波数に対応する入射光の強度■。)を測定する。こうし
て求めた基準光の測定データは、計算′g34(第1図
)内のメモリに格納する。なお、上記の測定時にも基準
ガスを貯溜部7に流入させ続けて炉内ガスの混入を防止
するが、このときの基準ガスの導入速度は、ガス貯溜部
7内の炉内ガスを排除するに足りる範囲内で、できるだ
け遅い速度とする方が好ましい。(2) When the gas reservoir 7 is filled with the reference gas, the far-infrared light lens 11 uses the far-infrared light emitted from the far-infrared radiator 10 and transmitted through the reference gas as reference light. The light is collected by the far-infrared fiber 14 and the received light output is
Then, the reference light is introduced into the infrared spectrometer 3 (FIG. 1), and the radiation intensity spectrum of the reference light at this time (that is, the intensity of the incident light corresponding to each wave number in equation (1)) is measured. The measurement data of the reference light obtained in this way is stored in the memory in calculation 'g34 (FIG. 1). Note that during the above measurement, the reference gas continues to flow into the storage section 7 to prevent the in-furnace gas from being mixed in, but the introduction speed of the reference gas at this time is such that the in-furnace gas in the gas storage section 7 is removed. It is preferable to set the speed as slow as possible within a sufficient range.
それは、ガス貯溜部7内での基準ガスの流動が大きいと
測定誤差を生じやすいためである。This is because a large flow of the reference gas within the gas reservoir 7 tends to cause measurement errors.
(3) つぎに基準ガスの導入を停止し、ガス貯溜部
7内に残溜する基準ガスを中空部9を介して吸引するこ
とにより、ガス貯溜部7内に炉内ガスを導入する。そし
て、ガス貯溜部7内に炉内ガスが充満した状態で、遠赤
外光用ファイバ14を押してガス貯溜部7と中空部9の
間の連通部16を遠赤外光用レンズ11で閉じる。ガス
貯溜部7内で炉内ガスが安定した状態のもとで、(2)
の場合と同様にして遠赤外線放射体10より放射されて
炉内ガスを透過する遠赤外光をサンプリング光として赤
外分光器3(第1図)へ導入し、そのサンプリング光の
放射強度スペクトル(すなわち、前記(1)式の各波数
に対応する透過光の強度■)を測定する。こうして求め
たサンプリング光の測定データは、次段の計算機4(第
1図)に与える。(3) Next, the introduction of the reference gas is stopped, and the reference gas remaining in the gas storage section 7 is sucked through the hollow section 9, thereby introducing the furnace gas into the gas storage section 7. Then, with the gas storage section 7 filled with furnace gas, the far-infrared fiber 14 is pushed to close the communication section 16 between the gas storage section 7 and the hollow section 9 with the far-infrared lens 11. . When the furnace gas is stable in the gas storage section 7, (2)
In the same manner as in the above case, the far-infrared light emitted from the far-infrared radiator 10 and transmitted through the furnace gas is introduced as sampling light into the infrared spectrometer 3 (Fig. 1), and the radiant intensity spectrum of the sampling light is measured. (That is, the intensity ■ of the transmitted light corresponding to each wave number in the above equation (1)) is measured. The measurement data of the sampling light obtained in this way is provided to the next stage computer 4 (FIG. 1).
(4) 計算機4では、基準ガスを透過した基準光と
炉内ガスを透過したサンプリング光とのそれぞれの測定
データに基づき、水分子の全対称変角振動ν2で観測さ
れる赤外吸収スペクトルバンドの吸収強度を算出し、さ
らにこの吸収強度と予めメモリに格納されている検量線
データ(その詳細は後述する)とに基づいて水蒸気ガス
量を求める。(4) Calculator 4 calculates the infrared absorption spectral band observed in the fully symmetric bending vibration ν2 of water molecules based on the measurement data of the reference light transmitted through the reference gas and the sampling light transmitted through the reactor gas. The absorption intensity is calculated, and the amount of water vapor gas is determined based on this absorption intensity and calibration curve data (the details of which will be described later) stored in advance in the memory.
以下にその手順を説明する。The procedure will be explained below.
まず、吸収強度の算出は、基準光の測定データ(上記(
1)式の入射光強度I。に関するデータ)と、サンプリ
ング光の測定データ(上記(1)式の透過光強度Iに関
するデータ)を用いて上記(1)式の演算処理、すなわ
ち
(。。」±
■
の演算処理を行う。この演算処理は、水分子の全対称変
角振動ν2で観測される赤外吸収スペクトルバンドに対
応する波数の範囲内で行なわれる。First, the absorption intensity is calculated using the measurement data of the reference light (above ((
1) Incident light intensity I in Eq. The arithmetic processing of the above equation (1), that is, the arithmetic processing of (..'' ± ■) is performed using the measured data of the sampling light (data regarding the transmitted light intensity I of the above equation (1)). The calculation process is performed within the range of wave numbers corresponding to the infrared absorption spectral band observed in the fully symmetrical angular vibration ν2 of water molecules.
第4図の特性曲線Bは、上記赤外吸収スペクトルバンド
における吸収強度特性の一例を示しており、上記演算処
理により特性曲線Bが求められる。ところで、ランバー
ト・ベールの法則によれば、所定の温度・圧力の条件下
では、試料長さくセル長)が同一の場合、水分子濃度と
スペクトルバンドの吸収強度との間に一定の関係が得ら
れるため、吸収強度から水蒸気ガス量を求めることが可
能となる。Characteristic curve B in FIG. 4 shows an example of absorption intensity characteristics in the above infrared absorption spectrum band, and characteristic curve B is determined by the above calculation process. By the way, according to the Lambert-Beer law, under conditions of specified temperature and pressure, if the sample length (cell length) is the same, a certain relationship can be obtained between the water molecule concentration and the absorption intensity of a spectral band. Therefore, it is possible to determine the amount of water vapor gas from the absorption intensity.
そこで、吸収スペクトルバンドの吸収強度を以下の手順
で計算し、面積強度で表示する。すなわち、水分子のス
ペクトルバンドには、第4図の特性曲線已に示すように
振動回転のスペクトルが認められるため、フーリエ級数
等の関数近似や最小2乗法等の統計解析の手法を用いて
、同図波線で示すようになだらかな曲線Cに近似させる
。つぎに、第4図の直線りに示すように、適当な位置に
スペクトルバンドのベースラインを定め、このベースラ
インDと上記のなだらかな曲線Cとで囲まれる領域の面
積Sを算出する。算出した面積Sは、赤外・吸収スペク
トルバンドの吸収強度の大きさを示している。第4図に
示す吸収強度の算出では、ベースラインDの波数範囲が
2130〜1150α−1、面積強度の測定範囲が21
09〜1160α−1とし、同図の斜線部の面積から吸
収強度を求めている。Therefore, the absorption intensity of the absorption spectrum band is calculated by the following procedure and displayed as an area intensity. In other words, in the spectral band of water molecules, a spectrum of vibrational rotation is recognized as shown in the characteristic curve in Figure 4, so using function approximation such as Fourier series and statistical analysis methods such as least squares method, A gentle curve C is approximated as shown by the wavy line in the same figure. Next, as shown by the straight line in FIG. 4, the baseline of the spectral band is set at an appropriate position, and the area S of the region surrounded by this baseline D and the above-mentioned gentle curve C is calculated. The calculated area S indicates the magnitude of the absorption intensity of the infrared absorption spectrum band. In calculating the absorption intensity shown in Figure 4, the wave number range of baseline D is 2130 to 1150α-1, and the measurement range of area intensity is 21
09 to 1160α-1, and the absorption intensity is determined from the area of the shaded area in the figure.
こうして、面積強度表示された吸収強度が算出されると
、算出された吸収強度と、計算機4のメモリに格納され
ている以下に述べる検量線データとに基づいて水蒸気ガ
ス旦が求められる。すなわち、検量線データは、面積強
度表示されたスペクトルバンドの吸収強度と、水分子濃
度との関係を表したデータであり、あらかじめ電気炉等
を用い所定温度・圧力下で種々の既知濃度の水蒸気ガス
を含むガスを用いてそれぞれの濃度に対応する吸収強度
を測定することにより求められる。第5図は実験的に求
められた検m線Eの一例を示す。同図において、横軸は
水分子濃度を示し、縦軸は面積強度表示されたスペクト
ルバンドの吸収強度を示す。同図に示すように、水分子
濃度と吸収強度との間には良好な対応が認められ、デー
タのばらつきが少なく、検量線として充分に使用可能な
ことがわかる。したがって、このような検量線データを
用いることにより、算出された吸収強度からそれに対応
する水分子濃度が求まり、これにより炉内の水蒸気ガス
伍を算出できる。これらの処理は、全て計算機4内にお
いて行なわれる。When the absorption intensity expressed as the area intensity is calculated in this way, the water vapor gas temperature is determined based on the calculated absorption intensity and the calibration curve data described below stored in the memory of the calculator 4. In other words, the calibration curve data is data that expresses the relationship between the absorption intensity of a spectral band expressed as an area intensity and the water molecule concentration. It is determined by measuring the absorption intensity corresponding to each concentration using a gas containing gas. FIG. 5 shows an example of the experimentally determined test m-line E. In the figure, the horizontal axis shows the water molecule concentration, and the vertical axis shows the absorption intensity of the spectral band expressed as the area intensity. As shown in the figure, there is a good correspondence between water molecule concentration and absorption intensity, and it can be seen that there is little variation in the data and that it can be used satisfactorily as a calibration curve. Therefore, by using such calibration curve data, the water molecule concentration corresponding to the calculated absorption intensity can be determined, and thereby the water vapor gas level in the furnace can be calculated. All of these processes are performed within the computer 4.
ところで、赤外吸収スペクトルバンドの吸収強度を面積
強度で表示する場合、スペクトルの曲線近但法と面積強
度表示のための波数範囲の選定は、吸収強度と水分子濃
度との関係を示す検量線の結果が最も妥当となるように
試行錯誤的に検討して、Riな方法で実施する。By the way, when displaying the absorption intensity of an infrared absorption spectrum band as an area intensity, the curve approximation method of the spectrum and the selection of the wave number range for displaying the area intensity are based on the calibration curve that shows the relationship between the absorption intensity and the water molecule concentration. We will conduct a trial-and-error study to ensure that the results are the most reasonable, and we will implement them in a Ri method.
このように、この水蒸気ガスの定量分析方法によれば、
プローブ2を直接炉1内に挿入し、炉内ガスによる赤外
吸収光を炉外に取り出して赤外分光器3で測定し、計口
灘4により水分子の全対称変角′fi動ν2で観測され
る赤外吸収スペクトルバンドの吸収強度を算出して、そ
の吸収強度から水蒸気ガス濃度を求めるようにしている
ため、高炉1内の水蒸気ガス濃度を炉内と同じ状態のま
まで精度良く測定できる。また、上記で述べた水蒸気ガ
ス濃度の測定作業は、必要に応じて短時間で繰り返すこ
とができるため、炉内の水蒸気ガス濃度の連続測定も可
能となる。こうして、高炉内の水蒸気ガス濃度の測定を
連続的にかつ精度良く行なえる結果、炉内における水分
子の生成、消滅に伴う反応の定債的な解明が可能となる
。In this way, according to this method of quantitative analysis of water vapor gas,
The probe 2 is directly inserted into the furnace 1, and the infrared light absorbed by the gas in the furnace is extracted outside the furnace and measured with an infrared spectrometer 3. Since the absorption intensity of the infrared absorption spectrum band observed in the blast furnace is calculated and the water vapor gas concentration is determined from the absorption intensity, the water vapor gas concentration in the blast furnace 1 can be accurately determined while keeping the same state as inside the furnace. Can be measured. In addition, since the above-mentioned operation for measuring the steam gas concentration can be repeated in a short period of time as necessary, it is also possible to continuously measure the steam gas concentration in the furnace. In this way, the water vapor gas concentration within the blast furnace can be measured continuously and with high precision, making it possible to elucidate the reactions associated with the production and extinction of water molecules within the furnace in a straightforward manner.
なお、上記実施例においては、計算機4において吸収強
度を表す面積S(第4図)を算出するように構成してい
るが、計算機4からは、第4図における特性曲線B(あ
るいは特性曲線C)およびベースラインDを描いたグラ
フがプリントアウトされるように構成し、このグラフの
特性曲線B(あるいは特性的aC>とベースラインDで
囲まれる領域を手作業で切り抜いて、その切抜部の単回
から吸収強度を求めるようにしてもよい。In the above embodiment, the computer 4 is configured to calculate the area S (FIG. 4) representing the absorption intensity, but the computer 4 calculates the characteristic curve B (or the characteristic curve C ) and the baseline D are printed out, and the area surrounded by the characteristic curve B (or characteristic aC> and the baseline D) is manually cut out, and the cutout section is The absorption intensity may be determined from a single measurement.
また、上記実施例においては、検量線データをメモリに
格納しておいて、計算−4により自動的に炉内の水蒸気
ガス量を算出するようにしているが、第5図に示すよう
な検ff1FiEを示すグラフを予め作成しておき、作
業者がこのグラフに基づき、吸収強度からそれに対応す
る水分子濃度を求めて、炉内の水蒸気ガス量を算出する
ようにしてもよい。In addition, in the above embodiment, the calibration curve data is stored in the memory and the amount of water vapor gas in the furnace is automatically calculated by Calculation-4. A graph showing ff1FiE may be created in advance, and the operator may calculate the amount of steam gas in the furnace by determining the corresponding water molecule concentration from the absorption intensity based on this graph.
(発明の効果)
以上のように−この発明の水蒸気ガスの定量分析方法に
よれば、高炉などの空間内に存在する水蒸気ガスを連続
的にしかも精度良く定量分析できるという効果が得られ
る。(Effects of the Invention) As described above, according to the method for quantitatively analyzing water vapor gas of the present invention, it is possible to achieve the effect that water vapor gas existing in a space such as a blast furnace can be quantitatively analyzed continuously and with high precision.
第1図はこの発明の一実施例として用いられる水蒸気ガ
スの定量分析装置を示す構成図、第2図はプローブの前
部拡大断面図、第3図はプローブの侵部断面図、第4図
は波数と吸収強度の関係を示す図、第5図は水分子濃度
と面積強度表示されたスペクトルバンドの吸収強度との
関係を示す図である。Fig. 1 is a configuration diagram showing a water vapor gas quantitative analysis device used as an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the front part of the probe, Fig. 3 is a sectional view of the probe's invasive part, and Fig. 4 5 is a diagram showing the relationship between wave number and absorption intensity, and FIG. 5 is a diagram showing the relationship between water molecule concentration and absorption intensity of a spectral band expressed as area intensity.
Claims (1)
する赤外吸収スペクトル特性を測定する工程と、 前記赤外吸収スペクトル特性に基づき吸収強度を算出し
て水蒸気ガス量を求める工程とを含む、水蒸気ガスの定
量分析方法。(1) A step of measuring infrared absorption spectral characteristics caused by totally symmetric bending vibration of water molecules contained in the gas, and a step of calculating the absorption intensity based on the infrared absorption spectral characteristics to determine the amount of water vapor gas. A method for quantitative analysis of water vapor gas, including
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191129A JPS6347637A (en) | 1986-08-13 | 1986-08-13 | Quantitative analysis of steam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191129A JPS6347637A (en) | 1986-08-13 | 1986-08-13 | Quantitative analysis of steam |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6347637A true JPS6347637A (en) | 1988-02-29 |
Family
ID=16269355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61191129A Pending JPS6347637A (en) | 1986-08-13 | 1986-08-13 | Quantitative analysis of steam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6347637A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107184A (en) * | 1991-08-06 | 1993-04-27 | Calsonic Corp | Oil deterioration detector |
JP2010096561A (en) * | 2008-10-15 | 2010-04-30 | Fuji Electric Systems Co Ltd | Calibration device for laser type gas analyzer |
JP2020112428A (en) * | 2019-01-11 | 2020-07-27 | 横河電機株式会社 | Gas analyzer |
-
1986
- 1986-08-13 JP JP61191129A patent/JPS6347637A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107184A (en) * | 1991-08-06 | 1993-04-27 | Calsonic Corp | Oil deterioration detector |
JP2010096561A (en) * | 2008-10-15 | 2010-04-30 | Fuji Electric Systems Co Ltd | Calibration device for laser type gas analyzer |
JP2020112428A (en) * | 2019-01-11 | 2020-07-27 | 横河電機株式会社 | Gas analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oschwald et al. | Supercritical nitrogen free jet investigated by spontaneous Raman scattering | |
KR950014941B1 (en) | Multi-channel molecular gas analysis by laser-activated raman light scattering | |
CN100416259C (en) | Spectroscopic method and its instrument for detecting isotope gas | |
Luijks et al. | Molecular beam diagnostics by Raman scattering | |
CN105486658B (en) | A kind of near-infrared physical parameter measurement method with no measuring point temperature compensation function | |
Malyj et al. | Stokes/Anti-Stokes Raman vibrational temperatures: reference materials, standard lamps, and spectrophotometric calibrations | |
EP1666870A3 (en) | Analytical method and apparatus for liquid sample using near infrared spectroscopy | |
JP2003507703A (en) | Infrared spectrometer for measuring isotope ratios | |
CN110095248A (en) | A kind of non-equilibrium property diagnostic system of high-frequency induction Flow Field in Wind Tunnel and method | |
CN106442404A (en) | Real-time on-line multi-component monitoring optical system for stable gas isotopes | |
EP1199554A3 (en) | Analytical method and apparatus for blood using near infrared spectroscopy | |
Nelson et al. | Development and testing of a novel micro-Raman probe and application of calibration method for the quantitative analysis of microfluidic nitric acid streams | |
CN107044958A (en) | A kind of measured oxygen concentration system and measuring method based on ultraviolet two grades of absorption spectrums in broadband | |
Stepanov et al. | Multicomponent analysis of biomarkers in exhaled air using diode laser spectroscopy | |
Tanichev et al. | Simulation of ν2 Raman band of methane as a function of pressure | |
US20140268154A1 (en) | Chromatography system, signal processing apparatus, chromatography data processing apparatus, and program | |
CN113376111A (en) | Method for detecting concentration of marker respiratory gas by cavity ring-down double-comb spectrum | |
CN105372204B (en) | A kind of method for online detecting near infrared spectrum of Etimicin Sulfate column separation process | |
Varanasi | Infrared line widths at planetary atmospheric temperatures | |
JPS6347637A (en) | Quantitative analysis of steam | |
Vattulainen et al. | Experimental determination of SO2, C2H2, and O2 UV absorption cross sections at elevated temperatures and pressures | |
CN202421062U (en) | Ultraviolet analyzer for measuring sulfur dioxide and nitrogen oxides | |
Wojcik et al. | ECTL application for carbon monoxide measurements | |
EP0187675B1 (en) | Method of detection and quantitative determination of sulfur and sulfur monitor using the method | |
CN101726337B (en) | Iodine flow measuring device and application thereof |