JPS6347600B2 - - Google Patents
Info
- Publication number
- JPS6347600B2 JPS6347600B2 JP17712083A JP17712083A JPS6347600B2 JP S6347600 B2 JPS6347600 B2 JP S6347600B2 JP 17712083 A JP17712083 A JP 17712083A JP 17712083 A JP17712083 A JP 17712083A JP S6347600 B2 JPS6347600 B2 JP S6347600B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- paper
- thickness
- cardboard
- thermosetting resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920005989 resin Polymers 0.000 claims description 87
- 239000011347 resin Substances 0.000 claims description 87
- 239000011111 cardboard Substances 0.000 claims description 64
- 239000000123 paper Substances 0.000 claims description 45
- 229920001187 thermosetting polymer Polymers 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 26
- 239000010410 layer Substances 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 14
- 239000002344 surface layer Substances 0.000 claims description 10
- 229920001131 Pulp (paper) Polymers 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 9
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 239000000057 synthetic resin Substances 0.000 claims description 4
- 239000011162 core material Substances 0.000 claims 3
- 238000004080 punching Methods 0.000 description 49
- 238000000034 method Methods 0.000 description 25
- 239000011120 plywood Substances 0.000 description 14
- 239000002655 kraft paper Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 5
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 229920006337 unsaturated polyester resin Polymers 0.000 description 5
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- -1 etc. Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000002650 laminated plastic Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 235000005638 Austrian pine Nutrition 0.000 description 1
- 235000018782 Dacrydium cupressinum Nutrition 0.000 description 1
- 240000006055 Dacrydium cupressinum Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000008565 Pinus banksiana Nutrition 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 235000013264 Pinus jeffreyi Nutrition 0.000 description 1
- 235000013697 Pinus resinosa Nutrition 0.000 description 1
- 235000008578 Pinus strobus Nutrition 0.000 description 1
- 235000008585 Pinus thunbergii Nutrition 0.000 description 1
- 235000014030 Podocarpus spicatus Nutrition 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- HIAAVKYLDRCDFQ-UHFFFAOYSA-L calcium;dodecanoate Chemical compound [Ca+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O HIAAVKYLDRCDFQ-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011101 paper laminate Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 235000017985 rocky mountain lodgepole pine Nutrition 0.000 description 1
- JMHCCAYJTTWMCX-QWPJCUCISA-M sodium;(2s)-2-amino-3-[4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl]propanoate;pentahydrate Chemical compound O.O.O.O.O.[Na+].IC1=CC(C[C@H](N)C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 JMHCCAYJTTWMCX-QWPJCUCISA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Laminated Bodies (AREA)
- Paper (AREA)
Description
本発明は寸法安定性に非常に優れ、時間あたり
の打抜可能回数が多く、打抜耐用回数及び打抜刃
の取替可能回数が多く、且つ堅牢で軽い紙器打抜
き用ダイボードを提供せんとするものである。
従来紙器打抜き用ダイボードにはシナ単板を直
交に成形した約18mm厚みの合板が用いられてい
る。しかし合板の場合には原木のばらつきや、使
用時の雰囲気条件(温度、湿度)の変化に伴う寸
法変化が大きいために打抜寸法がばらつき、これ
により時間あたりの打抜可能回数が制限される、
更に合板がやわらかいために打抜耐用回数と刃の
取替可能回数がかぎられる等の欠点がある。
又最近はゴムやプラスチツク、アスベストボー
ド、紙ラミネート品、紙プラスチツクラミネート
品等、従来の紙にくらべて強度の強い材料を打抜
く場合がある。又これらの強度の強い材料で牛乳
パツク、酒パック等の水容器の様に水もれをおこ
してはならないために寸法精度を要求されるも
の、あるいは精密電気電子部品の包装容器等従来
のダンボールケースにくらべ非常に寸法精度を要
求されるものを打抜く場合がある。更にフロツピ
ーデイスクの様な電子部品等の高度の寸法精度を
要求されるものを打抜く場合などがあり、紙器打
抜き用ダイボードに対して寸法安定性が益々要求
される様になつてきた。
一方紙器打抜き機械の方も進歩し、従来1時間
あたり120シヨツトから2000シヨツトであつたが、
最近のボブスト社製(スイス)の打抜機等は1時
間あたり3000シヨツトから1万5千シヨツトが可
能になり、紙器打抜き用ダイボードに対して高速
打抜きに対する寸法安定性及び堅牢性が益々要求
されるようになつてきた。
この要求に対して従来のシナベニア合板の性能
では不充分である。この要求を満足させるために
一部には金型を打抜きダイボード用に使用する場
合もあるが、重量が重いので汎用的ではなく、且
つコストが高い等の難点がある。又シナ単板以外
のラワン単板、ブナ単板、カエデ単板等による合
板の改良を試みたが、雰囲気条件の変化に伴う寸
法変化が大きく、時間あたりの打抜可能回数がか
ぎられ、更に刃の取替可能回数がかぎられる等の
欠点があつた。
以上のべた如く、従来耐久性、堅牢性及び寸法
安定性に優れ、且つ軽量で、コストの安い打抜き
用ダイボードは製造されていないのが実状であ
る。
発明者らはシナベニア合板と金型の欠点を改良
した、堅牢にして、寸法安定性が良く、時間あた
りの打抜可能回数が多く、更に軽量で打抜耐用回
数及び刃の取替可能回数の多い紙器打抜型ダイボ
ードについて検討してきた。その結果抄紙パルプ
マツトの二層以上を加熱、加圧して得られた積層
厚紙に合成樹脂を組み合わせた構成がすぐれた特
性を有する事を見いだしている(特願昭−57−
130371、特願昭−57−130372、特願昭−57−
130373、特願昭−58−45949)。更に検討を進めた
結果、ダイボード使用時における寸法安定性が極
めて良い構成を見いだした。
本発明は各種の材料を検討した結果発明された
もので、寸法安定性に非常に優れ、そのために時
間あたりの打抜可能回数が多く、且つ抜刃の打抜
耐用回数及び打抜刃の取替可能回数が多く、堅牢
で軽い紙器打抜き用ダイボードに関するものであ
る。
すなわち、抄紙パルプマツトの2層以上を加熱
加圧して得られた厚み0.5〜2.6mmの積層厚紙6〜
36枚を樹脂で貼着した積層体からなるダイボード
用材料であつて、少なくとも内部を構成する積層
厚紙には熱硬化性樹脂が2〜40%(重量%、以下
同じ)含有されている、比重1.1〜1.5、厚み15〜
19mmで、かつ揮発分が3.5〜0%の紙器打抜き用
ダイボードが従来発明者らが研究してきた厚紙積
層ダイボードにくらべきわめて寸法安定性が良
く、寸法安定性を要求される水容器等の紙器打抜
き用ダイボードに適してる事を見いだした。
本発明において、積層厚紙に用いられるパルプ
は通常のパルプでよいが、その中でもクラフトパ
ルプ、クラフト・リンターパルプの混抄物が良
く、又これらに故紙パルプを混抄したものを用い
れば、強度寸法安定性に優れ、耐久性の良いダイ
ボードが得られる。クラフトパルプの中でも針葉
樹から得られる太くて長いパルプが良く、その中
でも赤松、黒松等から得られるクラフトパルプが
最もすぐれている。
本発明に用いうる積層厚紙は、上記のパルプを
絡み合うように抄造し、水にぬれたまま2層以上
のパルプを常法にて加熱加圧積層して得られる。
更に、多層の積層厚紙を得るにはパルプマツトを
ドラムに複数以上巻きとるか、あるいは所定のケ
ースに入れ常法で適度に乾燥した後、プレス機に
て加圧加熱積層するが、このようにして得られた
厚紙を用いれば、強度及び寸法安定性に優れ、耐
久性の良いダイボードが得られる。パルプマツト
は2層以上あれば良いが、好ましくは8層以上の
ものが良い。この様な積層厚紙の中でもプレスボ
ードと呼ばれるものが、寸法安定性及び強度が優
れているためにダイボード材料としては特に適し
ている。これらのプレスボードの中でも揮発分を
3.5〜0%のものを用いれば非常に寸法安定性が
良く、その中でも特に1〜0%のものを用いれば
極めて寸法安定性が良い。プレスボードの例とし
ては、JIS C2305(1966)、B S−231(1967)、
DIN−7733(1962)、ASTM D−1305(1973)等
の規格に相当するものの中で揮発分の3.5〜0%、
好ましくは1〜0%のものである。これらの積層
厚紙を抄造するときに、通常紙を抄造する時加え
る添加剤を加えたり、又は無機基材、有機基材、
あるいはそれらの繊維を添加したり、増量剤を加
えたりする事も出来る。又積層厚紙に着色するこ
とも出来る。
本発明の積層厚紙に含有させる樹脂としては寸
法安定性が良く、時間あたりの打抜可能回数が多
い紙器打抜き用ダイボードを得るために熱硬化性
樹脂が用いられる。しかし更に寸法安定性が良
く、時間あたりの打抜可能回数が多い、紙器打抜
き用ダイボードを得るためには熱変形温度が60℃
以上(ASTM D−648)、熱膨張率が20×10-5
(ASTM P−696)の性能を有する熱硬化性樹脂
が好ましい。積層厚紙の補強、寸法安定性及び時
間あたりの打抜可能回数を考慮に入れれば用いる
樹脂としては、不飽和ポリエステル樹脂及びエポ
キシ樹脂が良い。積層厚紙に含有する樹脂量とし
ては2〜40%が良く好ましくは5〜30%である。
2%以下では寸法安定性付与の効果が期待出来
ず、40%以上になるとコスト高になる。
樹脂を含有させる方法としては、パルプマツト
抄造時に水に樹脂を溶かすか、又は8メツシユ以
上にこまかく粉砕し水に分散させてパルプマツト
を得て、これを2層以上積層する方法と、通常の
パルプマツト2層以上積層して得られた厚紙に塗
布含浸又は浸漬する方法とがある。塗布含浸又は
浸漬含浸を行なう際に、液状樹脂の場合は、その
まま使用する方法と液状樹脂を水又はアルコー
ル、ケトン、芳香族、エステル等の有材溶剤及び
これらの混合物に溶かすか、エマルジヨン化して
使用する。固型樹脂の場合は液状樹脂と同様水や
有機溶剤に溶かして使用する。図3の様に表面層
の積層厚紙1の内側に熱硬化性樹脂2を含有させ
る場合、1〜30%が良い。この場合、通常塗布含
浸又は貼着に使用する樹脂3と同じ樹脂を加圧に
より含浸する。積層厚紙の厚みは0.5〜2.6mmが良
い。0.5mm以下ではコスト高になり、2.6mm以上で
は熱硬化性樹脂を含有し樹脂で貼着されたもので
も寸法安定性の良い紙器打抜き用ダイボードは得
られない。
本発明に用いられる積層厚紙を貼着する樹脂
は、積層厚紙が寸法安定性の良い熱硬化性樹脂で
補強されているため、任意に選択出来るが、その
中でも堅牢な寸法安定性の良いダイボードを得る
には樹脂の特性として寸法安定性の点では熱変形
温度で60℃以上(ASTM D−648)、熱膨張率で
20×10-5以下(ASTM D−696)、強度面では曲
げ強さで5Kg/mm2以上(JIS−K−6911)が好ま
しい。これらの中でも熱硬化性樹脂ではメラミン
樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエス
テル樹脂が良く、熱可塑性樹脂ではポリビニール
アルコール、酢ビ樹脂、酢ビ共重合樹脂が良い。
これらの樹脂の変性物及び混合物も用いられる。
又これらの樹脂に粘着付与剤、可塑剤、軟化剤、
充填剤、ワツクス、酸化防止剤、その他添加剤、
なども加えることが出来る。
この樹脂の使用方法としては、積層厚紙に直接
塗布する方法、又はシート状繊維質基材に含浸又
は塗布し、これにより積層厚紙を貼着する方法が
ある。前者の方法では樹脂の量は厚紙の貼着面1
平方メートルあたり1〜500gが良く、このまし
くは4〜300gが良い。1g以下では充分貼着す
る事が出来ず、500g以上ではコスト高になり、
樹脂は無駄になる。後者の方法では常法にて紙、
布、不織布、ガラス繊維布等に樹脂を含浸又は塗
布する。この繊維質基材100部(重量部、以下同
じ)に対する樹脂の量は30〜200部が良く、30部
以下で充分な密着力が得られず、200部以上はコ
スト高になる。この貼着する樹脂を含有した繊維
質基材の厚みは0.05〜0.5mmが良く、0.05mm以下で
は充分な密着力と寸法安定性が得られず、0.5mm
以上ではコスト高となる。更に樹脂をシート状に
した使用方法があるが、この方法では厚み9μ〜
0.4mmのものが良く、好ましくは30μ〜0.2mm迄の
ものが良い。9μ以下では充分な密着力が得られ
ず、0.4mm以上ではコスト高になる。
本発明のダイボードの揮発分は300mm×300mm×
厚みの大きさの試験片を150℃3時間乾燥した場
合において3.5〜0%が良く、最も寸法安定性の
良い範囲は1〜0%である。揮発分3.5%以上15
%以下の範囲ではシナベニア合板にくらべはるか
に寸法安定性、堅牢性が優れているが、3.5〜0
%では連続で50万シヨツト打抜いても寸法安定性
が非常に良く、時間あたりの打抜可能回数が多
く、1〜0%では寸法変化はほとんどない。
本発明の紙器打抜きダイボードの比重は1.1〜
1.5が良い。比重が1.1より小さいと目的とする寸
法安定性が得られず、1.5をこえると重量的に重
く、実用性に乏しく、更にダイボードの加工が困
難でコストが高くなる。
本発明のダイボードの厚みは15〜19mmが良く、
15mm以下では打抜刃、折刃の固定が困難であり、
19mm以上では打抜物を取りだすためのゴムやスプ
リングを有効に使用することが出来なくなる。
本発明の揮発分が3.5〜0%の紙器打抜き用ダ
イボードを得る方法としては、抄紙パルプマツト
の2層以上を加熱加圧して得られた熱硬化性樹脂
を2〜40%含有する揮発分が3.5〜0%になるま
で乾燥された積層厚紙を使用する方法と、抄紙パ
ルプマツトの2層以上を加熱加圧して得られた積
層厚紙に熱硬化性樹脂を2〜40%含有した物を樹
脂で貼着する時、加熱乾燥しながら加圧する方法
等がある。熱硬化性樹脂を2〜40%含有する揮発
分3.5〜0%の積層厚紙を得るには、積層厚紙の
揮発分を3.5〜0%にして熱硬化性樹脂を塗布含
浸又は浸漬含浸する方法、抄造時に熱硬化性樹脂
を抄きこんだ積層厚紙を乾燥する方法及び積層厚
紙に熱硬化性樹脂を含有させた後乾燥する方法等
があり、これらの方法を組み合わせることもでき
る。
本発明の構成は、(a)図1に示した様に、熱硬化
性樹脂を2〜40%含有した積層厚紙1を樹脂2で
貼着されたもの、(b)図2に示した様に、表面層を
構成する熱硬化性樹脂を含有しない積層厚紙3と
熱硬化性樹脂を2〜40%含有した積層厚紙1とを
樹脂2で貼着されたもの、(c)図3に示した様に、
表面層を構成する熱硬化性樹脂を1〜30%内側に
含有した積層厚紙4と、熱硬化性樹脂を2〜40%
含有した積層厚紙1とを樹脂2で貼着されたも
の、及び(d)図4に示した様に、(a)の構成の表面
(両面)を合成樹脂5で被覆するか、又は熱硬化
性樹脂を含有する0.05〜0.5mmの繊維質基材シー
ト5で被覆したものである。図1及び図4の構成
の紙器打抜型ダイボードを作成した時、打抜物を
取りだすためのゴムの取りつけを容易にするため
に表面をつや消しにしたり粗化したりする事が出
来る。図1乃至図4の場合、熱硬化性樹脂を2〜
40%含有する積層厚紙の積層は抄造方向が同一方
向でも、直交方向でも、又一部同一方向一部直交
方向でも良い。
熱硬化性樹脂を含んだ積層厚紙を樹脂で貼着す
る場合、それぞれの図の如くに紙組みし積層す
る。積層する方法はプレス成形法、ブロツク積層
法等常法により加圧積層する。この場合加圧は積
層物に対し50100Kg/cm2が良く、加圧時間及び温
度については使用した樹脂、積層厚紙に含有した
熱硬化性樹脂、積層方法に適した条件でよい。
以上のべた様な紙器打抜き用ダイボード材料を
糸鋸加工、切削加工、ドリル加工等の機械的方法
や炭酸ガスレーザー等の熱的方法あるいはアクア
ジエツトの様な水力加工等の方法により抜刃挿入
の溝巾0.7±0.05mm、0.9±0.05mm等の溝加工をす
る。この溝に所定の厚さの打抜刃が挿入される。
クラフト紙、厚紙、ダンボール、リンター紙等
の紙類や、ゴム、プラスチツク、アスベスト、ボ
ード、紙プラスチツクラミネート品、紙接着剤プ
ラスチツクラミネート品等を打抜く場合、従来の
シナベニア合板の紙器打抜き用ダイボードにくら
べ、本発明の紙器打抜き用ダイボードは、きわめ
て寸法安定性が良く、時間あたりの打抜可能回数
が多く、堅牢性、耐久性に優れ、軽量であるとい
う特長を有しているものである。
以下実施例について示す。
比較例 1
ほぼ約1.85mmのシナ単板10枚を直交に配列し、
尿素接着剤を用いて通常の合板の製法により加圧
加熱成形してサンダー仕上げをし17.9mmのシナベ
ニア合板の紙器打抜き用ダイボード材料を得た。
比較例 2
クラフト・リンター混抄の48層よりなる積層厚
紙の1.9mmより厚いもの9枚の間にポリウレタン
シート8枚を夫々1枚づつ挿入し、プレス機にて
140℃、15Kg/cm2で60分間加熱加圧し同圧力で15
分間冷却して厚み18.2mm(約1.7mm厚紙、約0.3mm
ポリウレタンシート)、比重1.15、揮発分7%の
紙器打抜き用ダイボード材料を得た。
実施例 1
JIS C2305(1966)に該当、する約1.6mm厚みの
プレスボードを130℃で50分間乾燥して揮発分を
0.1%以下とし、不飽和ポリエステル樹脂、RT−
400(三井東圧製、低収縮用ベース樹脂)10部とR
−372(三井東圧製)90部とBPOペースト1部を
混合した液状樹脂に48時間室温にて浸漬含浸し樹
脂分23%含有する積層厚紙を得た。一方ジアリル
フタレートプレポリマー57部、ジアリルフタレー
トモノマー3部、不飽和ポリエステル樹脂(R−
372)40部、BPOペースト2部及びラウリン酸カ
ルシウム0.5部をアセトン100部に溶かしたポリエ
ステル変性ジアリルフタレート樹脂液を米坪200
gのクラフト紙に含浸させ、100℃で10分間乾燥
して樹脂量50%のプリプレグを得た。このプリプ
レグ210枚と前記積層厚紙111枚とを図1の構成
になる様に紙組みし、プレス機にて140℃、40
Kg、/cm2で60分間加圧加熱し、同圧力で30分間冷
却して、厚み17.0mm、比重1.42、揮発分0.1%以下
の紙器打抜き用ダイボード材料を得た。
実施例 2
JIS C2305(1966)に該当する約2mm厚みのプ
レスボードをエポキシ樹脂EP−1001(シエル化学
製)100部と4,4′ジアミノジフエニルメタン9
部をアセトン200部に溶かしたワニスに室温にて
4時間浸漬し、60℃にて1時間乾燥して樹脂分16
%含有する揮発分5.5%の積層厚紙を得た。エポ
キシ樹脂Ep−1001 100部と4,4′ジアミノジフ
エニルメタン12部をメチルエチルケトン100部に
溶かしたワニスをJIS R3414(ES−13)に該当す
る米坪166gのガラスクロスに含浸させ110℃で5
分乾燥し、樹脂量55%のプリプレグを得た。この
プリプレグ2及び510枚と前記積層厚紙19枚と
を交互に、かつ積層厚紙が一枚毎に抄造方向が直
交する様に紙組みし図4の構成にて140℃、50
Kg/cm2にて120分間加熱加圧し、同圧力で15分間
冷却して、厚み17.8mm、揮発分3.2%、比重1.27の
紙器打抜型ダイボード材料を得た。
実施例及び比較例で得たダイボード用材料を炭
酸ガスレーザーとルーター加工で溝加工を行な
い、打抜刃をうめこみ、ゴムのスプリングをつけ
紙器打抜き用ダイボードを作成した。スイスボブ
スト社製の印刷連動打抜機にて樹脂加工により防
水処理した1.0mm厚の液体パツク用紙の打抜きを
行ない、1000mlの水容器を作成し、寸法安定性、
時間あたりの打抜耐用回数、打抜耐用回数及び刃
の取替可能回数等を測定した。表1の様に従来抜
型として使用していたシナベニア合板にくらべ、
寸法安定性が良いために1時間あたりの打抜可能
回数が約3倍であり、抜刃の打抜耐用回数と抜刃
の取替可能回数もかなり多い。又揮発分が7%の
積層ボードにくらべても寸法安定性が良いために
1時間あたりの打抜可能回数も約2倍になつた。
更に実施例1では50万シヨツト打抜いている間の
寸法変化も揮発分が0.1%以下であるので、±0.02
%以下と非常にすぐれていた。
It is an object of the present invention to provide a die board for paper carton punching that has excellent dimensional stability, can be punched out many times per hour, has a long lifespan of punching, and can have a punching blade replaced many times, and is strong and lightweight. It is something. Conventionally, the die board for paper carton punching uses plywood approximately 18 mm thick, which is formed from orthogonal Chinese veneer. However, in the case of plywood, the punching dimensions vary due to variations in raw wood and large dimensional changes due to changes in atmospheric conditions (temperature, humidity) during use, which limits the number of punches that can be punched per hour. ,
Furthermore, since the plywood is soft, there is a drawback that the number of punching lifetimes and the number of times the blade can be replaced is limited. Recently, materials stronger than conventional paper, such as rubber, plastic, asbestos boards, paper laminates, and paper-plastic laminates, are sometimes punched out. In addition, these strong materials can be used for items that require dimensional accuracy to prevent water leakage, such as water containers such as milk cartons and alcohol cartons, or for conventional cardboard boxes such as packaging containers for precision electrical and electronic parts. There are times when we punch out items that require much higher dimensional accuracy than cases. Furthermore, there are cases in which die boards for punching paper cartons are required to have greater dimensional stability, as electronic parts such as floppy disks are sometimes punched out that require a high degree of dimensional accuracy. On the other hand, paper carton punching machines have also improved, and previously they could cut 120 to 2,000 shots per hour.
Recent cutting machines made by Bobst (Switzerland) are capable of producing 3,000 to 15,000 shots per hour, and die boards for paper carton cutting are increasingly required to have dimensional stability and robustness for high-speed punching. It has become like that. The performance of conventional china veneer plywood is insufficient to meet this demand. In order to meet this demand, some molds are used for punching die boards, but this method has drawbacks such as being heavy, not versatile, and high cost. In addition, attempts were made to improve plywood by using lauan veneer, beech veneer, maple veneer, etc. other than China veneer, but the dimensional changes caused by changes in atmospheric conditions were large, and the number of punches that could be punched per hour was limited. There were drawbacks such as a limit to the number of times the blade could be replaced. As mentioned above, the reality is that no punching die board has ever been manufactured that is lightweight, inexpensive, and has excellent durability, robustness, and dimensional stability. The inventors have improved the drawbacks of china veneer plywood and molds, making it robust, having good dimensional stability, allowing for more punches per hour, and being lightweight, reducing the number of punching cycles and the number of blade replacements. We have been considering die boards that are often used for paper carton punching. As a result, it was discovered that a structure in which a synthetic resin is combined with a laminated cardboard obtained by heating and pressurizing two or more layers of paper pulp mat has excellent properties (Patent Application No. 57-
130371, patent application Sho-57-130372, patent application Sho-57-
130373, patent application Sho-58-45949). As a result of further investigation, we found a configuration with extremely good dimensional stability when using a die board. The present invention was invented as a result of studying various materials, and it has excellent dimensional stability, which allows for a large number of punches per hour. This relates to a die board for punching paper cartons that can be changed many times, is strong, and is lightweight. That is, laminated cardboard 6 to 0.5 to 2.6 mm thick obtained by heating and pressing two or more layers of paper pulp mats.
A die board material consisting of a laminate of 36 sheets pasted with resin, with a specific gravity in which at least the inside of the laminated cardboard contains 2 to 40% (by weight, the same applies hereinafter) of thermosetting resin. 1.1~1.5, thickness 15~
The die board for paper carton punching, which is 19 mm in diameter and has a volatile content of 3.5 to 0%, has much better dimensional stability than the cardboard laminated die board that the inventors have been researching. I found that it is suitable for a die board. In the present invention, the pulp used for the laminated cardboard may be ordinary pulp, but among these, a mixture of kraft pulp and kraft linter pulp is preferable, and if a mixture of these and waste paper pulp is used, strength and dimensional stability can be improved. A die board with excellent durability and durability can be obtained. Among kraft pulps, thick and long pulps obtained from coniferous trees are good, and among these, kraft pulps obtained from red pine, black pine, etc. are the best. The laminated cardboard that can be used in the present invention is obtained by paper-making the above-mentioned pulps so that they are intertwined, and then laminating two or more layers of pulp while wet with water under heat and pressure in a conventional manner.
Furthermore, in order to obtain multi-layered laminated cardboard, multiple pulp mats are wound around a drum, or they are placed in a predetermined case and dried appropriately using a conventional method, and then laminated under pressure and heat using a press. If the obtained cardboard is used, a die board with excellent strength and dimensional stability and good durability can be obtained. The pulp mat may have two or more layers, but preferably eight or more layers. Among these laminated cardboards, pressboard is particularly suitable as a dieboard material because it has excellent dimensional stability and strength. Even in these pressboards, the volatile content
If 3.5 to 0% is used, the dimensional stability is very good, and especially if 1 to 0% is used, the dimensional stability is very good. Examples of pressboard are JIS C2305 (1966), B S-231 (1967),
Among those that correspond to standards such as DIN-7733 (1962) and ASTM D-1305 (1973), volatile content of 3.5 to 0%,
Preferably it is 1 to 0%. When making these laminated cardboards, additives that are normally added when making paper are added, or inorganic base materials, organic base materials,
Alternatively, such fibers or fillers can be added. It is also possible to color laminated cardboard. As the resin contained in the laminated cardboard of the present invention, a thermosetting resin is used in order to obtain a die board for paper carton punching that has good dimensional stability and can be punched out many times per hour. However, in order to obtain a die board for paper carton punching that has better dimensional stability and can be punched out more times per hour, the heat distortion temperature is 60℃.
(ASTM D-648), thermal expansion coefficient is 20×10 -5
(ASTM P-696) thermosetting resins are preferred. Unsaturated polyester resins and epoxy resins are suitable resins if the reinforcement of the laminated cardboard, dimensional stability, and number of punches per hour are taken into account. The amount of resin contained in the laminated cardboard is preferably 2 to 40%, preferably 5 to 30%.
If it is less than 2%, no effect of imparting dimensional stability can be expected, and if it is more than 40%, the cost will increase. Methods for incorporating resin include dissolving the resin in water during pulp mat papermaking, or finely crushing it into 8 or more meshes and dispersing it in water to obtain pulp mat, and laminating two or more layers of this, and a method in which the resin is laminated in two or more layers. There is a method in which cardboard obtained by laminating multiple layers is coated, impregnated, or immersed. When performing coating impregnation or dipping impregnation, in the case of liquid resin, there are two methods: using it as it is, and dissolving the liquid resin in water or a solvent such as alcohol, ketone, aromatic, ester, etc., or a mixture thereof, or emulsifying it. use. In the case of solid resin, like liquid resin, it is used by dissolving it in water or an organic solvent. When the thermosetting resin 2 is contained inside the laminated cardboard 1 of the surface layer as shown in FIG. 3, it is preferably 1 to 30%. In this case, the same resin as the resin 3 normally used for coating and impregnating or pasting is impregnated under pressure. The thickness of the laminated cardboard is preferably 0.5 to 2.6 mm. If it is less than 0.5 mm, the cost will be high, and if it is more than 2.6 mm, it will not be possible to obtain a paper carton die board with good dimensional stability even if it contains a thermosetting resin and is attached with resin. The resin for pasting the laminated cardboard used in the present invention can be selected arbitrarily because the laminated cardboard is reinforced with a thermosetting resin that has good dimensional stability. In order to obtain resin properties, in terms of dimensional stability, heat distortion temperature is 60℃ or higher (ASTM D-648), and thermal expansion coefficient is 60℃ or higher (ASTM D-648).
In terms of strength , the bending strength is preferably 5 kg/mm 2 or more (JIS-K-6911). Among these, good thermosetting resins are melamine resin, urea resin, epoxy resin, and unsaturated polyester resin, and good thermoplastic resins are polyvinyl alcohol, vinyl acetate resin, and vinyl acetate copolymer resin.
Modifications and mixtures of these resins may also be used.
In addition, tackifiers, plasticizers, softeners,
fillers, waxes, antioxidants, other additives,
etc. can also be added. Methods for using this resin include a method in which it is applied directly to laminated cardboard, or a method in which it is impregnated or applied to a sheet-like fibrous base material and thereby the laminated cardboard is attached. In the former method, the amount of resin is 1 on the adhesive side of the cardboard.
1 to 500 g per square meter is good, preferably 4 to 300 g. If it is less than 1g, it will not be able to stick well, and if it is more than 500g, the cost will be high.
Resin is wasted. In the latter method, paper,
Impregnating or coating cloth, nonwoven fabric, glass fiber cloth, etc. with resin. The amount of resin per 100 parts (parts by weight, same hereinafter) of this fibrous base material is preferably 30 to 200 parts; if it is less than 30 parts, sufficient adhesion cannot be obtained, and if it is more than 200 parts, the cost will be high. The thickness of the fibrous base material containing the resin to be adhered is preferably 0.05 to 0.5 mm; if it is less than 0.05 mm, sufficient adhesion and dimensional stability cannot be obtained;
Above that, the cost will be high. Furthermore, there is a method of using resin in sheet form, but this method uses sheets with a thickness of 9 μm or more.
0.4 mm is good, preferably 30 μm to 0.2 mm. If it is less than 9μ, sufficient adhesion cannot be obtained, and if it is more than 0.4mm, the cost will be high. The volatile content of the die board of the present invention is 300mm x 300mm x
When a test piece with a large thickness is dried at 150° C. for 3 hours, a good range is 3.5 to 0%, and a range with the best dimensional stability is 1 to 0%. Volatile content 3.5% or more15
% or less, it has much better dimensional stability and robustness than China veneer plywood, but in the range of 3.5 to 0
%, even if 500,000 shots are continuously punched, the dimensional stability is very good, and the number of punches per hour is large, and at 1 to 0%, there is almost no dimensional change. The specific gravity of the paper carton punching die board of the present invention is 1.1~
1.5 is good. If the specific gravity is less than 1.1, the desired dimensional stability cannot be obtained, and if it exceeds 1.5, it will be heavy and impractical, and furthermore, it will be difficult to process the die board and increase the cost. The thickness of the die board of the present invention is preferably 15 to 19 mm.
If it is less than 15mm, it is difficult to fix the punching blade or folding blade.
If it is 19 mm or more, the rubber or spring for taking out the punched material cannot be used effectively. As a method for obtaining a paper carton die board with a volatile content of 3.5 to 0% according to the present invention, a volatile content of 3.5% containing a thermosetting resin obtained by heating and pressing two or more layers of paper pulp mats is 2 to 40%. There are two methods: using laminated cardboard that has been dried to ~0%, and laminating cardboard obtained by heating and pressing two or more layers of paper pulp mat with a resin containing 2 to 40% thermosetting resin. When putting on clothes, there is a method of applying pressure while heating and drying. In order to obtain a laminated cardboard with a volatile content of 3.5 to 0% containing a thermosetting resin of 2 to 40%, a method of coating or dipping the laminated cardboard with a volatile content of 3.5 to 0% and applying a thermosetting resin; There are a method of drying a laminated cardboard into which a thermosetting resin has been incorporated during paper making, and a method of drying a laminated cardboard after containing a thermosetting resin, and these methods can also be combined. The structure of the present invention is as follows: (a) As shown in FIG. 1, a laminated cardboard 1 containing 2 to 40% thermosetting resin is pasted with resin 2; (b) As shown in FIG. A laminated cardboard 3 containing no thermosetting resin constituting the surface layer and a laminated cardboard 1 containing 2 to 40% of thermosetting resin are pasted together with resin 2, as shown in (c) in Fig. 3. Like,
Laminated cardboard 4 containing 1 to 30% thermosetting resin on the inside and 2 to 40% thermosetting resin constituting the surface layer.
(d) As shown in FIG. 4, the surface (both sides) of the structure of (a) is coated with synthetic resin 5 or thermoset It is coated with a 0.05 to 0.5 mm fibrous base sheet 5 containing a synthetic resin. When a paper carton die board having the structure shown in FIGS. 1 and 4 is created, the surface can be matted or roughened to facilitate the attachment of rubber for taking out the punched product. In the case of Figures 1 to 4, the thermosetting resin is
The lamination of the laminated cardboard containing 40% can be made in the same direction, or in the orthogonal direction, or in part in the same direction and in part in the orthogonal direction. When laminated cardboard containing thermosetting resin is pasted with resin, the paper is assembled and laminated as shown in each figure. The lamination method is pressurized lamination by a conventional method such as a press molding method or a block lamination method. In this case, the pressure applied to the laminate is preferably 50,100 kg/cm 2 , and the pressing time and temperature may be conditions suitable for the resin used, the thermosetting resin contained in the laminated cardboard, and the lamination method. The above-mentioned sticky die board material for paper carton punching is processed by mechanical methods such as sawing, cutting, and drilling, thermal methods such as carbon dioxide laser, or hydraulic processing such as Aquajet to create groove widths for inserting cutting blades. Machining grooves of 0.7±0.05mm, 0.9±0.05mm, etc. A punching blade having a predetermined thickness is inserted into this groove. When punching paper such as kraft paper, cardboard, cardboard, linter paper, rubber, plastic, asbestos, board, paper plastic laminate products, paper adhesive plastic laminate products, etc., use the conventional die board for punching paper cartons made of plywood plywood. In comparison, the paper carton die board of the present invention has extremely good dimensional stability, can be punched out many times per hour, has excellent robustness and durability, and is lightweight. Examples will be shown below. Comparative example 1 Ten Chinese veneers of approximately 1.85 mm were arranged orthogonally,
A die board material for punching paper cartons made of 17.9 mm Chinese veneer plywood was obtained by pressure-heat molding and sanding using a urea adhesive and a normal plywood manufacturing method. Comparative Example 2 Eight polyurethane sheets were inserted between nine sheets of 48-layer laminated cardboard thicker than 1.9 mm made of kraft/linter mixed paper, and pressed using a press.
Heat and pressurize at 140℃, 15Kg/cm 2 for 60 minutes, then heat at the same pressure for 15 minutes.
Cool for minutes to a thickness of 18.2 mm (approx. 1.7 mm thick paper, approx. 0.3 mm)
A die board material for paper carton punching with a specific gravity of 1.15 and a volatile content of 7% was obtained. Example 1 A press board with a thickness of approximately 1.6 mm that complies with JIS C2305 (1966) was dried at 130°C for 50 minutes to remove volatile matter.
0.1% or less, unsaturated polyester resin, RT-
10 parts of 400 (manufactured by Mitsui Toatsu, base resin for low shrinkage) and R
-372 (manufactured by Mitsui Toatsu) and 1 part of BPO paste were immersed in a liquid resin for 48 hours at room temperature to obtain a laminated cardboard containing 23% resin. On the other hand, 57 parts of diallyl phthalate prepolymer, 3 parts of diallyl phthalate monomer, unsaturated polyester resin (R-
372) Polyester modified diallyl phthalate resin solution prepared by dissolving 40 parts of BPO paste, 2 parts of BPO paste, and 0.5 parts of calcium laurate in 100 parts of acetone was added to 200 m2 of polyester modified diallyl phthalate resin solution.
A prepreg with a resin content of 50% was obtained by impregnating kraft paper (g) with the resin and drying it at 100°C for 10 minutes. The 210 sheets of prepreg and the 111 sheets of laminated cardboard were assembled into the configuration shown in Figure 1, and heated at 140°C for 40 minutes using a press.
Kg,/cm 2 for 60 minutes and cooled for 30 minutes at the same pressure to obtain a die board material for paper carton punching having a thickness of 17.0 mm, a specific gravity of 1.42, and a volatile content of 0.1% or less. Example 2 A press board with a thickness of about 2 mm that complies with JIS C2305 (1966) was mixed with 100 parts of epoxy resin EP-1001 (manufactured by Ciel Chemical) and 9 parts of 4,4'diaminodiphenylmethane.
200 parts of acetone at room temperature for 4 hours, and dried at 60°C for 1 hour to reduce the resin content to 16.
A laminated cardboard with a volatile content of 5.5% was obtained. A varnish made by dissolving 100 parts of epoxy resin Ep-1001 and 12 parts of 4,4'diaminodiphenylmethane in 100 parts of methyl ethyl ketone was impregnated into a glass cloth with a weight of 166 g, which corresponds to JIS R3414 (ES-13), and heated to 110℃ for 5 minutes.
After drying for 30 minutes, a prepreg with a resin content of 55% was obtained. The 10 sheets of prepreg 2 and 5 and the 19 sheets of laminated cardboard were assembled alternately so that the papermaking direction of each sheet of laminated cardboard was perpendicular to each other, and the structure shown in FIG.
The material was heated and pressurized at Kg/cm 2 for 120 minutes and cooled at the same pressure for 15 minutes to obtain a paper carton die board material having a thickness of 17.8 mm, a volatile content of 3.2%, and a specific gravity of 1.27. The die board materials obtained in Examples and Comparative Examples were grooved using a carbon dioxide laser and router processing, a punching blade was embedded therein, and a rubber spring was attached to create a die board for paper carton punching. A 1000ml water container was created by punching out 1.0mm thick liquid pack paper that had been waterproofed with resin using a print-linked punching machine manufactured by Swiss Bobst.
The number of punching cycles per hour, the number of punching cycles, and the number of times the blade can be replaced were measured. As shown in Table 1, compared to the china veneer plywood that was conventionally used as a cutting die,
Due to its good dimensional stability, the number of punches per hour can be approximately tripled, and the number of times the punching blade can be used for punching and the number of times the punching blade can be replaced is also quite large. In addition, since it has better dimensional stability than a laminated board with a volatile content of 7%, the number of punches per hour can be doubled.
Furthermore, in Example 1, the dimensional change during punching of 500,000 shots was ±0.02 since the volatile content was less than 0.1%.
%, which was very good.
【表】【table】
【表】
比較例 3
プレスボードDIN−7733(1962)に該当する1.5
mmより厚いもの12枚のそれぞれの間に、接着用フ
イルムとして約0.1mmのエチレン−酢酸ビニール
共重合体樹脂シートを入れ、プレス機で140℃、
50Kg/cm2にて30分間加熱加圧し、同圧力で20分間
冷却して厚み18.1mm、比重1.2、揮発分7%の紙
器打抜き用ダイボード材料を得た。
比較例 4
JIS C2305(1966)に該当する約1.7mm厚みのプ
レスボードに不飽和ポリエステルM−2101(三井
東圧製)100部とBPDペースト1部、をアセトン
10部に溶かした樹脂液をローラーにて塗布し、40
℃にて10分間乾燥し、樹脂分12%含有する積層厚
紙を得た。一方実施例1に用いたポリエステル変
性ジアリルフタレート樹脂液を米坪130gのクラ
フト紙に含浸し、100℃で10分間乾燥して樹脂量
50%のプリプレグを得た。前記積層厚紙9枚と前
記プリプレグ10枚とを交互に積層し、両表面に
JIS C2305(1966)に該当する0.8mm厚みのプレス
ボード2枚を図2の構成になる様に紙組みし、プ
レス機にて140℃、20Kg/cm2に60分間加圧加熱し、
17.4mm、比重1.30、揮発分4.0%の紙器打抜き用ダ
イボード材料を得た。
実施例 3
エポキシ樹脂Ep−1001(シエル化学製)100部、
4,4′ジアミノジフエニルメタン9部及びステア
リン酸カルシウム1部を2本ロールで混練し、ア
トマイザーミルで粉砕、篩分し100メツシユ以上
の微粉にしたものを、赤松パルプ抄造時に水に分
散させパルプ中に12%抄きこみ、48層よりなる
1.5mmより厚い積層厚紙を得た。これを60℃で1
時間20mmHgの減圧で乾燥し揮発分を0.4%以下
とした。JIS C2305に該当するプレスボード約1.6
mmの内側にEp−1001 100部と4,4′ジアミノジ
フエニルメタン9部をアセトン100部にとかしロ
ーラーにて塗布し、60℃で20分乾燥して樹脂分を
8%含んだ厚紙を得た。これを60℃で1時間20mm
Hgの減圧で乾燥し、揮発分を0.4%以下とした。
樹脂抄込み積層厚紙110枚を抄造方向が交互に直
交するよう紙組みし、実施例2で得たプリプレグ
2を夫々の間に挿入し、両表面に前記内面樹脂塗
布厚紙4を配して図3のように構成にて140℃、
50Kg/cm2で40分間加熱加圧し、同圧力で20分間冷
却して、厚み17.1mm、比重1.38、揮発分0.2%の紙
器打抜き用ダイボード材料を得た。
実施例 4
ASTM−D−1305(1973)に該当する約0.8mm
厚みのプレスボードに不飽和ポリエステル樹脂
PS−951(大日本インキ製)100部にパーグチル
Z1.5部を混合し、ロールコーターにて両面塗布
し、24時間後にも両面塗布し、更に24時間後に両
面塗布することにより樹脂分を16%含んだ積層厚
紙を得た。又メラミン・ホルムアルデヒド樹脂
(メチロールタイプ)100部をメタノール50部と水
50部の混合溶剤に溶かしたワニスを米坪130gの
クラフト紙に含浸させ、110℃で10分間乾燥して
樹脂量60%のプリプレグを得た。前記積層厚紙1
22枚と前記プリプレグ223枚とを交互に積層し、
約0.5mm厚みのプレスボード3を両表面層として
図2の構成になる、様に紙組みし、プレス機にて
130℃、60Kg/cm2にて10分間づつ断続で120分間加
圧加熱乾燥し、同圧力にて40分間冷却して厚み
17.8mm、比重1.32、揮発分2.8%の紙器打抜き用ダ
イボード材料を得た。
実施例及び比較例で得たダイボード材料をルー
ター加工して打抜き用ダイボードを作成した。こ
のダイボードに刃を埋めこみ、スイスボブスト社
のオートプラテンタイプの打抜機にて厚み0.5mm
のクラフト紙でタバコの20個入りケースの打抜き
を行ない、寸法安定性、時間あたりの打抜き可能
回数、抜刃の打抜耐用回数及び刃の取替可能回数
等を測定した。表2の様に従来抜型として使用し
ていたシナベニア合板にくらべ1時間あたりの打
抜可能回数が約3倍であり、打刃の打抜耐用回数
と抜刃の取替可能回数もかなり多い。又揮発分が
7%の積層ボードにくらべても寸法安定性が良い
ために、1時間あたりの打抜可能回数も約2倍に
なつた。更に実施例3では10万シヨツト打抜いて
いる間の寸法変化は、揮発分が0.2%であるので、
±0.01%以下と非常にすぐれていた。[Table] Comparative example 3 1.5 corresponding to press board DIN-7733 (1962)
An ethylene-vinyl acetate copolymer resin sheet of approximately 0.1 mm was placed as an adhesive film between each of the 12 sheets thicker than 1 mm, and heated at 140°C using a press.
The material was heated and pressurized at 50 kg/cm 2 for 30 minutes, and then cooled at the same pressure for 20 minutes to obtain a die board material for paper carton punching having a thickness of 18.1 mm, a specific gravity of 1.2, and a volatile content of 7%. Comparative Example 4 100 parts of unsaturated polyester M-2101 (manufactured by Mitsui Toatsu) and 1 part of BPD paste were added to a press board with a thickness of approximately 1.7 mm that corresponds to JIS C2305 (1966) in acetone.
Apply 10 parts of resin solution with a roller and apply 40 parts of resin solution.
It was dried at ℃ for 10 minutes to obtain a laminated cardboard containing 12% resin content. On the other hand, 130 g of kraft paper was impregnated with the polyester modified diallyl phthalate resin liquid used in Example 1, and dried at 100°C for 10 minutes to reduce the amount of resin.
50% prepreg was obtained. The 9 sheets of laminated cardboard and the 10 sheets of prepreg were laminated alternately, and the layers were coated on both surfaces.
Two sheets of 0.8 mm thick pressboard conforming to JIS C2305 (1966) were assembled into the configuration shown in Figure 2, and heated under pressure at 140°C and 20 kg/cm 2 for 60 minutes using a press machine.
A die board material for paper carton punching with a diameter of 17.4 mm, a specific gravity of 1.30, and a volatile content of 4.0% was obtained. Example 3 100 parts of epoxy resin Ep-1001 (manufactured by Ciel Chemical),
9 parts of 4,4' diaminodiphenylmethane and 1 part of calcium stearate are kneaded with two rolls, crushed with an atomizer mill, and sieved to a fine powder of 100 mesh or more, which is dispersed in water during Akamatsu pulp papermaking to form pulp. Contains 12% paper and consists of 48 layers.
A laminated cardboard thicker than 1.5 mm was obtained. 1 at 60℃
It was dried under reduced pressure of 20 mmHg for a period of time to reduce the volatile content to 0.4% or less. Press board that corresponds to JIS C2305 approximately 1.6
100 parts of Ep-1001 and 9 parts of 4,4' diaminodiphenylmethane were dissolved in 100 parts of acetone and applied with a roller to the inside of the 100 mm, and dried at 60℃ for 20 minutes to obtain cardboard containing 8% resin content. Ta. This is heated to 20mm for 1 hour at 60℃.
It was dried under reduced pressure of Hg to reduce the volatile content to 0.4% or less.
110 sheets of resin-filled laminated cardboard were assembled so that the papermaking directions were alternately perpendicular to each other, the prepreg 2 obtained in Example 2 was inserted between each sheet, and the inner resin-coated cardboard 4 was arranged on both surfaces. 140℃ with configuration as in 3.
The material was heated and pressurized at 50 kg/cm 2 for 40 minutes and cooled at the same pressure for 20 minutes to obtain a die board material for paper carton punching having a thickness of 17.1 mm, a specific gravity of 1.38, and a volatile content of 0.2%. Example 4 Approximately 0.8 mm corresponding to ASTM-D-1305 (1973)
Unsaturated polyester resin on thick pressboard
PS-951 (manufactured by Dainippon Ink) 100 copies perg chill
1.5 parts of Z were mixed and coated on both sides using a roll coater. After 24 hours, both sides were coated, and again after 24 hours, both sides were coated to obtain a laminated cardboard containing 16% resin. Also, mix 100 parts of melamine/formaldehyde resin (methylol type) with 50 parts of methanol and water.
A 130 g kraft paper was impregnated with varnish dissolved in 50 parts of a mixed solvent and dried at 110°C for 10 minutes to obtain a prepreg with a resin content of 60%. Said laminated cardboard 1
22 sheets and the 223 prepreg sheets were alternately laminated,
The press board 3 with a thickness of about 0.5 mm is used as both surface layers, and the paper is assembled in the configuration shown in Figure 2, using a press machine.
Pressure and heat dry for 120 minutes at 130℃, 60Kg/cm 2 intermittently for 10 minutes, then cool for 40 minutes at the same pressure to reduce thickness.
A die board material for paper carton punching with a diameter of 17.8 mm, a specific gravity of 1.32, and a volatile content of 2.8% was obtained. Die boards for punching were prepared by router processing the die board materials obtained in the Examples and Comparative Examples. The blade was embedded in this die board and cut to a thickness of 0.5 mm using a Swiss Bobst autoplaten type punching machine.
Cases of 20 cigarettes were punched out of kraft paper, and the dimensional stability, number of punches possible per hour, number of punching cycles of the punching blade, number of times the blade could be replaced, etc. were measured. As shown in Table 2, the number of punches that can be punched per hour is approximately three times that of the plywood plywood that was conventionally used as a cutting die, and the number of times that the punching blade can be used for punching and the number of times that the punching blade can be replaced is also considerably higher. Also, since it has better dimensional stability than a laminated board with a volatile content of 7%, the number of punches per hour can be approximately doubled. Furthermore, in Example 3, the dimensional change during punching of 100,000 shots was due to the volatile content being 0.2%.
It was very good, less than ±0.01%.
【表】【table】
図1〜図4は本発明の実施例により得られた紙
器打抜き用ダイボードの断面図である。
1……熱硬化性樹脂含有積層厚紙、2……貼着
樹脂層、3……樹脂を含有しない積層厚紙、4…
…内側のみに熱硬化性樹脂を含有する積層厚紙、
5……表面樹脂層。
1 to 4 are cross-sectional views of die boards for punching paper cartons obtained according to examples of the present invention. 1... Laminated cardboard containing thermosetting resin, 2... Adhesive resin layer, 3... Laminated cardboard not containing resin, 4...
...Laminated cardboard containing thermosetting resin only on the inside,
5...Surface resin layer.
Claims (1)
得られた厚み0.5〜2.6mmの積層厚紙に熱硬化性樹
脂を2〜40%含有させたもの6〜36枚の各厚紙間
を樹脂で貼着した、比重が1.1〜1.5、厚みが15〜
19mmで、且つ揮発分が3.5%以下の紙器打抜きダ
イボード。 2 抄紙パルプマツトの2層以上を加熱加圧して
得られた厚み0.5〜2.6mmの積層厚紙に熱硬化性樹
脂を2〜40%含有させたもの4〜34枚を芯材層と
し、その両面に熱硬化性樹脂を含有しない同一積
層厚紙を表面層として配し、各厚紙間及び表面層
を樹脂で貼着した、比重が1.1〜1.5、厚みが15〜
19mmで、且つ揮発分が3.5%以下の紙器打抜きダ
イボード。 3 抄紙パルプマツトの2層以上を加熱加圧して
得られた厚み0.5〜2.6mmの積層厚紙に熱硬化性樹
脂を2〜40%含有させたもの4〜34枚を芯材層と
し、その両面に、片方の面にのみ熱硬化性樹脂を
1〜30%含有する同一積層厚紙を該熱硬化性樹脂
を含有している面を内側にして表面層として配
し、各厚紙間及び表面層を樹脂で貼着した、比重
が1.1〜1.5、厚みが15〜19mmで、且つ揮発分が3.5
%以下の紙器打抜きダイボード。 4 抄紙パルプマツトの2層以上を加熱加圧して
得られた厚み0.5〜2.6mmの積層厚紙に熱硬化性樹
脂を2〜40%含有させたもの6〜36枚を芯材層と
し、その両面に、合成樹脂を被覆するか、又は熱
硬化性樹脂を含有する厚み0.05〜0.5mmの繊維質
基材のシートを表面層として配し、各厚紙間及び
表面層を樹脂で貼着した、比重が1.1〜1.5、厚み
が15〜19mmで、且つ揮発分が3.5%以下の紙器打
抜きダイボード。[Scope of Claims] 1. 6 to 36 sheets of laminated cardboard with a thickness of 0.5 to 2.6 mm obtained by heating and pressing two or more layers of paper pulp mats and containing 2 to 40% of thermosetting resin. Specific gravity is 1.1~1.5, thickness is 15~
A paper carton die board with a diameter of 19 mm and a volatile content of 3.5% or less. 2. 4 to 34 sheets of laminated cardboard with a thickness of 0.5 to 2.6 mm obtained by heating and pressing two or more layers of paper pulp mats and containing 2 to 40% of thermosetting resin are used as the core material layer, and on both sides Same laminated cardboard that does not contain thermosetting resin is arranged as the surface layer, and resin is attached between each cardboard and the surface layer, specific gravity is 1.1 ~ 1.5, thickness is 15 ~
A paper carton die board with a diameter of 19 mm and a volatile content of 3.5% or less. 3 4 to 34 sheets of laminated cardboard with a thickness of 0.5 to 2.6 mm obtained by heating and pressing two or more layers of paper pulp mats and containing 2 to 40% of thermosetting resin are used as the core material layer, and on both sides , the same laminated cardboard containing 1 to 30% thermosetting resin on only one side is arranged as a surface layer with the side containing the thermosetting resin inside, and the space between each cardboard and the surface layer is covered with resin. The specific gravity is 1.1 to 1.5, the thickness is 15 to 19 mm, and the volatile content is 3.5.
% or less paper carton die board. 4 6 to 36 sheets of laminated cardboard with a thickness of 0.5 to 2.6 mm obtained by heating and pressing two or more layers of paper pulp mats and containing 2 to 40% of thermosetting resin are used as the core material layer, and on both sides , a sheet of fibrous base material coated with synthetic resin or containing thermosetting resin with a thickness of 0.05 to 0.5 mm is placed as the surface layer, and the space between each cardboard and the surface layer is bonded with resin, and the specific gravity is 1.1 to 1.5 mm, thickness is 15 to 19 mm, and paper carton die-cut die board with volatile content of 3.5% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17712083A JPS6071199A (en) | 1983-09-27 | 1983-09-27 | Die board for punching paperboard box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17712083A JPS6071199A (en) | 1983-09-27 | 1983-09-27 | Die board for punching paperboard box |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6071199A JPS6071199A (en) | 1985-04-23 |
JPS6347600B2 true JPS6347600B2 (en) | 1988-09-22 |
Family
ID=16025510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17712083A Granted JPS6071199A (en) | 1983-09-27 | 1983-09-27 | Die board for punching paperboard box |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6071199A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2700370B2 (en) * | 1992-08-28 | 1998-01-21 | 三ツ星ベルト株式会社 | Manufacturing method of V-belt with ridge |
-
1983
- 1983-09-27 JP JP17712083A patent/JPS6071199A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6071199A (en) | 1985-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2204104C (en) | Low pressure melamine/veneer panel and method of making the same | |
JP3044203B2 (en) | Method of coating melamine resin on laminated paper | |
US8865317B2 (en) | Decorative laminate and method for manufacturing same | |
JPS62299339A (en) | Plastic decorative board | |
CA2278048A1 (en) | Ligneous finishing material | |
JPS6347600B2 (en) | ||
US5846662A (en) | Release liners for molded product production | |
KR20010098673A (en) | The manufacturing method of a incombustible melamine sheet | |
US5709931A (en) | Release liners for production of molded products | |
KR19990088418A (en) | Microveneer Decorative Laminate, and Method of Making, and Articles Made Therefrom | |
JPS639960B2 (en) | ||
JP3805422B2 (en) | Laminate for pachinko base plate | |
JPS5924998A (en) | Die board for punching paper ware | |
JPS5924999A (en) | Die board for punching paper ware | |
EP3034320B1 (en) | Method for producing scented decorative laminates and scented faced panels | |
JPS59175998A (en) | Die board for punching paper-ware | |
WO2000069630A1 (en) | Abrasion-resistant decor sheet | |
JP2002046227A (en) | Decorative material having natural texture | |
JP2001105405A (en) | Wood finished material | |
JP3343605B2 (en) | Top board | |
JPS6121241Y2 (en) | ||
JPS638885B2 (en) | ||
JPS6021696B2 (en) | Manufacturing method of laminates | |
SE505234C2 (en) | Door mainly intended as front door | |
JPS5925000A (en) | Die board for punching paper ware |