JPS6347226B2 - - Google Patents

Info

Publication number
JPS6347226B2
JPS6347226B2 JP4152082A JP4152082A JPS6347226B2 JP S6347226 B2 JPS6347226 B2 JP S6347226B2 JP 4152082 A JP4152082 A JP 4152082A JP 4152082 A JP4152082 A JP 4152082A JP S6347226 B2 JPS6347226 B2 JP S6347226B2
Authority
JP
Japan
Prior art keywords
extraction electrode
electrons
insulator
ion beam
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4152082A
Other languages
Japanese (ja)
Other versions
JPS58158843A (en
Inventor
Ryuzo Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP4152082A priority Critical patent/JPS58158843A/en
Publication of JPS58158843A publication Critical patent/JPS58158843A/en
Publication of JPS6347226B2 publication Critical patent/JPS6347226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details

Description

【発明の詳細な説明】 本発明は、引出し電極と接地カソードの電極の
構造を改良したイオン銃に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion gun with improved electrode structures including an extraction electrode and a grounded cathode.

エレクトロハイドロダイナミクス(Electro−
hydrodynamics;以下単にEHDと略す)による
液体金属(例えばGa等)のイオン源が、超LSIの
サブミクロン・ドライ・プロセス(Submicron
Dry Process)、例えば、マスクレスドーピング
(Maskless Doping)、リゾグラフイ
(Lithography)、マスクレススパツタリング
(Maskless Sputtering)などで注目をあびてい
る。そこで、このような目的のために、50KV級
の加速電圧のイオン銃等が必要とされている。
Electrohydrodynamics
A liquid metal (e.g., Ga) ion source using hydrodynamics (hereinafter simply abbreviated as EHD) is used in the submicron dry process (Submicron) of VLSI.
For example, maskless doping, lithography, maskless sputtering, etc. are attracting attention. Therefore, for this purpose, an ion gun or the like with an accelerating voltage of 50 KV class is required.

第1図は、このような従来のEHD形イオン銃
の構成断面を示す図である。図において、1は
Ga等の液体金属を貯えるリザーバ、2はイオン
ビームが発生するエミツタ、3はリザーバ加熱用
ヒータ、4は該ヒータ3を固定するステム、5は
円板状の絶縁物である。6はイオン銃真空側にエ
ミツタ電位及びリザーバ加熱用電流を導入する高
電圧耐真空導入リード、7はエミツタ2より金属
イオンが発生するに足りる高電界を与えるための
引出し電極、8は該引出し電極に高電圧を供給す
るための高電圧耐真空導入リードである。9は高
電圧碍子、10は接地カソード(接地電極)、1
1はその内部が真空引きされたイオン銃室容器で
ある。12はリザーバ1を加熱するための加熱用
電源、13はエミツタ2から出るイオンビームの
量を制御する引出し電圧を与えるための引出し電
源、14はイオンビームを加速するための加速電
圧を与える加速用電源である。15は接地カソー
ド10中に設けられたイオンビームを通すための
開口である。
FIG. 1 is a cross-sectional view showing the structure of such a conventional EHD type ion gun. In the figure, 1 is
A reservoir for storing a liquid metal such as Ga, 2 an emitter for generating an ion beam, 3 a heater for heating the reservoir, 4 a stem for fixing the heater 3, and 5 a disc-shaped insulator. 6 is a high voltage resistant vacuum introduction lead for introducing the emitter potential and reservoir heating current into the vacuum side of the ion gun; 7 is an extraction electrode for applying a high electric field sufficient to generate metal ions from the emitter 2; 8 is the extraction electrode. This is a high voltage resistant vacuum introduction lead for supplying high voltage to. 9 is a high voltage insulator, 10 is a ground cathode (ground electrode), 1
1 is an ion gun chamber container whose inside is evacuated. 12 is a heating power source for heating the reservoir 1; 13 is an extraction power source for providing an extraction voltage to control the amount of ion beam emitted from the emitter 2; and 14 is an acceleration power source for providing an acceleration voltage for accelerating the ion beam. It is a power source. 15 is an opening provided in the grounded cathode 10 through which the ion beam passes.

このように構成されたイオン銃において、ヒー
タ3によりリザーバ1が加熱されると、該リザー
バ中の液体金属がエミツタ2に溶出してくる。こ
の状態でエミツタ2に加速電圧、引出し電極7に
引出し電圧、接地カソード10に接地電位がそれ
ぞれ与えられると、エミツタ2の先端にはテーラ
ーコーンが形成され、イオンビームが発生する。
このエミツタ2から放出される金属イオン(例え
ばGa+)は、接地カソード10の開口15を通り
抜けてイオンビームの収束系に導かれるイオンビ
ームの他に、接地カソード10の面に衝突するイ
オンビームがあり、後者のイオンビームがエミツ
タ2から放出されるイオンビームの大半を占めて
いる。
In the ion gun configured in this manner, when the reservoir 1 is heated by the heater 3, the liquid metal in the reservoir is eluted into the emitter 2. In this state, when an accelerating voltage is applied to the emitter 2, an extraction voltage is applied to the extraction electrode 7, and a ground potential is applied to the ground cathode 10, a Taylor cone is formed at the tip of the emitter 2 and an ion beam is generated.
The metal ions (for example, Ga + ) emitted from this emitter 2 pass through the aperture 15 of the grounded cathode 10 and are guided into the ion beam focusing system, as well as the ion beam that collides with the surface of the grounded cathode 10. The latter ion beam occupies most of the ion beam emitted from the emitter 2.

Ga+等のEHD形イオン銃では、エミツタ2か
ら15°乃至20゜の半角の範囲に円錐状にイオンビー
ムが放出される。開口15を通過しないイオンビ
ームは、接地カソード10に衝突する際に入射イ
オンビーム電流(一次イオンビーム電流)にほぼ
等しい量の二次電子eを放出する。尚、二次電子
と同時に二次イオンも放出されるが、本発明には
直接関係がないのでその説明はここでは省略す
る。この二次電子eは、引出し電圧Eexが加速電
圧Eacより低い場合、大半は引出し電極7の表面
に向けて加速され該表面に衝突する。この時、引
出し電極7の表面から二次電子が発生するが、該
二次電子が有するエネルギーは低く、しかも発生
面が接地カソード10及び容器11に対して正で
あるので、微小放電(詳細は後述)には直接関与
しない。そこで、引出し電極7の表面に衝突し背
面散乱した電子について述べる。この背面散乱電
子は、接地カソード10の面から加速され引出し
電極7の面に衝突した際、若干のエネルギー損失
をうける。即ち、1回の散乱によつて数十乃至数
百eVのエネルギーを失う。背面散乱電子は、引
出し電極7の面から接地カソード10の面に向け
てはね返るが、引出し電極7の電位が接地カソー
ド10の電位よりも正であるので、図の矢印に示
すように再び引出し電極7の面に向けて押し戻さ
れ、再び引出し電極面に衝突する。衝突した電子
はある確率で再び背面散乱を起こし一定のエネル
ギーを失つて、再び接地カソード10或いは容器
11の面に向かつてはね返るが、前回と同様、引
出し電極7の面が接地カソード10及び容器11
に対して正であるので、引出し電極7の面に向か
つて再び押し戻される。このような過程を何回も
繰り返しながら、図示のような経路をたどり接地
カソード10の面上で発生した二次電子eは、つ
いには散乱回数に応じたエネルギーを失つて碍子
面に衝突する。
In an EHD type ion gun such as Ga + , an ion beam is emitted in a conical shape within a half-angle range of 15° to 20° from the emitter 2. The ion beam that does not pass through the aperture 15 emits secondary electrons e in an amount approximately equal to the incident ion beam current (primary ion beam current) when colliding with the grounded cathode 10. Incidentally, secondary ions are also emitted simultaneously with the secondary electrons, but since this is not directly related to the present invention, the explanation thereof will be omitted here. When the extraction voltage Eex is lower than the accelerating voltage Eac, most of the secondary electrons e are accelerated toward the surface of the extraction electrode 7 and collide with the surface. At this time, secondary electrons are generated from the surface of the extraction electrode 7, but the energy of the secondary electrons is low, and the generation surface is positive with respect to the grounded cathode 10 and the container 11, so a micro discharge (details are (described below) are not directly involved. Therefore, the electrons that collided with the surface of the extraction electrode 7 and were backscattered will be described. When these backscattered electrons are accelerated from the surface of the grounded cathode 10 and collide with the surface of the extraction electrode 7, they undergo some energy loss. That is, several tens to hundreds of eV of energy is lost due to one scattering. The backscattered electrons bounce from the surface of the extraction electrode 7 toward the surface of the grounded cathode 10, but since the potential of the extraction electrode 7 is more positive than the potential of the grounded cathode 10, the backscattered electrons bounce back from the surface of the extraction electrode 7 to the surface of the grounded cathode 10. It is pushed back toward the surface of 7 and collides with the extraction electrode surface again. The collided electrons will be backscattered again with a certain probability, lose a certain amount of energy, and bounce back toward the surface of the grounded cathode 10 or container 11, but as before, the surface of the extraction electrode 7
Since it is positive with respect to the drawing electrode 7, it is pushed back toward the surface of the extraction electrode 7 again. While repeating this process many times, the secondary electrons e generated on the surface of the grounded cathode 10 follow the path shown in the figure, and finally lose energy corresponding to the number of scatterings and collide with the insulator surface.

碍子9の16部分には、加速電圧Eaccと引出し
電圧Eexとの差電圧(Eacc−Eex)が印加されて
おり、表面電位分布は該表面にそつて零から
(Eacc−Eex)の間の分布となつており、前記散
乱電子は、最初に接地カソード10の面より引出
し電極7の面に向けて加速された二次電子の持つ
エネルギーから、前述したような引出し電極表面
で繰り返す数回の弾性散乱によつて失つたエネル
ギーを差し引いたエネルギーに等しい碍子表面電
位点に、最初に入射する。
A differential voltage (Eacc - Eex) between the accelerating voltage Eacc and the extraction voltage Eex is applied to 16 parts of the insulator 9, and the surface potential distribution is a distribution between zero and (Eacc - Eex) along the surface. The scattered electrons are caused by the energy of the secondary electrons, which are first accelerated from the surface of the grounded cathode 10 toward the surface of the extraction electrode 7, and then due to the elasticity that is repeated several times on the surface of the extraction electrode as described above. It first enters the insulator surface potential point whose energy is equal to the energy minus the energy lost due to scattering.

一般に碍子(例えばAl2O3の場合)表面は、電
子ビームの入射があると二次電子が放出する割合
は、入射電子のエネルギーに依存する。この入射
電子に対する二次電子の発生効率が1以下になる
電圧は100eV以下、3KeV以上のエネルギーを有
する電子の場合である。ここでは散乱電子の持つ
エネルギーは100eV以下の低いエネルギーである
ので、前述の電子が最初に入射する碍子表面上の
点は負に帯電することになる。
Generally, when an electron beam is incident on the surface of an insulator (for example, Al 2 O 3 ), the rate at which secondary electrons are emitted depends on the energy of the incident electrons. The voltage at which the generation efficiency of secondary electrons with respect to incident electrons is 1 or less is 100 eV or less, for electrons having energy of 3 KeV or more. Since the scattered electrons have a low energy of 100 eV or less, the point on the insulator surface where the electrons first enter becomes negatively charged.

この結果、碍子表面の電位分布が元のそれより
も若干変化する。即ち、散乱電子が最初に入射し
た碍子表面電位は引出し電極7と等電位になる傾
向を示す。更に、接地カソード10の面から引き
続き発生する他の二次電子も前述のようにして引
出し電極7の表面で数回の散乱を繰り返して碍子
表面に衝突する。この散乱電子の碍子表面におけ
る衝突点は、今度は最初に碍子表面に衝突した電
子によつて変歪した新しい電位分布に基づいて、
更に碍子表面の接地電位側に若干シフトした点に
衝突しこの点を負に帯電させる。
As a result, the potential distribution on the insulator surface changes slightly from the original one. That is, the surface potential of the insulator to which the scattered electrons first enter tends to be equal to the potential of the extraction electrode 7. Furthermore, other secondary electrons subsequently generated from the surface of the grounded cathode 10 are also scattered several times on the surface of the extraction electrode 7 as described above, and collide with the insulator surface. The point of collision of these scattered electrons on the insulator surface is now based on the new potential distribution distorted by the electrons that first collided with the insulator surface.
Furthermore, it collides with a point on the insulator surface that is slightly shifted toward the ground potential side, and this point becomes negatively charged.

このような過程が接地カソード10にイオンビ
ームが衝突する際に発生する二次電子eの数だけ
起こる結果、碍子表面の電位分布はイオンビーム
電流量と碍子9の固有抵抗値に依存し変化する。
その変化する方向は、引出し電極7と等しい電位
が徐々に碍子9の接地電位側に移動し延びてゆく
様相となる。即ち、碍子表面の引出し電極7側部
分X1と接地電位点17側部分X2との間の碍子表
面電位は、イオンビーム発生後の時間の経過と共
に、第2図のf1,f2,f3,f4のような分布に移る。
このために碍子9の接地電位点17部の電界強度
が高くなり、この部分から放出される電界放出電
子は碍子9の面に沿つて引出し電極7に向けて流
れ始める臨界値が存在する。この電界放出電子は
接地電位点17の接地部金属表面が必ずしも清浄
でないので、非常に不規則、不安定な電子線電流
となる。これが、イオン銃において発生するイオ
ンビーム発生中の微小放電である。この微小放電
は、加速電圧の変動を引き起こし、このためイオ
ンビームの安定な集束を得ることができなくな
る。
As a result, the potential distribution on the insulator surface changes depending on the amount of ion beam current and the specific resistance value of the insulator 9. As a result, such a process occurs by the number of secondary electrons e generated when the ion beam collides with the grounded cathode 10. .
The direction of change is such that the potential equal to that of the extraction electrode 7 gradually moves and extends toward the ground potential side of the insulator 9. That is, the insulator surface potential between the extraction electrode 7 side portion X 1 and the ground potential point 17 side portion X 2 of the insulator surface changes to f 1 , f 2 , We move on to distributions like f 3 and f 4 .
For this reason, the electric field strength at the ground potential point 17 of the insulator 9 becomes high, and there exists a critical value at which the field emission electrons emitted from this part begin to flow toward the extraction electrode 7 along the surface of the insulator 9. Since the ground metal surface of the ground potential point 17 is not necessarily clean, the field emitted electrons become a very irregular and unstable electron beam current. This is the micro discharge that occurs during ion beam generation in the ion gun. This minute discharge causes fluctuations in the accelerating voltage, making it impossible to obtain stable focusing of the ion beam.

本発明は、このような点に鑑みてなされたもの
で、一次イオンビームによつて発生する二次電子
が引出し電極側に加速されないように引出し電極
に対向する先端部分が絞られた筒状の突出電極を
接地カソードに設けると共に、前記引出し電極の
前記突出電極に対向する部分に筒状の突出部を設
け、接地カソード側より加速される二次電子が引
出し電極に衝突し発生する弾性散乱電子を閉じ込
めて微小放電をなくし、安定なイオンビームを得
ることができるイオン銃を実現したものである。
The present invention has been made in view of these points, and includes a cylindrical tube whose tip facing the extraction electrode is constricted so that the secondary electrons generated by the primary ion beam are not accelerated toward the extraction electrode. A protruding electrode is provided on the grounded cathode, and a cylindrical protrusion is provided on a portion of the extraction electrode opposite to the protrusion electrode, so that secondary electrons accelerated from the grounded cathode side collide with the extraction electrode to generate elastically scattered electrons. This is an ion gun that can confine the ions, eliminate minute discharges, and obtain a stable ion beam.

以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は、本発明の一実施例の要部を示す断面
図である。第1図と同一部分には同一の符号を付
し、その説明は省略する。図において、7′は引
出し電極で、円筒状の突出部20を有している。
10′は接地カソードで、先端部が絞られた円筒
状の突出電極21を有している。該突出電極21
は前記突出部20に対向して配置されている。
FIG. 3 is a sectional view showing essential parts of an embodiment of the present invention. Components that are the same as those in FIG. 1 are designated by the same reference numerals, and their description will be omitted. In the figure, reference numeral 7' denotes an extraction electrode, which has a cylindrical protrusion 20.
Reference numeral 10' denotes a grounded cathode, which has a cylindrical protruding electrode 21 with a tapered tip. The protruding electrode 21
is arranged opposite to the protrusion 20 .

このように構成された本発明イオン銃の動作を
次に説明する。
The operation of the ion gun of the present invention constructed as described above will be explained next.

エミツタ2から放出されるイオンビームは、接
地カソード10′の表面Aに衝突し二次電子eを
放出するが、突出電極21が表面Aを覆う形状と
なつているため、A表面の引出し電極7′による
電界は弱まり、引出し電極7′側に引き出され加
速される二次電子は表面Aで発生する二次電子の
総数に比べると著しく減少する。更に、引出し電
極7′側に加速される分の二次電子は、前述した
従来のイオン銃と同様に、引出し電極7′の表面
Bに衝突し弾性散乱電子となるが、引出し電極
7′側には突出部20があるために、該突出部2
0内で背面散乱を繰り返すだけで、突出部20と
突出電極21との間の間隙Dを通り抜けること
は、ほとんどできなくなる。従つて、前述したよ
うに、背面散乱を繰り返しながら碍子表面16ま
で到達する電子の数は激減し、イオンビーム量を
増加させても微小放電の発生は極めて少ない。こ
のため、安定なイオンビームを得ることができ
る。
The ion beam emitted from the emitter 2 collides with the surface A of the grounded cathode 10' and emits secondary electrons e, but since the protruding electrode 21 is shaped to cover the surface A, the extraction electrode 7 on the surface A The electric field caused by ' is weakened, and the number of secondary electrons extracted and accelerated toward the extraction electrode 7' side is significantly reduced compared to the total number of secondary electrons generated on the surface A. Further, the secondary electrons accelerated toward the extraction electrode 7' side collide with the surface B of the extraction electrode 7' and become elastically scattered electrons, similar to the conventional ion gun described above, but the secondary electrons accelerated toward the extraction electrode 7' side Since there is a protrusion 20, the protrusion 2
If the back scattering is repeated within 0, it becomes almost impossible for the light to pass through the gap D between the protruding portion 20 and the protruding electrode 21. Therefore, as described above, the number of electrons reaching the insulator surface 16 while repeating back scattering is drastically reduced, and even if the amount of ion beam is increased, the occurrence of minute discharges is extremely small. Therefore, a stable ion beam can be obtained.

以上詳細に説明したように、本発明によれば、
一次イオンビームによつて発生する二次電子のほ
とんどは引出し電極側に加速されず、又、加速さ
れた一部の二次電子が引出し電極に衝突した際に
発生する弾性散乱電子は閉じ込められるので、微
小放電が激減し、安定なイオンビームが得られ
る。しかも、その構成は極めて簡単であるため、
実用上の効果が大きい。
As explained in detail above, according to the present invention,
Most of the secondary electrons generated by the primary ion beam are not accelerated toward the extraction electrode, and elastically scattered electrons generated when some of the accelerated secondary electrons collide with the extraction electrode are trapped. , micro discharges are drastically reduced and a stable ion beam can be obtained. Moreover, its configuration is extremely simple, so
It has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のEHD型イオン銃の構成断面図、
第2図は碍子表面の電位分布を示す図、第3図は
本発明の一実施例の要部を示す断面図である。 1…リザーバ、2…エミツタ、3…ヒータ、4
…ステム、5…絶縁物、6,8…導入リード、
7,7′…引出し電極、9…碍子、10,10′…
接地カソード、11…容器、12…加熱用電源、
13…引出し電源、14…加速用電源、15…開
口、16…碍子表面、17…接地電位点、20…
突出部、21…突出電極。
Figure 1 is a cross-sectional view of the structure of a conventional EHD type ion gun.
FIG. 2 is a diagram showing the potential distribution on the surface of the insulator, and FIG. 3 is a sectional view showing the main part of an embodiment of the present invention. 1...Reservoir, 2...Emitter, 3...Heater, 4
...Stem, 5...Insulator, 6, 8...Introduction lead,
7, 7'... Extraction electrode, 9... Insulator, 10, 10'...
Grounded cathode, 11... Container, 12... Heating power supply,
13... Output power source, 14... Acceleration power source, 15... Opening, 16... Insulator surface, 17... Ground potential point, 20...
Protruding portion, 21...Protruding electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 引出し電極7′に対向する先端部分が絞られ
た筒状の突出電極21を接地カソード10′に設
けると共に、前記引出し電極7′の前記突出電極
21に対向する部分に筒状の突出部20を設けた
電極構造を有するイオン銃。
1. A cylindrical protruding electrode 21 with a tapered tip facing the extraction electrode 7' is provided on the ground cathode 10', and a cylindrical protrusion 20 is provided on a portion of the extraction electrode 7' facing the protruding electrode 21. An ion gun with an electrode structure.
JP4152082A 1982-03-16 1982-03-16 Ion gun Granted JPS58158843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152082A JPS58158843A (en) 1982-03-16 1982-03-16 Ion gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152082A JPS58158843A (en) 1982-03-16 1982-03-16 Ion gun

Publications (2)

Publication Number Publication Date
JPS58158843A JPS58158843A (en) 1983-09-21
JPS6347226B2 true JPS6347226B2 (en) 1988-09-21

Family

ID=12610651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152082A Granted JPS58158843A (en) 1982-03-16 1982-03-16 Ion gun

Country Status (1)

Country Link
JP (1) JPS58158843A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167357U (en) * 1986-04-14 1987-10-23
US6977384B2 (en) * 2003-08-27 2005-12-20 Fei Company Shaped sputter shields for improved ion column operation
DE102010041156B9 (en) * 2010-09-21 2018-01-25 Carl Zeiss Microscopy Gmbh Aperture unit for a particle beam device and particle beam device
JP2014102980A (en) * 2012-11-20 2014-06-05 Gigaphoton Inc Target supply device

Also Published As

Publication number Publication date
JPS58158843A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
US4388560A (en) Filament dispenser cathode
US7067821B2 (en) Flood gun for charge neutralization
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
EP0346458A1 (en) Electrostatic ion thruster with improved thrust modulation.
US4549082A (en) Synthetic plasma ion source
JPH0418417B2 (en)
US4766320A (en) Apparatus for ion implantation
US5841235A (en) Source for the generation of large area pulsed ion and electron beams
Septier Production of ion beams of high intensity
US20040146133A1 (en) Ultra-short ion and neutron pulse production
US3999072A (en) Beam-plasma type ion source
JPS63503022A (en) plasma anode electron gun
US4760262A (en) Ion source
US4471224A (en) Apparatus and method for generating high current negative ions
JPS6347226B2 (en)
Kistemaker On ion sources with high efficiency and intensity
JPH07169425A (en) Ion source
US3514666A (en) Charged particle generator yielding a mono-energetic ion beam
US3157784A (en) Ion source for a mass spectrometer
JPH10275566A (en) Ion source
JPH0665200B2 (en) High-speed atomic beam source device
JPS6323876Y2 (en)
JP2778227B2 (en) Ion source
EP0095879B1 (en) Apparatus and method for working surfaces with a low energy high intensity ion beam
US3912930A (en) Electron beam focusing system