JPS6346932B2 - - Google Patents

Info

Publication number
JPS6346932B2
JPS6346932B2 JP54143996A JP14399679A JPS6346932B2 JP S6346932 B2 JPS6346932 B2 JP S6346932B2 JP 54143996 A JP54143996 A JP 54143996A JP 14399679 A JP14399679 A JP 14399679A JP S6346932 B2 JPS6346932 B2 JP S6346932B2
Authority
JP
Japan
Prior art keywords
resistance
contact
parallel
partition plates
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54143996A
Other languages
Japanese (ja)
Other versions
JPS5667126A (en
Inventor
Hidekazu Hagimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14399679A priority Critical patent/JPS5667126A/en
Publication of JPS5667126A publication Critical patent/JPS5667126A/en
Publication of JPS6346932B2 publication Critical patent/JPS6346932B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は1000KV以上の系統に使用するに適し
た圧縮ガスしや断器に係り、特に開閉時の過電圧
を抑制する為に熱容量の大きい並列抵抗を有する
改良した圧縮ガスしや断器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compressed gas shield and disconnector suitable for use in systems of 1000 KV or higher, and in particular, an improved compressed gas switch having a parallel resistance with a large heat capacity in order to suppress overvoltage during switching. Regarding shiya disconnection.

しや断器で系統を開閉する際の過電圧を抑制す
るために、しや断器に並列抵抗を設けることはし
ばしば行なわれている。この場合の最適抵抗値は
系統の条件によつて異なるが約300Ω〜1000Ωの
程度である。従来我国のしや断器を例にとれば、
500KV用の線路用しや断器に対しては投入時の
みに使用する抵抗値は、1000Ω程度の並列抵抗を
設けている。この場合抵抗の発生熱量がそれほど
大きくないため、抵抗をしや断器内に収納するこ
とに関してさほどの困難性はなかつた。
In order to suppress overvoltage when switching on and off a system using a shield breaker, a parallel resistance is often provided in the shield breaker. The optimum resistance value in this case varies depending on the system conditions, but is approximately 300Ω to 1000Ω. If we take the conventional shiya disconnector in our country as an example,
For 500KV line breakers, a parallel resistance of about 1000Ω is installed only when the line is turned on. In this case, since the amount of heat generated by the resistor was not so large, there was no great difficulty in housing the resistor in the shield or disconnector.

一方将来我国で採用することが検討されている
1000KV〜1200KV系統用のしや断器では、系統
の条件によつては投入時のほか故障しや断時にも
並列抵抗を使用する必要があり、この場合抵抗値
は500Ω程度に低くなる可能性がある。抵抗の熱
的な責務として、一般には故障状態の系統で高速
度再閉路責務(O―0.3S―CO―1m―CO)を2
回連続して遂行出来ることが要求されている。と
ころで抵抗の発熱量の合計は W= 〓i Vi2/Rti(Vi:電圧、R:抵抗、ti:通電 時間)で求められるが、抵抗の冷却時間が長いた
め、合計発熱量が一時に発生しても耐えられる抵
抗とする必要がある。
On the other hand, it is being considered to be adopted in our country in the future.
For 1000KV to 1200KV system disconnectors, depending on the system conditions, it is necessary to use a parallel resistor not only when the system is turned on but also when there is a failure or disconnection, and in this case the resistance value may be as low as about 500Ω. There is. The thermal duty of the resistor is generally 2 times the high-speed reclosing duty (O-0.3S-CO-1m-CO) in a system under fault condition.
It is required to be able to perform the task several times in a row. By the way, the total amount of heat generated by the resistor is determined by W = 〓 i Vi 2 /Rti (Vi: voltage, R: resistance, ti: energizing time), but since the cooling time of the resistor is long, the total amount of heat generated is generated at once. It is necessary to create a resistance that can be withstood.

ここで、500KV系統用での発熱量を求めると、
系統最高電圧を550KV、抵抗1000Ω、通電時間
0.01Sとして前記責務中投入は合計4回となるの
で、上式より W≒4×106Joulとなる。従来の500KV用しや
断器の抵抗は、この程度の熱量に耐えればよいも
のであつた。一方1200KVしや断器で500Ωの抵
抗を投入、しや断の両方に使用する場合の抵抗発
熱量を考えると前述の責務から投入4回、しや断
6回となり、しや断時第1相・1/3サイクル間
(0.007S)の電圧は1200KV/√3×1.3=900KV、
3相しや断後の電圧は1200KV/√3=693KVで
ある。そしてしや断時通電時間の合計を0.03Sと
する(0.007Sを含めて)。
Here, when calculating the calorific value for a 500KV system,
Maximum system voltage 550KV, resistance 1000Ω, energizing time
Assuming 0.01S, the above-mentioned input during duty is a total of 4 times, so from the above formula, W≒4×10 6 Joul. The resistance of conventional 500KV shingle breakers only had to withstand this amount of heat. On the other hand, considering the amount of heat generated by the resistance when using a 500Ω resistor for both closing and disconnecting with a 1200KV disconnection switch, due to the above-mentioned duties, it will be applied 4 times and disconnected 6 times. The voltage between phase and 1/3 cycle (0.007S) is 1200KV/√3×1.3=900KV,
The voltage after the three-phase bridge is disconnected is 1200KV/√3=693KV. The total power-on time during power outage is 0.03S (including 0.007S).

また投入時の電圧は1200KV/√3=693KV、
通電時間は0.01Sとする。動作責務からしや断6
回、投入4回となるので、 W=9002×106/500×6×0.007+6932×106/500×
6×0.023+6932×106/500×4×0.01=239×106Joul となり、500KV用の約60倍の発熱量となる。し
たがつて、これに耐える抵抗を設ける必要があ
る。
Also, the voltage when turning on is 1200KV/√3=693KV,
The energization time is 0.01S. Operation responsibility 6
4 times, so W = 900 2 × 10 6 / 500 × 6 × 0.007 + 693 2 × 10 6 / 500 ×
6 x 0.023 + 693 2 x 10 6 / 500 x 4 x 0.01 = 239 x 10 6 Joul, which is about 60 times the amount of heat generated for 500KV. Therefore, it is necessary to provide a resistance that can withstand this.

従つて本発明は上記点に鑑みなされたもので、
その目的とすることは発熱量に耐える抵抗を効率
的な空間配置によつて組み込んだ時に1000KV以
上の系統に使用するに適し、かつタンク径を小さ
くできるとともに軸方向長さを短くでき、これに
より全体の外径を最小にできる圧縮ガスしや断器
を提供することにある。
Therefore, the present invention has been made in view of the above points,
The purpose is to make it suitable for use in systems of 1000KV or more when a resistor that can withstand heat generation is incorporated through efficient spatial arrangement, and to reduce the tank diameter and axial length. It is an object of the present invention to provide a compressed gas insulator and disconnector whose overall outer diameter can be minimized.

並列抵抗付接地タンク形圧縮ガスしや断器の抵
抗配置は第1図aに示すように、しや断点毎に抵
抗接点の両側に均等に抵抗を配置するのが合理的
である。このことは、本発明者が先に開発した特
願昭50―027972号(特開昭52―103268号公報)に
て詳細に説明している。第1図aでR1,R2が並
列抵抗、S1が主接点、S2が抵抗接点である。一方
第1図bはしや断器の一部の断面構造説明図で、
1がガス収納接地タンク、2がブツシング、3が
主回路導体、4がしや断部、2点分を示す。また
5は絶縁支持部である。本発明は特にしや断部4
の構造に関するものである。第2図は本発明の要
部を詳細に説明したもので、第2図aはしや断部
1点分の側面を示し、bは第2図aのA―A′部
の断面を示す。また第2図cは第2図aのB―
B′部の断面を示す。図において11,12,1
3,14は夫々第1、第2、第3、第4の金属製
の仕切り板(以下仕切り板と称す)で、この仕切
板11〜14の外周にはそれぞれ15,16,1
7,18で示す電界緩和用シールドを取り付け
る。中間に位置する仕切り板12,13のほぼ中
央位置に中空部12a,13aが形成してある。
仕切り板11,12及び13,14間に、前記並
列抵抗R1,R2をそれぞれ構成する抵抗20を
複数個等配置する。また仕切り板12,13間を
4個の絶縁支持部材21で連結してある。22が
主接点で、前記仕切り板12,13の中空部12
a,13a内に収納配置してある。23が抵抗接
点で、この接点23も前記仕切り板12,13の
中空部12a,13aで且つ仕切り板12,13
間に収納されている。そして主接点22および抵
抗接点23は夫々リンク機構24に連結される。
図に示すように抵抗接点23の両側に分けて抵抗
20を配置し、また第2図bに示すように複数本
の抵抗20をしや断部である主接点22および抵
抗接点23の周辺に配置して、全体を円形に近い
断面形状に構成している。更に第2図cに示すよ
うに中央部分は絶縁支持部材21で支えればよい
が、必要により並列キヤパシターを取付けること
も可能である。
As for the resistance arrangement of a grounded tank-type compressed gas shield disconnector with parallel resistance, it is reasonable to arrange the resistors evenly on both sides of the resistance contact at each shield disconnection point, as shown in Figure 1a. This is explained in detail in Japanese Patent Application No. 50-027972 (Japanese Unexamined Patent Publication No. 52-103268), which was previously developed by the present inventor. In Figure 1a, R 1 and R 2 are parallel resistances, S 1 is a main contact, and S 2 is a resistance contact. On the other hand, FIG.
1 shows the gas storage grounded tank, 2 shows the bushing, 3 shows the main circuit conductor, and 4 shows the 2 points. Further, 5 is an insulating support portion. In particular, the present invention
It is related to the structure of Fig. 2 shows the main parts of the present invention in detail, and Fig. 2 a shows a side view of one edge section, and Fig. 2 b shows a cross section taken along line A-A' in Fig. 2 a. . Also, Figure 2 c is B- in Figure 2 a.
A cross section of part B′ is shown. 11, 12, 1 in the figure
Reference numerals 3 and 14 are first, second, third, and fourth metal partition plates (hereinafter referred to as partition plates), and 15, 16, and 1 are provided on the outer peripheries of the partition plates 11 to 14, respectively.
Attach the electric field mitigation shields shown at 7 and 18. Hollow portions 12a and 13a are formed approximately at the center of the partition plates 12 and 13 located in between.
A plurality of resistors 20 constituting the parallel resistors R1 and R2, respectively, are arranged between the partition plates 11, 12 and 13, 14. Further, the partition plates 12 and 13 are connected by four insulating support members 21. 22 is the main contact point, and the hollow part 12 of the partition plates 12 and 13
a, 13a. 23 is a resistance contact, and this contact 23 is also located in the hollow portions 12a, 13a of the partition plates 12, 13, and
stored in between. The main contact 22 and the resistance contact 23 are each connected to a link mechanism 24.
As shown in the figure, resistors 20 are arranged separately on both sides of the resistive contact 23, and as shown in Figure 2b, a plurality of resistors 20 are arranged around the main contact 22 and the resistive contact 23, which are the cross sections. The entire structure has a nearly circular cross-sectional shape. Further, as shown in FIG. 2c, the central portion may be supported by an insulating support member 21, but it is also possible to attach parallel capacitors if necessary.

第3図は、第2図に示す複数の抵抗20のうち
の1本分の取付けの詳細を示すもので、附号1
1,12及び20は第2図と同じ夫々仕切り板及
び抵抗である。31はバネ要素で、抵抗20と仕
切り板11との接触面圧を与えるもので、この実
施例では抵抗として複数個の中心部に穴のある抵
抗円板30を使用している。32は抵抗円板30
を挿通して設けた絶縁ロツドで締付ナツト33に
より仕切り板11,12間に抵抗20を固定して
いる。ところで抵抗円板30としては、最も熱容
量が大きく且つ実用的な炭素を直径10〜15cmの円
板状に焼結したものを使用するのが一般的であ
る。
FIG. 3 shows the details of the installation of one of the plurality of resistors 20 shown in FIG.
1, 12 and 20 are the same partition plates and resistors as in FIG. 2, respectively. Reference numeral 31 denotes a spring element that provides contact pressure between the resistor 20 and the partition plate 11. In this embodiment, a resistor disc 30 having a plurality of holes in the center is used as the resistor. 32 is a resistance disk 30
The resistor 20 is fixed between the partition plates 11 and 12 by a tightening nut 33 using an insulating rod inserted through the resistor 20. By the way, as the resistance disk 30, it is common to use carbon that has the largest heat capacity and is practical, and is sintered into a disk shape with a diameter of 10 to 15 cm.

先に説明したように500KV系統用に比べ
1200KVしや断器では一例として約60倍の発熱量
に耐える抵抗を使用する必要があるが、しや断点
数では500KV用の4点に対して6点が予定され、
1点当り抵抗収納長さを1.5倍とし、さらに並列
本数を500KVの1本に対して27本使用すれば、
抵抗の単位体積当りの発熱は等しいものとなり、
500KV用と同種の抵抗が使用できることとなる。
しかも第1図aに示す回路原理の条件を満し、第
3図に示すように抵抗円板個々に確実な接触面圧
を与え、さらに第2図のように全体を小さく効率
的に構成することが可能となる。尚、第2図には
抵抗20の並列本数が12本の場合を示したが、同
様の配置で任意の本数を取付けられる。
As explained earlier, compared to the 500KV system
For example, a 1200KV circuit breaker requires the use of a resistor that can withstand approximately 60 times the amount of heat generated, but the number of circuit breakers is planned to be 6, compared to 4 for 500KV.
If you increase the storage length of each resistor by 1.5 times and use 27 resistors in parallel for each 500KV resistor,
The heat generation per unit volume of the resistor is equal,
The same type of resistor as for 500KV can be used.
Moreover, it satisfies the conditions of the circuit principle shown in Fig. 1a, provides reliable contact pressure to each resistor disk as shown in Fig. 3, and furthermore, the entire structure is made small and efficient as shown in Fig. 2. becomes possible. Although FIG. 2 shows a case where 12 resistors 20 are connected in parallel, any number of resistors 20 can be installed in the same arrangement.

以上説明したように本発明の圧縮ガスしや断器
によれば、抵抗接点の両側に、第1、第2の並列
抵抗をそれぞれ直列接続した直列回路を、主接点
に並列接続する圧縮ガスしや断器において、略中
央位置に中空部が形成された第1、第2の金属製
の仕切板を互いに間隔を存して並置し、この両仕
切板の両側にこれらに対して互いに間隔を存して
第3、第4の金属製の仕切板を並置し、前記第
1、第2の仕切板に形成されているの中空部間に
前記主接点および抵抗接点を、その両端部が前記
第3、第4の仕切板側に突出するように収納配置
し、前記第1、第2の並列抵抗をそれぞれ構成す
る複数の抵抗を、前記第3と第1の仕切板および
第2と第4の仕切板間であつて、前記主接点と抵
抗接点の軸方向端部側から見てこれらの主接点お
よび抵抗接点の周辺に略円形になるように配置固
定したので、動作責務に応じて生ずる発熱量を処
理できる抵抗を内蔵する1000KV以上の系統で使
用でき、またタンク径およびび長手方向長さ(軸
方向長さ)を短くできることから、全体の外径を
最小とすることができる。この全体の外径を最小
とすることができるのは、次のような理由によ
る。すなわち、主接点と抵抗接点の軸方向端部側
から見てこれらの主接点および抵抗接点の周辺
に、並列抵抗を構成する複数の抵抗を略円形にな
るように、配置固定したので、タンク外径を小さ
くでき、さらに主接点および抵抗接点を、並列抵
抗を構成する複数の抵抗とに対して長手方向にお
いてオーバラツプさせたので、長手方向長さを短
くできるからである。
As explained above, according to the compressed gas switch and disconnector of the present invention, the compressed gas switch connects the series circuit in which the first and second parallel resistors are connected in series on both sides of the resistance contact in parallel to the main contact. In a metal disconnector, first and second metal partition plates each having a hollow portion formed approximately in the center are placed side by side with a space between them, and a space is provided between the two partition plates on both sides of the partition plates. The main contact and the resistance contact are arranged between the hollow portions formed in the first and second partition plates, and both ends thereof are arranged in parallel with each other. A plurality of resistors constituting the first and second parallel resistors are housed and arranged so as to protrude toward the third and fourth partition plates, and the plurality of resistors constituting the first and second parallel resistors are connected to the third and first partition plates and the second and second parallel resistors. Between the partition plates of No. 4, the main contacts and resistance contacts are arranged and fixed in a substantially circular shape around the main contacts and resistance contacts when viewed from the axial end side of the main contacts and resistance contacts. It can be used in systems of 1000KV or higher, as it has a built-in resistor that can handle the generated heat, and the tank diameter and longitudinal length (axial length) can be shortened, allowing the overall outer diameter to be minimized. The reason why this overall outer diameter can be minimized is as follows. In other words, a plurality of resistors constituting the parallel resistance are arranged and fixed in a substantially circular shape around the main contact and resistance contact when viewed from the axial end side of the main contact and resistance contact, so that there is no need to worry about the outside of the tank. This is because the diameter can be reduced, and since the main contact and the resistance contact overlap in the longitudinal direction with the plurality of resistors constituting the parallel resistance, the length in the longitudinal direction can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による圧縮ガスしや断器の全体
を示すもので、aは回路原理図、bは全体の概略
構成図、第2図は第1図のしや断部を詳細に示す
ものでaは側面図、bはaのA―A′断面図、c
はaのB―B′部断面図、第3図は第2図の抵抗
を示す断面図である。 R1,R2…並列抵抗、S1…主接点、S2…抵抗接
点、1…タンク、2…ブツシング、3…主回路導
体、4…しや断部、5…絶縁支持部、11,1
2,13,14…第1、第2、第3、第4の金属
製仕切り板、15,16,17,18…静電シー
ルド、20…抵抗、21…絶縁支持部材、22…
主接点、23…抵抗接点、24…リンク機構、3
0…抵抗円板、31…バネ要素、32…絶縁ロツ
ド。
Fig. 1 shows the entire compressed gas shield and disconnector according to the present invention, a is a circuit principle diagram, b is a schematic diagram of the entire configuration, and Fig. 2 is a detailed view of a cutaway section of the shroud in Fig. 1. A is a side view, b is an A-A' cross-sectional view of a, and c
3 is a sectional view taken along line BB' in a, and FIG. 3 is a sectional view showing the resistor in FIG. 2. R 1 , R 2 ... Parallel resistance, S 1 ... Main contact, S 2 ... Resistance contact, 1 ... Tank, 2 ... Bushing, 3 ... Main circuit conductor, 4 ... Shrink section, 5 ... Insulation support part, 11, 1
2, 13, 14... First, second, third, fourth metal partition plates, 15, 16, 17, 18... Electrostatic shield, 20... Resistor, 21... Insulating support member, 22...
Main contact, 23... Resistance contact, 24... Link mechanism, 3
0... Resistance disk, 31... Spring element, 32... Insulating rod.

Claims (1)

【特許請求の範囲】[Claims] 1 抵抗接点の両側に、第1、第2の並列抵抗を
それぞれ直列接続した直列回路を、主接点に並列
接続する圧縮ガスしや断器において、略中央位置
に中空部が形成された第1、第2の金属製の仕切
板を互いに間隔を存して並置し、この両仕切板の
両側にこれらに対して互いに間隔を存して第3、
第4の金属製の仕切板を並置し、前記第1、第2
の仕切板に形成されている中空部間に前記主接点
および抵抗接点を、その両端部が前記第3、第4
の仕切板側に突出するように収納配置し、前記第
1、第2の並列抵抗をそれぞれ構成する複数の抵
抗を、前記第3と第1の仕切板および第2と第4
の仕切板間であつて、前記主接点と抵抗接点の軸
方向端部側から見てこれらの主接点および抵抗接
点の周辺に略円形になるように配置固定した圧縮
ガスしや断器。
1. In a compressed gas shield and disconnector in which a series circuit in which first and second parallel resistors are connected in series on both sides of a resistance contact is connected in parallel to a main contact, a first , second metal partition plates are placed side by side with a space between them, and a third metal partition plate is placed on both sides of both partition plates with a space between them.
A fourth metal partition plate is arranged in parallel, and the first and second
The main contact and the resistance contact are placed between the hollow parts formed in the partition plate, and both ends thereof are connected to the third and fourth contacts.
A plurality of resistors constituting the first and second parallel resistors are arranged so as to protrude toward the partition plate side of the third and first partition plates and the second and fourth parallel resistance plates.
A compressed gas cylinder breaker is arranged and fixed in a substantially circular manner around the main contact and the resistance contact when viewed from the axial end side of the main contact and the resistance contact between the partition plates of the main contact and the resistance contact.
JP14399679A 1979-11-07 1979-11-07 Compressed gas breaker Granted JPS5667126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14399679A JPS5667126A (en) 1979-11-07 1979-11-07 Compressed gas breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14399679A JPS5667126A (en) 1979-11-07 1979-11-07 Compressed gas breaker

Publications (2)

Publication Number Publication Date
JPS5667126A JPS5667126A (en) 1981-06-06
JPS6346932B2 true JPS6346932B2 (en) 1988-09-19

Family

ID=15351878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14399679A Granted JPS5667126A (en) 1979-11-07 1979-11-07 Compressed gas breaker

Country Status (1)

Country Link
JP (1) JPS5667126A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59817A (en) * 1982-06-25 1984-01-06 株式会社東芝 Breaker
DE502007004867D1 (en) * 2007-09-10 2010-10-07 Abb Technology Ag On resistance for high voltage circuit breaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886073A (en) * 1972-02-18 1973-11-14
JPS5463378A (en) * 1977-10-31 1979-05-22 Tokyo Shibaura Electric Co Tank type buffer breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886073A (en) * 1972-02-18 1973-11-14
JPS5463378A (en) * 1977-10-31 1979-05-22 Tokyo Shibaura Electric Co Tank type buffer breaker

Also Published As

Publication number Publication date
JPS5667126A (en) 1981-06-06

Similar Documents

Publication Publication Date Title
KR100200904B1 (en) Gas circuit breaker
JPS58165221A (en) Disconnecting switch
EP0537486B1 (en) Surge arrester assembly
US7457105B2 (en) Vacuum switchgear system and kit for system
US3227924A (en) High voltage power circuit breaker pole units having series breaks
JPS6346932B2 (en)
US4434333A (en) Circuit breaker device
US4103128A (en) Tank-type compressed-gas circuit-breaker having capacitance-supporting means
US4638285A (en) Surge suppressing resistor for a disconnect switch
JP3233460B2 (en) Circuit breaker with resistance
US3074042A (en) Low-inductance resistor
US2881362A (en) Lightning arresters
JP3400016B2 (en) Circuit breaker with resistance
EP0579243B1 (en) Resistor-provided UHV breaker
JPH05314873A (en) Puffer gas circuit breaker equipped with closing resistance
JPH0334168B2 (en)
JPH08149626A (en) Gas-insulated switchgear and its operating method
JPH07107630A (en) Gas insulated switchgear
JPH079533Y2 (en) Switchgear
JPH0636656A (en) Resistance with circuit breaker
SU1334190A1 (en) Overvoltage limiter for areas with contaminated atmosphere
JP2595075B2 (en) Circuit breaker with closing resistance device
JPH04137418A (en) Making resistance built-in puffer type gas-blast circuit breaker
JPH0482120A (en) Breaker
JPH0343777Y2 (en)