JPS6346346A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6346346A
JPS6346346A JP18738686A JP18738686A JPS6346346A JP S6346346 A JPS6346346 A JP S6346346A JP 18738686 A JP18738686 A JP 18738686A JP 18738686 A JP18738686 A JP 18738686A JP S6346346 A JPS6346346 A JP S6346346A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
switch
set level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18738686A
Other languages
Japanese (ja)
Inventor
信治 加藤
正 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP18738686A priority Critical patent/JPS6346346A/en
Publication of JPS6346346A publication Critical patent/JPS6346346A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷媒不足運転の防止策が講ぜられた冷凍装置に
関する5゜ [従来の技術] 冷凍装置を構成する冷凍サイクルは、一般に圧縮様の吐
出口と吸入口とを結ぶ冷’!t1fI環用配管の上流側
から下流に向けて順次、高温・高圧の気相冷媒の液化用
凝縮器、減圧装置および吸熱用蒸発器を介在させてなり
たっており、冷媒が気体として流れる部分では配管継手
や弁機構などの個所から冷媒が漏洩する可能性が少なく
ない。冷媒中には圧縮機用循環油が混入して共に循環し
ているので、冷媒不足運転を続【プると圧扁)1内での
潤滑油の滞溜串が減少して焼付きの恐れも生じて来る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a refrigeration system in which measures are taken to prevent refrigerant starvation operation. The cold air that connects the discharge port and the suction port! From the upstream side to the downstream side of the t1fI ring piping, a condenser for liquefying high-temperature, high-pressure gas-phase refrigerant, a pressure reducing device, and an evaporator for absorbing heat are interposed in order from the upstream side to the downstream side, and in the part where the refrigerant flows as a gas, the piping There is a high possibility that refrigerant may leak from parts such as joints and valve mechanisms. Since the circulating oil for the compressor is mixed in the refrigerant and circulated together, there is a risk of seizing as the amount of lubricating oil accumulated in the compressor 1 decreases if operation with insufficient refrigerant continues. will also arise.

対応策として減圧装置より上流側の高圧冷媒流路に低圧
カット用プレッシャスイッチを設けて置き、冷媒圧が設
定レベル以下に下った時に圧縮機の運転を停止させる方
法が採られて来た。
As a countermeasure, a method has been adopted in which a low-pressure cut pressure switch is provided in the high-pressure refrigerant flow path upstream of the pressure reducing device, and the operation of the compressor is stopped when the refrigerant pressure falls below a set level.

しかしこの低圧カット用プレッシャスイッチは感度が充
分とはいえず、また冷媒が不足していなくても、圧縮機
が低速回転している時や低温時などには誤作動も起りう
るので、例えば1゛特開昭58−95175Jには、冷
媒不足運転時に冷媒温が恩着する事実に着目して、冷媒
の圧力が一定値以下で且つその温度が一定値以上となっ
た時に限って圧縮別を停止さセる方法が開示されている
However, this low pressure cut pressure switch is not sensitive enough, and even if there is no shortage of refrigerant, malfunctions may occur when the compressor is rotating at low speed or at low temperatures. ``Japanese Patent Application Laid-Open No. 58-95175J focuses on the fact that the refrigerant temperature is dependent on the refrigerant temperature during operation with insufficient refrigerant. A method for stopping the process is disclosed.

[発明が解決しようとする問題点] 上記の低圧カット用プレッシャスイッヂの設定作動圧は
、冷凍装置が使用される場所の最低気温のもとての冷媒
の飽和圧力以上としなりればならないので、その値はか
なり低く、圧縮機が停止している時でなければ冷媒不足
を検出することができなかった。圧縮機の運転中はこの
スイッチが設けである高圧側冷媒流路内は、上記の設定
作動圧よりははるかに高い圧力レベルに保1これている
[Problems to be Solved by the Invention] The set operating pressure of the above-mentioned low pressure cut pressure switch must be higher than the saturation pressure of the refrigerant at the lowest temperature in the place where the refrigeration equipment is used. , the value was so low that refrigerant shortage could only be detected when the compressor was stopped. While the compressor is in operation, the high-pressure refrigerant flow path provided with this switch is maintained at a pressure level much higher than the above-mentioned set operating pressure.

本発明は、冷凍装置の休止中はもちろん、運転中であっ
ても充分に高い作動信頼性をもって冷媒不足状態を検出
して安全運転を確保できる冷凍装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigeration system that can detect a refrigerant shortage state with sufficiently high operational reliability and ensure safe operation even when the refrigeration system is inactive as well as during operation.

[問題点を解決するための手段] 上記の目的を達成するために本発明による冷凍装置は、
駆動断続手段を備える圧縮機、凝縮器、減圧装置、およ
び蒸発器を冷媒循環用配管に介在させた冷凍装置におい
て、前記圧縮機の吐出口の近傍に設けられ、冷媒温度も
しくは冷媒圧力を検出する検出手段と、前記検出手段が
設定レベル以上の冷tsN温度もしくは設定レベル以下
の冷媒圧力を検出した時、前記駆動断続手段を停止側に
働かせる第1作動手段と、前記減圧装置を迂回して高圧
1llIlおよび低圧側の両冷媒流路を導通させるため
の冷媒バイパス路と、前記冷媒バイパス路に介在させた
弁手段と、前記検出手段が設定レベル以上の冷ffW度
もしくは設定レベル以Fの冷媒圧力を検出した時、前記
弁手段を開弁させるための冷媒流制御手段と、前記高圧
側冷媒流路に設けられ、冷媒圧が設定レベル以下に低下
した時、前記駆動断続手段を停止側に働かせるための第
2作動手段とを備える構成を採用した。
[Means for solving the problems] In order to achieve the above object, the refrigeration apparatus according to the present invention has the following features:
In a refrigeration system in which a compressor, a condenser, a pressure reducing device, and an evaporator are interposed in refrigerant circulation piping, the refrigerant is provided near a discharge port of the compressor and detects refrigerant temperature or refrigerant pressure. a detection means; a first actuation means for operating the drive intermittent means to a stop side when the detection means detects a cold tsN temperature higher than a set level or a refrigerant pressure lower than a set level; A refrigerant bypass passage for connecting both the refrigerant flow passages on the low pressure side and the refrigerant flow passage, a valve means interposed in the refrigerant bypass passage, and a refrigerant pressure above a set level or a refrigerant pressure below the set level. a refrigerant flow control means for opening the valve means when the refrigerant pressure is detected, and a refrigerant flow control means provided in the high-pressure side refrigerant flow path, which operates the drive intermittent means to the stop side when the refrigerant pressure falls below a set level. A configuration including a second actuating means for the operation is adopted.

[作用および発明の効果] 冷凍リイクル内の冷媒封入恒が不足したままで、または
一時的な過負荷状態のちとに冷凍装置が運転されると、
圧縮機から吐出される冷媒の温度が上昇する。検出手段
が設定レベル以Pの吐出冷媒温度または設定レベル以下
の冷媒圧力を検出すると、駆動断続手段により圧縮)幾
の回転が停止されると同時に、弁手段が開作動して高圧
測および低圧側の両冷媒流路は減圧装置を介さずに、冷
媒バイパス路3を経由して直接導通され、両流路内の冷
媒圧はほとんど瞬時に均圧化される1゜冷凍シイクル内
の冷媒量に不足を来たした時、圧縮機を停止させるため
の第2作動手段(低圧カット用プレッシャスイッチ)は
、高圧側冷媒流路に介在させて用いるものなので、冷媒
バイパス路3を有しない従来装置では、冷媒不足状態に
陥っても装置の運転中は高圧側冷媒流路内の冷媒圧は高
レベルに保たれるために、第2作動手段はその役割を果
たすことができない。
[Operation and Effects of the Invention] If the refrigeration system is operated with insufficient refrigerant filled in the refrigeration recycle or after a temporary overload condition,
The temperature of the refrigerant discharged from the compressor increases. When the detection means detects the discharge refrigerant temperature higher than the set level or the refrigerant pressure lower than the set level, the drive intermittent means stops the rotation of the compressor, and at the same time the valve means opens to detect the high pressure and the low pressure side. The two refrigerant flow paths are directly connected via the refrigerant bypass path 3 without going through a pressure reducing device, and the refrigerant pressure in both flow paths is almost instantly equalized to the amount of refrigerant in the 1° refrigeration cycle. The second operating means (pressure switch for low pressure cut) for stopping the compressor when a shortage occurs is interposed in the high pressure side refrigerant flow path, so it is not possible to use the conventional device without the refrigerant bypass path 3. Even in a refrigerant shortage state, the refrigerant pressure in the high-pressure side refrigerant flow path is maintained at a high level while the apparatus is in operation, so the second actuating means cannot perform its role.

またもし本発明装置に冷媒バイパス路が設けてないとす
れば、上記の冷t!!、温上胃または冷媒圧低下によっ
て装置が運転停止さ机たことによって、高・低山冷媒流
路内の冷媒圧が流路の抵抗体としての減圧装置を介して
次第に均圧化され、第2作動手段の機能を生じさせるこ
とのできる圧力にまで低下するとしてもかなりの時間を
要するので、その間に一旦高温なった冷媒も次第に冷7
Jll、、装置の運転が再開されてしまうことも充分に
起こり得る。この場合には冷媒不足状(Sを検知し装置
の安全を守るために運転を中めることが不可能になる。
Furthermore, if the device of the present invention is not provided with a refrigerant bypass path, the above-mentioned cold t! ! When the equipment is stopped due to overheating or a drop in refrigerant pressure, the refrigerant pressure in the high and low refrigerant flow paths is gradually equalized through the pressure reducing device as a resistor in the flow path. 2. Even if the pressure is reduced to a level that allows the operating means to function, it will take a considerable amount of time, and during this time the refrigerant, once heated to a high temperature, gradually cools down to 7.
It is quite possible that the operation of the equipment will be restarted. In this case, it becomes impossible to detect a refrigerant shortage condition (S) and interrupt operation to protect the safety of the device.

しかし本発明装置では、上述のように冷媒温の十胃また
は冷媒圧の1・降により装置の運転が停止されると直ち
に、高・低山冷媒流路内が導通し均笠汁化されるので、
胃温冷媒の放冷に伴って運転再開する以前に、減圧作動
手段は正常作動しく9る状態にもたらされて本発明の目
的が遂げられる。
However, in the device of the present invention, as mentioned above, as soon as the operation of the device is stopped due to a drop in the refrigerant temperature or a 1.5-degree drop in the refrigerant pressure, the high and low refrigerant channels are brought into conduction and the refrigerant is equalized. So,
Before restarting operation as the gastric temperature refrigerant is allowed to cool, the depressurizing means is brought into a state where it can operate normally, thereby achieving the object of the present invention.

[実施例] 以下に図に示す実施例に基づいて本発明の構成を具体的
に説明する。
[Example] The configuration of the present invention will be specifically described below based on an example shown in the drawings.

第1図は本発明を冷凍車用冷凍装置に適用した場合の冷
凍サイクル図である。図示が省かれている車両走行用エ
ンジンから駆動断続手段としてのマグネットクラッチ1
0を介して回転力を伝えられる圧縮機11には、その吐
出口11aと吸入口11bとを結ぶ冷媒循環用配管a1
およびa2が接続されてるい。
FIG. 1 is a refrigeration cycle diagram when the present invention is applied to a refrigeration system for a refrigerated vehicle. Magnetic clutch 1 as a drive disconnection means from a vehicle running engine (not shown)
The compressor 11 to which rotational force is transmitted through the refrigerant circulation pipe a1 connects its discharge port 11a and suction port 11b.
and a2 are connected.

冷媒循環用配管a1およびa2には、上流側から順次高
温・高圧の圧縮された気相冷奴の冷却液化用の凝縮器1
2、液冷媒の一時貯溜槽としてのレシーバ13、冷媒の
乾燥用ドライヤ19、温度作動式膨張弁などの減圧装置
14、および冷I!1i1発生用熱交換器としての蒸発
器15が介在させである。
In the refrigerant circulation pipes a1 and a2, condensers 1 for cooling and liquefying the compressed gas-phase chilled tofu at high temperature and high pressure are sequentially installed from the upstream side.
2, a receiver 13 as a temporary storage tank for liquid refrigerant, a dryer 19 for drying the refrigerant, a pressure reducing device 14 such as a temperature-operated expansion valve, and a cold I! An evaporator 15 is interposed as a heat exchanger for 1i1 generation.

冷媒循環用配管の全長のうち、圧縮様11の吐出口11
aから減圧装置14に到る間は、相対的に高圧の冷奴が
流れる高圧側冷媒流路a1であり、減圧装置14から圧
縮(幾11の吸入口11bに到達する間は、相対的に低
圧の冷媒が流れる低圧側冷奴流路a2をなしている。
Out of the total length of the refrigerant circulation piping, the discharge port 11 of the compression type 11
A to the pressure reducing device 14 is a high-pressure side refrigerant flow path a1 in which a relatively high-pressure refrigerant flows, and from the pressure reducing device 14 to the compressed (Iku 11) suction port 11b, a relatively low-pressure refrigerant flows. It forms a low-pressure side cold tofu flow path a2 through which the refrigerant flows.

高圧側冷媒流路a1には、その最上流側の圧縮機吐出口
11aに近接させて、検出手段、第1作動手段および冷
媒流制御手段としての役割を兼ね]荀えた温度スイッチ
1が設けである。このスイッチ1は冷媒温度が設定レベ
ル例えば140℃を越えた時電気(で点がオフされる常
閉型である。
The high-pressure side refrigerant flow path a1 is provided with a temperature switch 1 placed close to the compressor discharge port 11a on the most upstream side and serving as a detection means, a first actuation means, and a refrigerant flow control means. be. This switch 1 is a normally closed type that is turned off electrically when the refrigerant temperature exceeds a set level, for example 140°C.

また冷媒流路a1のレシーバ13がら減圧装置14に到
る間には、第2作動手段としての低圧カット用プレッシ
ャスイッチ2が接続されている。このスイッチ2は冷媒
圧が設定レベル例えば2.1kg/cd−G以下に下が
った時電気接点がオフされる常閉型である。なお冷媒流
路01には冷媒圧が設定レベルを越えて高まった時、装
置の運転を停止さゼて機器類の破損を防ぐための高圧カ
ット用プレッシャスイッチ18も設けられている。
Further, a low pressure cut pressure switch 2 as a second operating means is connected between the receiver 13 and the pressure reducing device 14 of the refrigerant flow path a1. This switch 2 is a normally closed type in which an electrical contact is turned off when the refrigerant pressure drops below a set level, for example, 2.1 kg/cd-G. Note that the refrigerant flow path 01 is also provided with a high pressure cut pressure switch 18 for stopping the operation of the apparatus and preventing damage to equipment when the refrigerant pressure rises above a set level.

高圧側および低圧側冷奴流路a1と82の境界域には、
減圧装置14および低圧カット用プレッシャスイッチ2
を迂回してこれら両冷媒流路a1とa2とを導通させる
ための冷媒バイパス路3が接続されており、このバイパ
ス路3には流路開閉用弁手段としてのバイパス路弁(電
磁弁) 4を介在させている。弁4は通電時に開弁され
る常閉型である。
In the boundary area between the high pressure side and low pressure side cold tofu flow paths a1 and 82,
Pressure reducing device 14 and low pressure cut pressure switch 2
A refrigerant bypass path 3 is connected to connect the two refrigerant flow paths a1 and a2 by bypassing the refrigerant flow paths a1 and a2, and a bypass path valve (electromagnetic valve) 4 as a valve means for opening and closing the flow path is connected to the bypass path 3. is interposed. The valve 4 is a normally closed type that opens when electricity is applied.

フ縮器12はブロワモータ16によって駆動されるファ
ンにより冷却され、蒸発器15にはブ[1ワモータ11
により駆動されるファンによって冷凍(蔵)庫内の冷部
用空気が吹ぎつけられる。
The evaporator 12 is cooled by a fan driven by a blower motor 16, and the evaporator 15 is provided with a blower motor 11.
A fan driven by blows air for the cold section inside the freezer (storehouse).

第2図に第1図の冷7iJ装置の作動用電気回路の一例
を示した。20は冷凍(蔵)庫内を所望温度に保つため
の湿度コントロールアンプ、21は圧縮様11の断続運
転用マグネットクラッチ10のソレノイドコイル25へ
の通電をオン−オフさけるための圧縮關リレーの電気接
点(以下単にリレーという)であり、21aはリレーの
励磁コイルである(図中に小文字aを付した数字符号は
、いずれも対応数字を付したリレーの励磁コイルを表す
)u22は温度スイッチ1のオフ作動に伴ってオン作動
する冷媒温リレー、23はバイパス路弁4の開閉用ソレ
ノイドコイル27への通電を制御するバイパス路弁リレ
ー、24は冷凍庫内の検温用サーミスタ26によってオ
ン〜オフ伯動するザーモリレーである。
FIG. 2 shows an example of an electric circuit for operating the cold 7iJ device shown in FIG. 1. 20 is a humidity control amplifier for keeping the inside of the freezer (storehouse) at a desired temperature; 21 is an electricity for a compression relay for turning on/off the energization of the solenoid coil 25 of the magnetic clutch 10 for intermittent operation of the compression mode 11; 21a is the excitation coil of the relay (numerals with a lowercase letter a in the figure represent the excitation coil of the relay with the corresponding number) u22 is the temperature switch 1 A refrigerant temperature relay 23 is a bypass valve relay that controls the energization of the solenoid coil 27 for opening and closing the bypass valve 4, and 24 is a temperature measuring thermistor 26 in the freezer that turns on and off. It is a thermorelay that moves.

30は冷凍庫の除霜コントロールアンプ、31は冷凍ル
の使用を司どる冷凍スイッチ、32は除霜スイッチ、3
3は除霜リレー、34は除霜ナーモスタット、35は除
霜ランプである。
30 is a defrost control amplifier for the freezer, 31 is a refrigeration switch that controls the use of the freezer, 32 is a defrost switch, 3
3 is a defrosting relay, 34 is a defrosting nermostat, and 35 is a defrosting lamp.

41と42は凝縮器12用の2台のブロワモータ16A
と163のそれぞれへの通電オン−オフ用リレー、43
は蒸発器用の2台のブロワモータ17AJ3よび17B
への通電オンへ・オフ用リレー、50は冷凍装置の異常
運転を報知する警報」ントロールアンプ、51は警報リ
レー、60はエンジンギースイッチ、61は装置起動用
のメインリレー、そして70は車載バッテリ電源である
41 and 42 are two blower motors 16A for the condenser 12
and 163, respectively, a relay for turning on and off electricity, 43
are two blower motors 17AJ3 and 17B for the evaporator.
50 is an alarm control amplifier that notifies abnormal operation of the refrigeration equipment, 51 is an alarm relay, 60 is an engine gear switch, 61 is a main relay for starting the equipment, and 70 is an on-board battery. It is a power source.

次に上記実施例装置の作動を、冷媒量が適正の正常運転
時、冷媒量不足状態下での運転休止時、および運転中に
冷媒量不足を来たした時の3通りの状態に分けて説明す
る。
Next, we will divide the operation of the above-mentioned example device into three states: normal operation with an appropriate amount of refrigerant, suspension of operation due to insufficient amount of refrigerant, and when insufficient amount of refrigerant occurs during operation. explain.

[正常運転時] 常閉型の冷媒吐出温検出用温度スイッヂ1および低圧カ
ット用プレッシャスイッチ2は其にオフ状態に保たれ、
高圧カッミル用“プレッシャスイッチ18も同じくオン
状態にある。
[During normal operation] The normally closed temperature switch 1 for detecting refrigerant discharge temperature and the pressure switch 2 for low pressure cut are kept in the off state,
The pressure switch 18 for the high-pressure cammill is also in the on state.

エンジンキースイッチ60によってエンジンを起動させ
た後、冷凍装置の作動用の冷凍スイッチ31を投入する
ことによってメインリレー61もオン作動し、警報リレ
ー51は接点す側(オン側)に導通されるのでサーミス
タ26によって検出される冷凍庫内温度が設定レベル以
上の時には、圧縮機リレー21、ブロワモータリレー4
1〜43はいずれもオン駆動し、圧縮機11とブ[1ワ
モータ16および17が駆動され、冷凍装置は正常状態
のちとに運転されて冷凍ランプ37が点灯する。この時
温度スイッチ1はオン状態にあるので、冷媒温リレー2
2はオフ位置を占め、それに伴ってバイパス路弁リレー
23もオフ状態に保たれてバイパス路弁4は閉鎖されて
いる。
After starting the engine with the engine key switch 60, the main relay 61 is also turned on by turning on the refrigeration switch 31 for operating the refrigeration system, and the alarm relay 51 is conducted to the contact side (on side). When the temperature inside the freezer detected by the thermistor 26 is higher than the set level, the compressor relay 21 and the blower motor relay 4 are activated.
1 to 43 are all turned on, the compressor 11 and motors 16 and 17 are driven, and the refrigeration system is operated in a normal state, and the refrigeration lamp 37 is turned on. At this time, temperature switch 1 is in the on state, so refrigerant temperature relay 2
2 is in the OFF position, and accordingly, the bypass valve relay 23 is also kept in the OFF state, and the bypass valve 4 is closed.

この運転時の冷媒の流れは、圧縮1j111によって高
温・高圧に圧縮される気相冷媒は、先ず凝縮器12に流
入しブ[1ワモーク16によって駆動されるファンの動
きにより冷却液化された後レシーバ13内に一口蓄えら
れる。レシーバ13から送出されドライヤ19によって
乾燥された液冷媒は減圧装置14を通過することによっ
て気・液2相状態に減圧されたうえ、蒸発器15内をた
どる間にブロワ七−夕17によって駆動されるファンに
よりこの蒸発器に吹きつけられる冷凍庫内循環用空気か
ら気化の潜熱を奪って冷凍仕事を果すと共に自身は再び
気相に戻って冷凍サイクルを反復循環するために圧縮機
11に吸入される。
The flow of refrigerant during this operation is such that the gas phase refrigerant is compressed to high temperature and high pressure by the compressor 1j111, first flows into the condenser 12, is cooled and liquefied by the movement of the fan driven by the fan 16, and is then transferred to the receiver. A mouthful can be saved within 13 days. The liquid refrigerant sent out from the receiver 13 and dried by the dryer 19 is reduced in pressure to a gas/liquid two-phase state by passing through the pressure reducing device 14, and is driven by the blower Tanabata 17 while passing through the evaporator 15. The latent heat of vaporization is removed from the circulating air in the freezer, which is blown onto the evaporator by a fan, and the air performs the refrigeration work.The air then returns to the gas phase and is sucked into the compressor 11 to repeat the refrigeration cycle. .

[冷媒不足状態下での運転休止時] 圧縮機11が停止して高圧側および低圧測置冷媒流路a
1とa2内の冷媒圧が均圧化されている状態のもとで、
その圧力が+It圧カット用プレッシャスイッチ2の設
定作動圧以下に低下すると、つまり冷媒不足状態が検出
されると、スイッチ2はオフ作動し、警報リレー51の
接点はC側(オフ側に導通されるので、警報コント[1
−ルアンブ50に通電されて冷凍ランプ37が点滅する
と共に、圧縮機リレー21およびブ[1ワモータ41〜
43はオフされるので冷凍庫を働かせるために冷凍スイ
ッチ31を投入しても装置は起動せず、冷媒不足のまま
の運転開始を防ぐ。
[When the operation is stopped under a refrigerant shortage condition] The compressor 11 is stopped and the high pressure side and low pressure stationary refrigerant flow path a
Under the condition that the refrigerant pressure in 1 and a2 is equalized,
When the pressure drops below the set operating pressure of the +It pressure cut pressure switch 2, that is, when a refrigerant shortage condition is detected, the switch 2 is turned off, and the contact of the alarm relay 51 is turned off to the C side (off side). Therefore, the alarm control [1
- The refrigeration lamp 37 blinks when the power is applied to the engine 50, and the compressor relay 21 and the engine 1 motor 41 to
43 is turned off, so even if the refrigeration switch 31 is turned on to operate the freezer, the device will not start up, thereby preventing the start of operation with insufficient refrigerant.

この時温度スイッチ1はオン状1ぷに保たれているので
バイパス路弁4は閉じたままである。
At this time, the temperature switch 1 is kept on, so the bypass valve 4 remains closed.

[運転中に冷媒間の不足を来たした時]冷媒配管系から
の冷媒ガス漏れなどによって冷媒不足運転状態に陥ると
、圧縮機11から吐出される冷凍庫内温度が上貸し始め
る。もつとも冷rIX、温の高低は、既述のように装置
の一時的な過負荷運転時にも起こり1!?る。この温度
が温度スイッチ1の設定作動レベル例えば140℃を越
えるとスイッチ1はオフ作動し、警報リレー51の接点
もオフ側に切替わる。それに伴って上記の運転休止時と
同様にして装置の運転は自!ll停オされる。
[When a refrigerant shortage occurs during operation] When the refrigerant shortage occurs due to refrigerant gas leakage from the refrigerant piping system, the temperature inside the freezer discharged from the compressor 11 begins to rise. However, as mentioned above, temperature fluctuations in cold rIX also occur during temporary overload operation of the device1! ? Ru. When this temperature exceeds the set operating level of the temperature switch 1, for example 140° C., the switch 1 is turned off and the contact of the alarm relay 51 is also switched to the off side. Accordingly, the equipment can be operated automatically in the same way as when the operation is stopped as described above. It will be turned off.

一方温度スイッチ1のオフ作動に伴って、既述の如く冷
tIX温リレー22がオンされろと共にバイパス路弁リ
レー23もオン作動するので、バイパス路弁4の開弁用
ソレノイドコイル27に通電されて冷媒バイパス路3が
解放される。つまり温度スイッチ1のオフ作動と同時に
高圧側および低圧側の両冷媒流路a1とa2は導通し均
圧化される。このことは本発明装置では、従来装置と異
なってその運転中でも低圧カット用プレッシャスイッチ
2の機能を生じさせられることを意味する。
On the other hand, when the temperature switch 1 is turned off, the cold tIX temperature relay 22 is turned on as described above, and the bypass valve relay 23 is also turned on, so that the solenoid coil 27 for opening the bypass valve 4 is energized. The refrigerant bypass path 3 is then opened. That is, at the same time as the temperature switch 1 is turned off, both the high-pressure side and low-pressure side refrigerant flow paths a1 and a2 are brought into conduction and the pressure is equalized. This means that the device of the present invention, unlike the conventional device, can perform the function of the low pressure cut pressure switch 2 even during operation.

冷媒バイパス路3が存在しなければ、すでに述べたよう
に圧縮(幾11の運転中はたとえ冷媒不足運転に陥って
も、高B側冷媒流路a1内の冷媒圧は、この流路に介在
させである低圧カット用プレッシャスイッチ2の設定f
l動圧以下に下がることは起こり1!7ない。
If the refrigerant bypass path 3 does not exist, the refrigerant pressure in the high B side refrigerant flow path a1 will not be affected by the compression (as described above) even if the refrigerant shortage operation occurs during the operation. Setting f of pressure switch 2 for low pressure cut
It is unlikely that the dynamic pressure will drop below l dynamic pressure.

冷媒温の高騰原因が主として装置の一時的に過負拘運転
にある場合には、この過負荷状態が解消すれば温度スイ
ッチ1は再びオン作aすることになるが、既に低圧カッ
ト用プレッシャスイッチ2が現実に冷媒不足を検知して
作動しているので、温度スイッチ 1がオン側に再駆動
しても装置の運転が再開されることはない。
If the cause of the rise in refrigerant temperature is primarily due to temporarily overloaded operation of the device, the temperature switch 1 will be turned on again once the overload condition is resolved, but the pressure switch for low pressure cut has already been turned on. Since temperature switch 2 actually detects a lack of refrigerant and is activated, even if temperature switch 1 is turned on again, the operation of the device will not be restarted.

ところで既述の「特開昭58−95175Jの技術のよ
うに単に冷媒温度が設定レベルを越え、且つ冷媒圧がB
rU定レベルを下回ったことを検知した時冷媒不足と判
定する方法によると、RVljの運転中に冷媒不足を検
出しようとする場合に、低圧カット用スイッチが作動可
能になるためには前述の如く高・低山冷媒流路間の均圧
化が要件となるので、例えば先ず冷媒温の上背を検知し
て装置の運転を止め、両冷tR流路間が自然に均圧化さ
れるのを持って低圧カット用スイッチを働かせるとして
も、この均圧状態に達するまでには少なくとも数分間を
要するので、この間に冷媒温は降下してしまい、現実に
冷媒不足状態に陥っていても上記の不足判定条件は永久
に満たされず、従って装置の運転継続中の冷媒不足検出
は不可能となる。
By the way, as mentioned in the technique of JP-A-58-95175J, the refrigerant temperature simply exceeds the set level and the refrigerant pressure
According to the method of determining refrigerant shortage when detecting that rU has fallen below a certain level, when attempting to detect refrigerant shortage while the RVlj is operating, the low pressure cut switch must be activated as described above. Since it is necessary to equalize the pressure between the high and low refrigerant flow paths, for example, first, the upper limit of the refrigerant temperature is detected and the operation of the equipment is stopped, so that the pressure between the two refrigerant tR flow paths is naturally equalized. Even if the low-pressure cut switch is activated with a low-pressure cut switch, it will take at least several minutes to reach this equal pressure state, so the refrigerant temperature will drop during this time, and even if there is actually a refrigerant shortage, the above The shortage determination condition is not satisfied forever, and therefore, it is impossible to detect refrigerant shortage while the device continues to operate.

第3図に上記実施例装置の作動フローチャートを示した
。冷凍ナイクル内の冷媒量不足および装置の一時的過負
荷運転の少なくともいずれか一方が原因となって冷gX
瀉が設定レベルを越えて高まると、温度スイッチ1がオ
フ作動して装置の運転を停止させると共にバイパス路弁
4を開弁さUる。
FIG. 3 shows an operation flowchart of the apparatus of the above embodiment. Cold g
When the temperature rises above a set level, the temperature switch 1 is turned off, stopping the operation of the device and opening the bypass valve 4.

それに伴って高・低山冷媒流路は直ちに導通されて均圧
化し低圧カット用プレッシャスイッチ2が正常に4動じ
つる状態にもたらされる。そして冷媒圧が設定レベル以
下であればスイッチ2がオフ作動するので、装置の運転
休止は継続され、冷媒量不足に基づく装置の損(セが防
がれる。冷媒圧が設定レベル以上であれば冷媒量は不足
1)でいないので、一時的な過負荷運転状態が解消し冷
媒温が低下するのに伴って装置の運転は再開される。
Accordingly, the high and low refrigerant flow paths are immediately connected to equalize the pressure, and the low pressure cut pressure switch 2 is brought into a normal four-motion state. If the refrigerant pressure is below the set level, switch 2 is turned off, so the equipment continues to be out of operation, and damage to the equipment due to insufficient refrigerant amount is prevented.If the refrigerant pressure is above the set level, Since the amount of refrigerant is not insufficient 1), the operation of the device is resumed as the temporary overload operating condition is resolved and the refrigerant temperature decreases.

本発明装置を構成する各要素は上記実施例に示したもの
に限られることなく、同一の動きを有する様々な別の代
替品に置き替えることもできる。
The elements constituting the device of the present invention are not limited to those shown in the above embodiments, and may be replaced with various other substitutes having the same movement.

例えば、電気モータによって圧縮機11を駆動する場合
にはマグネットクラッチ10に代えて電気スイッチを用
いればよい。また、冷媒不足時には圧縮1111の吐出
冷媒温度が上昇すると共に、圧IIa機11の吐出側冷
媒圧力がかなり低下するので、この冷媒圧力が設定レベ
ル例えば10kg/ ci・G以下に低下したことを検
出する圧力スイッチ(センサ)を前述した温度スイッチ
(センサ) 1の代りに使用することもできる。
For example, when the compressor 11 is driven by an electric motor, an electric switch may be used instead of the magnetic clutch 10. In addition, when there is a refrigerant shortage, the temperature of the refrigerant discharged from the compressor 1111 increases and the refrigerant pressure on the discharge side of the pressure IIa machine 11 decreases considerably, so it is detected that this refrigerant pressure has decreased to a set level, for example, 10 kg/ci・G or less. A pressure switch (sensor) can also be used in place of the temperature switch (sensor) 1 described above.

また本発明装置を構成する冷凍ナイクルは第1図のもの
に限られることなく様々な回路椙成をとらせることがで
きる。
Further, the cryogenic liquid constituting the apparatus of the present invention is not limited to the one shown in FIG. 1, and can be configured in various circuit configurations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はいずれも本発明装置による一実施例装
5を説明しており、第1図は冷凍サイクル図、第2図は
装置の作動用電気回路図、そして第3図は装置の作動フ
[1−チャートである。 図中  1・・・検出手段(第1作動手段および冷媒流
制御手段を兼ねる温度スイッチ)  2・・・第2作動
手段(低圧カット用プレッシャスイッチ)3・・・冷媒
バイパス路 4・・・弁手段(バイパス路弁)10・・
・駆動断続手段 11・・・圧縮機 12・・・凝縮器
14・・・減圧装置 15・・・蒸発器 11a・・・
吐出口 11b・・・吸入口 alおよびal・・・高
圧側および低圧側冷W、流路 第3図
1 to 3 each illustrate an embodiment of the device 5 according to the present invention, in which FIG. 1 is a refrigeration cycle diagram, FIG. 2 is an electrical circuit diagram for operating the device, and FIG. This is an operational chart of the device. In the figure: 1... Detection means (temperature switch serving as first actuation means and refrigerant flow control means) 2... Second actuation means (pressure switch for low pressure cut) 3... Refrigerant bypass path 4... Valve Means (bypass valve) 10...
- Drive intermittent means 11... Compressor 12... Condenser 14... Pressure reducing device 15... Evaporator 11a...
Discharge port 11b...Suction port al and al...High pressure side and low pressure side cold W, flow path Fig. 3

Claims (1)

【特許請求の範囲】 1)駆動断続手段を備える圧縮機、凝縮器、減圧装置、
および蒸発器を冷媒循環用配管に介在させた冷凍装置に
おいて、 前記圧縮機の吐出口の近傍に設けられ、冷媒温度もしく
は冷媒圧力を検出する検出手段と、前記検出手段が設定
レベル以上の冷媒温度もしくは設定レベル以下の冷媒圧
力を検出した時、前記駆動断続手段を停止側に働かせる
第1作動手段と、 前記減圧装置を迂回して高圧側および低圧側の両冷媒流
路を導通させるための冷媒バイパス路と、前記冷媒バイ
パス路に介在させた弁手段と、前記検出手段が設定レベ
ル以上の冷媒温度もしくは設定レベル以下の冷媒圧力を
検出した時、前記弁手段を開弁させるための冷媒流制御
手段と、前記高圧側冷媒流路に設けられ、冷媒圧が設定
レベル以下に低下した時、前記駆動断続手段を停止側に
働かせるための第2作動手段とを備えることを特徴とす
る冷凍装置。
[Claims] 1) A compressor, a condenser, and a pressure reducing device equipped with drive intermittent means;
and a refrigeration system in which an evaporator is interposed in a refrigerant circulation pipe, the detection means being provided near the discharge port of the compressor and detecting refrigerant temperature or refrigerant pressure, and the refrigerant temperature being higher than a set level. or a first actuating means for operating the drive intermittent means to a stop side when a refrigerant pressure lower than a set level is detected; and a refrigerant for bypassing the pressure reducing device and making both the high-pressure side and low-pressure side refrigerant flow paths conductive. a bypass passage, a valve means interposed in the refrigerant bypass passage, and a refrigerant flow control for opening the valve means when the detection means detects a refrigerant temperature above a set level or a refrigerant pressure below a set level. and a second actuation means provided in the high-pressure side refrigerant flow path for causing the drive intermittent means to stop when the refrigerant pressure drops below a set level.
JP18738686A 1986-08-08 1986-08-08 Refrigerator Pending JPS6346346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18738686A JPS6346346A (en) 1986-08-08 1986-08-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18738686A JPS6346346A (en) 1986-08-08 1986-08-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6346346A true JPS6346346A (en) 1988-02-27

Family

ID=16205109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18738686A Pending JPS6346346A (en) 1986-08-08 1986-08-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6346346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169768A (en) * 2019-04-03 2020-10-15 三菱重工サーマルシステムズ株式会社 Detection device, controller, detection system, detection method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169768A (en) * 2019-04-03 2020-10-15 三菱重工サーマルシステムズ株式会社 Detection device, controller, detection system, detection method, and program

Similar Documents

Publication Publication Date Title
EP0628149B1 (en) Control system for an air conditioning/refrigeration system
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
US5172561A (en) Pre-trip diagnostic methods for a transport refrigeration unit
US20100236264A1 (en) Compressor motor control
JPS60228858A (en) Method of operating refrigerator and controller thereof
JPS60228857A (en) Method of operating refrigerator and controller thereof
KR101802107B1 (en) Refrigeration system
WO2009096620A1 (en) A method and an apparatus for protecting a compressor of an air-conditioning system
JP3610402B2 (en) Heat pump equipment
JPH10324147A (en) Air conditioner
WO2002090843A1 (en) Refrigerating device
JPS6346346A (en) Refrigerator
EP3163220B1 (en) Heat pump type chiller
US4918931A (en) Compressor slugging prevention method for a refrigeration system
JPH07305903A (en) Controller for freezer
JPH07294073A (en) Refrigeration device
JPH10311612A (en) Refrigerating device
CN114893921B (en) Magnetic suspension water chilling unit
JP2000274840A (en) Refrigerator
JP3087306B2 (en) Heating and cooling machine
JPS63192606A (en) Cooling/refrigerating device for vehicle
JPH0749326Y2 (en) Refrigeration equipment
JPS62248963A (en) Air conditioner
JPH05228400A (en) Cooling controller of centrifugal machine
JPH0719620A (en) Operation control device for refrigerating plant