JPS6346126B2 - - Google Patents

Info

Publication number
JPS6346126B2
JPS6346126B2 JP16883383A JP16883383A JPS6346126B2 JP S6346126 B2 JPS6346126 B2 JP S6346126B2 JP 16883383 A JP16883383 A JP 16883383A JP 16883383 A JP16883383 A JP 16883383A JP S6346126 B2 JPS6346126 B2 JP S6346126B2
Authority
JP
Japan
Prior art keywords
cooling
workpiece
liquid
cooling means
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16883383A
Other languages
Japanese (ja)
Other versions
JPS6059015A (en
Inventor
Hyoshi Watanabe
Junji Minogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electronics Industry Co Ltd filed Critical Fuji Electronics Industry Co Ltd
Priority to JP16883383A priority Critical patent/JPS6059015A/en
Publication of JPS6059015A publication Critical patent/JPS6059015A/en
Publication of JPS6346126B2 publication Critical patent/JPS6346126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高周波誘導焼入用冷却装置の改良、更
に詳しくは、主として鋼材(含特殊合金鋼)をワ
ークとして誘導加熱の后、移動してから主として
冷却水を冷媒として焼入れする場合の冷却装置の
改良に関する。 鋼材の表面焼入れの良否は、鋼材の持つ最高焼
入硬度を焼入層全体に亘つてムラなく発揮し、し
かも焼割れのないことにあり、これを決定づける
一つの要因は冷却方法にある。第1図に示した従
来の高周波誘導加熱焼入装置、即ち、ワークコイ
ル1と冷却手段(冷却ジヤケツト)2とがワーク
Wの移動方向について分離されているもの(この
例ではコイル1と冷却ジヤケツト2とが横置関係
で分離されている)であつて、ワークコイル1で
誘導加熱を受けたワークW1を冷却ジヤケツト2
よりの噴出の施与で急冷するものであり、このう
ち冷却ジヤケツト2は前面に多数の噴出孔20を
具備したジヤケツトユニツト21……をワークW
の周方向に複数個隔設するか或は一個のリングユ
ニツトに噴出孔20……を穿設して構成するもの
であるが(但し、第1図では便宜上、後者の例を
採つてある)、このような焼入装置を用いて、例
えばボールねじのような鋼材製棒状体ワークを焼
入する時には次のような問題点が惹起した。最高
硬度を得るために冷却ジヤケツト2からの単位時
間内の噴出量を出来るだけ多くワーク表面で衝突
した噴水の一部がワークコイル側(加熱範囲)に
戻り(ワークW1の表面を水が伝つてワークコイ
ル側に逆行する)、そのためジヤケツト2に至る
前に被加熱ワークW1の表面温度を不必要に低下
させてしまい臨界区域(高温度冷却域)が段階的
となり急激な温度差を与えられなくなり、結局の
所上述の現象からワーク表面に結節状のトルース
タイト組織を作り出し焼入最高硬さを得られない
(十分なマルテンサイト変態が出来ない)。他方、
冷却水量が多いため低温度冷却域(約400℃以下)
は進み易くマルテンサイト変態開始点Ms(ほゞ
350℃……但し、鋼質によつて変わる)以下での
冷却が急激に進行し、結果として焼割れ発生の危
険性が高まる。 このように従来装置の場合は、急冷効果を高め
ようとしても装置器具自体のしからしめる所によ
り、臨界区域での冷却は不充分、低温度域での冷
却は過分となり焼入最高硬さを得られないのに焼
割れ発生の危険性が大と云うジレンマに陥つてい
るのである。 本発明者等は上述に鑑み種々実験研究の結果、
冷却を2段に分け第1冷却(臨界区域)では噴水
力(水以外の冷媒もあるがこゝでは水のみを例に
とる)を強力にし、しかし水量は少なくしてワー
ク表面温度をほゞ500℃近辺迄に急速冷却し、こ
れに続いて概ね200℃迄の冷却を第2冷却(低温
冷却域)とし、こゝでは噴水力を弱く、しかし比
較的多量の水量によつてワーク表面を施与水の膜
で包むように徐冷することによつて、高硬度のし
かも焼割れのない焼入れが可能となることを知悉
したのである。上記の第1冷却に於ける噴水力の
強さはワーク表面の蒸気膜の形成を破壊してワー
ク表面と噴水との接触冷却を強化するものであ
り、水量の少量はワークコイル側への水の移行波
汲を阻止するためのものである。第2冷却に於け
る噴水力の弱さと水量の多さはワーク表面を水に
て包んで緩やか且つ均一に冷却することによつて
マルテンサイト変態開始から終了への移行を徐々
になさしめ且つ焼割れを防止するためのものであ
る。このような方法を実施するための冷却装置と
して本発明のものは、従来用いられてきたシヤワ
ー型のジヤケツトを第2冷却用とし、第1冷却用
には一つの噴水口の単位当りにみて第2冷却用ジ
ヤケツトより噴水力が強くなるように適切に絞ら
れた噴水口を備え、しかも噴水に関与する全体的
な噴水口の数は第2ジヤケツトのそれより遥かに
少ない冷却ノズルを適用し、この冷却ノズルと冷
却ジヤケツトとをその順序に従つてワークの搬出
方向に配備することによつて構成してある。 以下に本発明を図面に基づいて詳述する。第2
図は本発明冷却方法の温度一時間特性グラフであ
る。本冷却方法はワークの最高加熱温度Aから概
ね500℃B迄の冷却時間t1は例えば0.5secの如く急
速なものとしてこれを1次冷却とし、Bより
200℃近辺Cに至る冷却時間t2は比較的ゆつくり
かけて(例えば5sec)これを2次冷却とするも
ので、に於ける温度降下カーヴは急峻なもの、
におけるそれは比較的なだらかなものとされ
る。第1冷却によつてほゞ500℃迄の冷却が急
激に行なわれ、その后緩やかな第2冷却を受ける
ために、マルテンサイト変態がスムーズに行なわ
れ、結果として従来にはない焼入硬度を発揮し得
ることが後述の結果より明らかである。次にこの
ような2段冷却を実施するための本発明冷却装置
について述べる。第4図は本発明冷却装置の一実
施例を示す斜視図、第5図a,bは第4図の第1
冷却手段と第2冷却手段の夫々の正面図を示す。
この例の第1、第2冷却手段の夫々は内部に通水
路(不図示)を備え互いに並行関係に保持した2
つの弧状アーム23,24上に第1冷却手段とし
て複数個(こゝでは7個)の冷却ノズルユニツト
22……を等間隔おきに、また、第2冷却手段と
しては同じ数の冷却ジヤケツトユニツト21……
を等間隔おきに設けた例として示してある。この
うち冷却ノズルユニツト22は第4図、第5図の
如く六角柱状のノズル本体220の前面に幅狭な
スリツト221を1個のみ穿設具備し、このスリ
ツト221より噴水が幅狭ビーム状になされる。
一方、冷却ジヤケツトユニツト21は矩形柱状の
ジヤケツト本体210の前面に多数の円形噴出孔
211……を千鳥状に穿設具有してなり、この噴
出孔211……より漏斗状に噴水される。第4図
に於て25,26は通水インレツトで夫々図外の
給水源に接続されている。ユニツト22のスリツ
ト221は噴水力を強力にするために十分に絞つ
てあり(1例として縦0.5mm、横15mm)その開口
面積は円形噴出孔211……の全開口面積より十
分に少ない(数の比は1例として7:120)。従つ
て、今管路抵抗並びにユニツト22,21の夫々
の給水側の水圧を等しいものと考えた場合、スリ
ツト221よりの噴出圧は噴出孔211よりのそ
れより遥かに大であり、しかし単位時間内の噴水
量は逆にユニツト21の方がユニツト22より明
らかに大である。なお、スリツト221からの噴
水圧、噴水量はワークWの移行速度を勘案して、
ワークW上を伝つて水がワークコイル1側へ返ら
ないように設計するものとする。 上記の実施例に代つて第6図a,bに示す冷却
ノズル、冷却ジヤケツトを適用して差支えない。
即ち、同図aのノズルはリング状のノズル本体2
22の内周面にスリツト221……を列設したも
のであり、冷却ジヤケツト21も1個のリング状
のジヤケツト本体212の内周に噴出孔211…
…を列設したものである。 本発明冷却装置は上記構成よりなり、最高被加
熱温度を保つたワークW1に対し第1冷却手段、
即ち冷却ノズル22からの少ない水量だが強い水
の噴射を受けて該ワークW1表面にウオーターカ
ーテンを形成することなく短時間に略500℃付近
迄急冷され、第1冷却が遂行される。この間施与
水がワークコイル1側へ返る現象は発生しない。
このノズル22によつて急冷されたワークW2は
続いて第2冷却手段である冷却ジヤケツト21か
らの弱い噴出力だが多量の水の旋与を受けて徐冷
されこの間水がワークW2の周面上を包むように
覆うことによつて冷却ムラがなく且つ穏やかな冷
却が遂行され、これによつてマルテンサイト変態
が十分になされ200℃程度迄の第2冷却が完遂
する。この徐冷の故にワークに焼割れを生ずる懼
れは十分回避され得る。 この結果本発明冷却を受けたワークW3の表面
よりの深さと硬さとの関係を示す硬度分布図は第
7図の如くとなつた。この第7図のカーヴイは本
発明、ロは比較例1、ハは比較例の2を夫々示
す。この図を第1図相当の従来装置によつて冷却
より得た数値したもの並びに本発明の実験例とし
て冷却ノズル22のみで冷却したものを夫々比較
対照した結果を(表1)に示す。
The present invention is an improvement of a cooling device for high-frequency induction hardening, and more specifically, a cooling device for inductively heating a steel material (including special alloy steel) as a workpiece, moving it, and quenching it mainly using cooling water as a coolant. Regarding improvements. The quality of surface hardening of a steel material lies in whether the maximum quenching hardness of the steel material is exhibited evenly throughout the entire hardened layer and without quenching cracks, and one factor that determines this is the cooling method. The conventional high-frequency induction heating hardening apparatus shown in FIG. 2), and the work W1, which has been induction heated by the work coil 1, is placed in the cooling jacket 2.
The cooling jacket 2 is a jacket unit 21 equipped with a large number of jet holes 20 on the front surface of the work W.
A plurality of ejection holes 20 are provided at intervals in the circumferential direction of the ring unit, or a single ring unit is provided with ejection holes 20 (however, for convenience, the latter example is shown in Fig. 1). When hardening a rod-shaped steel workpiece such as a ball screw using such a hardening apparatus, the following problems occur. In order to obtain the maximum hardness, the amount of water ejected from the cooling jacket 2 within a unit time is increased as much as possible. A part of the fountain that collided with the workpiece surface returns to the workpiece coil side (heating range) (as water flows along the surface of the workpiece W1). (backwards to the work coil side), this unnecessarily lowers the surface temperature of the heated workpiece W1 before it reaches the jacket 2, and the critical zone (high temperature cooling zone) becomes gradual, making it impossible to provide a sudden temperature difference. In the end, due to the above-mentioned phenomenon, a nodular troostite structure is created on the surface of the workpiece, and the maximum hardness cannot be obtained by quenching (sufficient martensitic transformation cannot be achieved). On the other hand,
Low temperature cooling range (approximately 400℃ or less) due to large amount of cooling water
The process progresses easily and the martensitic transformation starts point Ms (approximately
Cooling proceeds rapidly below 350℃ (however, this varies depending on the steel quality), resulting in an increased risk of quench cracking. In this way, in the case of conventional equipment, even if an attempt is made to increase the quenching effect, due to the limitations of the equipment itself, the cooling in the critical area is insufficient and the cooling in the low temperature area is excessive, resulting in the maximum hardness being quenched. They are faced with the dilemma of not being able to achieve this, but risking quench cracking. In view of the above, as a result of various experimental studies, the present inventors found that
Cooling is divided into two stages, and in the first cooling (critical area), the fountain force (there are other refrigerants other than water, but only water will be used as an example) is made stronger, but the amount of water is reduced to keep the surface temperature of the workpiece approximately the same. Rapid cooling to around 500℃ is followed by second cooling (low-temperature cooling range) to about 200℃, in which the fountain force is weak but the workpiece surface is cooled with a relatively large amount of water. He learned that by slowly cooling the material so that it is surrounded by a film of applied water, it is possible to quench the material with high hardness and without quenching cracks. The strength of the fountain force in the first cooling described above destroys the formation of a steam film on the workpiece surface and strengthens the contact cooling between the workpiece surface and the fountain. This is to prevent the migration of waves. The weak fountain force and large amount of water in the second cooling process are achieved by wrapping the surface of the workpiece in water and cooling it slowly and uniformly, allowing the transition from the start to the end of martensitic transformation to occur gradually and sintering. This is to prevent cracking. The cooling device of the present invention for carrying out such a method uses a conventionally used shower-type jacket for the second cooling, and uses a cooling device for the first cooling, which is the same as the one for the first cooling. The second cooling jacket is equipped with a properly narrowed fountain so that the fountain force is stronger than that of the second cooling jacket, and the total number of fountains involved in the fountain is far smaller than that of the second cooling jacket. The cooling nozzle and the cooling jacket are arranged in the order in which the work is carried out. The present invention will be explained in detail below based on the drawings. Second
The figure is a temperature one-hour characteristic graph of the cooling method of the present invention. In this cooling method, the cooling time t 1 from the maximum heating temperature A of the workpiece to approximately 500°C B is assumed to be rapid, for example, 0.5 seconds, and this is the primary cooling.
The cooling time t2 to reach around 200℃ is relatively slow (for example, 5 seconds), and this is considered secondary cooling, and the temperature drop curve is steep.
It is said that the curve is relatively gentle. The first cooling rapidly cools the steel to approximately 500°C, followed by the slow second cooling, which allows for smooth martensitic transformation, resulting in unprecedented quenching hardness. It is clear from the results described below that this can be achieved. Next, a cooling device of the present invention for implementing such two-stage cooling will be described. FIG. 4 is a perspective view showing one embodiment of the cooling device of the present invention, and FIGS.
The front views of each of the cooling means and the second cooling means are shown.
In this example, each of the first and second cooling means has a water passage (not shown) therein, and the two cooling means are held in parallel with each other.
A plurality of (seven in this case) cooling nozzle units 22 are arranged at equal intervals on the two arcuate arms 23 and 24 as the first cooling means, and the same number of cooling jacket units are arranged as the second cooling means. 21...
are shown as an example in which they are provided at equal intervals. Among these, the cooling nozzle unit 22 has only one narrow slit 221 bored in the front of the hexagonal columnar nozzle body 220 as shown in FIGS. 4 and 5, and the fountain flows from this slit 221 into a narrow beam shape. It will be done.
On the other hand, the cooling jacket unit 21 has a rectangular columnar jacket main body 210 with a large number of circular ejection holes 211 bored in a staggered manner on the front surface of the jacket body 210, and water is emitted from the ejection holes 211 in a funnel shape. In FIG. 4, reference numerals 25 and 26 are water inlets, each connected to a water supply source (not shown). The slit 221 of the unit 22 is sufficiently narrowed (for example, 0.5 mm in length and 15 mm in width) to make the fountain force strong, and its opening area is sufficiently smaller than the total opening area of the circular jet hole 211 (number of slits). As an example, the ratio is 7:120). Therefore, if we assume that the pipe resistance and the water pressure on the water supply side of each of the units 22 and 21 are equal, the jet pressure from the slit 221 is much higher than that from the jet hole 211, but the unit time On the contrary, the amount of water in the unit 21 is clearly larger than that in the unit 22. Note that the water pressure and amount of water from the slit 221 are determined by taking into consideration the transfer speed of the workpiece W.
The design shall be such that water running on the workpiece W does not return to the workpiece coil 1 side. Instead of the above embodiment, the cooling nozzle and cooling jacket shown in FIGS. 6a and 6b may be applied.
That is, the nozzle in figure a has a ring-shaped nozzle body 2.
The cooling jacket 21 also has ejection holes 211... arranged in a row on the inner circumference of the ring-shaped jacket body 212.
It is a list of... The cooling device of the present invention has the above-mentioned configuration, and includes a first cooling means for the workpiece W1 that maintains the maximum heated temperature;
That is, by receiving a small but strong jet of water from the cooling nozzle 22, the surface of the workpiece W1 is rapidly cooled to about 500° C. in a short period of time without forming a water curtain, thereby completing the first cooling. During this period, the phenomenon in which the applied water returns to the work coil 1 side does not occur.
The workpiece W2 that has been rapidly cooled by the nozzle 22 is then slowly cooled by a large amount of water, albeit with a weak jetting force, from the cooling jacket 21, which is a second cooling means. By enveloping the material, even and gentle cooling is achieved, thereby sufficient martensitic transformation is achieved, and the second cooling to about 200° C. is completed. Because of this slow cooling, the fear of causing quench cracks in the workpiece can be sufficiently avoided. As a result, the hardness distribution diagram showing the relationship between the depth from the surface of the workpiece W3 that has been cooled according to the present invention and the hardness is as shown in FIG. 7. In FIG. 7, Carvey indicates the present invention, B indicates Comparative Example 1, and C indicates Comparative Example 2. Table 1 shows the results of comparing and comparing this figure with numerical values obtained by cooling using a conventional device equivalent to that shown in FIG. 1, and cooling only with the cooling nozzle 22 as an experimental example of the present invention.

【表】 第7図及び表1から明らかなように本発明によ
ると、焼入硬度Hv500以上の有効深さに於て比較
例より優れている上に全体的にマルテンサイト組
織が確認された。之に対し比較例の2のものは低
ベイナイト組織、比較例の1のものは既述したよ
うにトルースタイト組織であつた。 叙述より本発明は従来のコイルとジヤケツトの
分割型で、横送り型の高周波誘導加熱焼入の焼入
性を更に改善した優れた冷却装置を提供したもの
である。
[Table] As is clear from FIG. 7 and Table 1, the present invention was superior to the comparative example in the effective depth of quenching hardness Hv500 or more, and a martensitic structure was confirmed throughout. On the other hand, Comparative Example 2 had a low bainite structure, and Comparative Example 1 had a troostite structure as described above. As described above, the present invention provides an excellent cooling device that further improves the hardenability of the conventional coil and jacket split type, cross-feed type high-frequency induction heating hardening.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波誘導加熱焼入装置の概略
図、第2図は本発明装置による冷却の温度−時間
特性グラフ、第3図は本発明装置の概略図、第4
図は本発明冷却手段の一実施例を示す斜視図、第
5図a,bは第4図に於ける第1冷却手段及び第
2冷却手段を夫々示す正面図、第6図a,bは本
発明の別の実施例の第1冷却手段及び第2冷却手
段の斜視図であり、第7図は本発明の冷却を受け
た際のワークの表面からの深さと硬度との関係を
示す硬度分布図である。 (符号の説明)、1……ワークコイル、2……
冷却手段、21……冷却ジヤケツト(第2冷却手
段)、22……冷却ノズル(第1冷却手段)、22
1……スリツト、211……噴出孔、23,24
……弧状アーム、210……矩形柱状ジヤケツト
本体、220……6角柱状ノズル本体、W……ワ
ーク、W1……コイルによつて加熱されたワー
ク、W2……冷却ノズルで冷却されたワーク、W
3……冷却ジヤケツトによつて冷却されたワー
ク。
Figure 1 is a schematic diagram of a conventional high-frequency induction heating hardening apparatus, Figure 2 is a temperature-time characteristic graph of cooling by the apparatus of the present invention, Figure 3 is a schematic diagram of the apparatus of the present invention, and Figure 4 is a schematic diagram of the apparatus of the present invention.
The figure is a perspective view showing one embodiment of the cooling means of the present invention, FIGS. 5a and 5b are front views respectively showing the first cooling means and the second cooling means in FIG. 4, and FIGS. FIG. 7 is a perspective view of the first cooling means and the second cooling means of another embodiment of the present invention, and FIG. 7 shows the hardness showing the relationship between the depth from the surface of the workpiece and the hardness when it is cooled according to the present invention. It is a distribution map. (Explanation of symbols), 1... Work coil, 2...
Cooling means, 21... Cooling jacket (second cooling means), 22... Cooling nozzle (first cooling means), 22
1...Slit, 211...Blowout hole, 23, 24
... Arc-shaped arm, 210 ... Rectangular columnar jacket body, 220 ... Hexagonal columnar nozzle body, W ... Work, W1 ... Work heated by the coil, W2 ... Work cooled by the cooling nozzle, W
3... Workpiece cooled by a cooling jacket.

Claims (1)

【特許請求の範囲】 1 ワークコイルによつて高周波誘導加熱を受け
たワークを移動させた后、冷却装置から噴出する
冷却液によつて急冷焼入する装置に於て、上記冷
却装置をワークの移動方向に関して第1冷却手段
及び第2冷却手段の2つに分つて、このうち第1
冷却手段は上記冷却液の噴出力を強く、しかしワ
ーク表面に伝つてワークコイル側への返りのない
比較的少ない液量をもつて被加熱ワークを急冷し
得るようなし、第2冷却手段は冷却液の噴出力を
弱く、しかしワーク表面を包むような比較的多い
液量をもつて徐冷し得るようになしたことを特徴
とする高周波誘導焼入用冷却装置。 2 第1冷却手段がワークの周方向に関して複数
個配備した冷却ノズルユニツトよりなり、第2冷
却手段が同ワークの周方向について複数個配備し
た冷却ジヤケツトユニツトよりなり、上記各冷却
ノズルユニツトは一条の幅狭なスリツトを前面に
穿設具備し、上記夫々の冷却ジヤケツトユニツト
は前面に多数の噴出孔を千鳥状に穿設具有してな
る特許請求の範囲第1項記載の装置。
[Scope of Claims] 1. In an apparatus for rapidly cooling and quenching using a cooling liquid ejected from a cooling device after moving a workpiece that has been subjected to high-frequency induction heating by a work coil, the cooling device is connected to the workpiece. It is divided into two parts, a first cooling means and a second cooling means, with respect to the moving direction.
The cooling means has a strong jetting force of the cooling liquid, but is configured to rapidly cool the heated workpiece with a relatively small amount of liquid that is transmitted to the workpiece surface and does not return to the workpiece coil side. A cooling device for high-frequency induction hardening, characterized in that the liquid jetting force is low, but the liquid is slowly cooled with a relatively large amount of liquid that covers the surface of the workpiece. 2. The first cooling means consists of a plurality of cooling nozzle units arranged in the circumferential direction of the workpiece, the second cooling means consists of a plurality of cooling jacket units arranged in the circumferential direction of the workpiece, and each cooling nozzle unit is arranged in one line. 2. The apparatus according to claim 1, wherein each of the cooling jacket units has a plurality of ejection holes arranged in a staggered manner on the front surface thereof.
JP16883383A 1983-09-12 1983-09-12 Cooler for high frequency induction hardening Granted JPS6059015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16883383A JPS6059015A (en) 1983-09-12 1983-09-12 Cooler for high frequency induction hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16883383A JPS6059015A (en) 1983-09-12 1983-09-12 Cooler for high frequency induction hardening

Publications (2)

Publication Number Publication Date
JPS6059015A JPS6059015A (en) 1985-04-05
JPS6346126B2 true JPS6346126B2 (en) 1988-09-13

Family

ID=15875363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16883383A Granted JPS6059015A (en) 1983-09-12 1983-09-12 Cooler for high frequency induction hardening

Country Status (1)

Country Link
JP (1) JPS6059015A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331414A (en) * 1989-06-29 1991-02-12 Mitsubishi Motors Corp High-frequency hardening method
JPH03240914A (en) * 1990-02-16 1991-10-28 Fuji Denshi Kogyo Kk Method and device for high-frequency hardening
CN104745779B (en) * 2015-04-22 2017-09-08 徐工集团工程机械股份有限公司 A kind of multistage induction hardening equipment

Also Published As

Publication number Publication date
JPS6059015A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
US4855556A (en) Method and apparatus for hardening gears and similar workpieces
US4757170A (en) Method and apparatus for induction heating gears and similar workpieces
JPS6346126B2 (en)
US4215259A (en) Surface hardening of metals using electric currents
JP3932809B2 (en) Low strain quenching equipment and quenching method
JPS63274713A (en) Heat treatment method for bar-like parts
US2124459A (en) Method of heat treating metals
JPH06102809B2 (en) Induction moving quenching and tempering device
JPS6475629A (en) Method for hardening inside and outside peripheral surface of small-bore cylindrical body
JPS59118812A (en) Method for hardening bearing ring of swiveling wheel bearing
US1759603A (en) Method of heat treatment
EP0086408B1 (en) Method and apparatus for heat treating steel
JPH074303A (en) Cylinder for engine and thermal refining method of inner face of cylinder
JPH0819469B2 (en) Heat treatment method for cylindrical wear resistant parts
US2303467A (en) Heat treatment of metal articles having holes therein
US3174884A (en) Method of surface hardening steel rolls and apparatus for carrying out the same
JPS6328849A (en) Heat treatment of cast aluminum wheel and equipment therefor
JP3067480B2 (en) Laser absorber for laser hardening
US4191363A (en) Quenching device for inductively heated workpieces
JP3159478B2 (en) Method for uniform heating of steel ball surface
JPH08283862A (en) Coil for induction-heating rolling element for toroidal type non-stage transmission
JP2776211B2 (en) Laser absorber application device
JP3092093B2 (en) Induction hardening equipment
JP3230823B2 (en) Gear quenching method
US3167460A (en) Method of surface-hardening steel workpieces in the form of bodies of revolution