JPS6346022A - Optical multiplex transmission system - Google Patents

Optical multiplex transmission system

Info

Publication number
JPS6346022A
JPS6346022A JP61189848A JP18984886A JPS6346022A JP S6346022 A JPS6346022 A JP S6346022A JP 61189848 A JP61189848 A JP 61189848A JP 18984886 A JP18984886 A JP 18984886A JP S6346022 A JPS6346022 A JP S6346022A
Authority
JP
Japan
Prior art keywords
optical
frequency
demultiplexer
waveguide
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189848A
Other languages
Japanese (ja)
Inventor
Yasushi Inoue
恭 井上
Hiroshi Toba
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61189848A priority Critical patent/JPS6346022A/en
Publication of JPS6346022A publication Critical patent/JPS6346022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To make it unnecessary to use a special control terminal, and to demultiplex the number of multiplex optical signals by constituting the titled system so that an average transmission power between the multiplex optical signals is changed and transmitted by a transmission side, and a DC component of the optical signal which is detected by an output becomes maximum by using a specific optical demultiplexer by a reception side. CONSTITUTION:A transmitting means 1 contains means Mo1-Mo4 for setting each average transmission power of plural optical signals to prescribed different values, and a receiving means 2 contains an optical demultiplexer DEMUX to which plural pieces of optical directional couplers C1, C2 in which two pieces of optical waveguides L1, L3 have been connected to inputs and outputs, respectively, have been connected in a cascade shape. A demultiplexing optical frequency interval of the optical demultiplexer DEMUX and and input optical frequency interval are made to coincide in advance by setting a value of an optical path length difference to a prescribed value at the time of manufacture, and by a control means CONTIO, a relative effective length of two pieces of optical waveguides L1, L2 is controlled so that a DC component of an output of the optical demultiplexer DEMUX becomes maximum, by which an absolute value of the demultiplexing optical frequency can be made to coincide with the input optical frequency. In this way, by manufacturing on one plane optical waveguide, the number of multiplex optical signals can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光多重伝送方式に関し、特に、Gl(zオー
ダの狭い周波数間隔の光信号を多重伝送することにより
、多重チャンネル数の増加を可能とするドDM(周波数
分割)形の光多重伝送方式に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical multiplex transmission system, and in particular to an optical multiplex transmission system that increases the number of multiplexed channels by multiplexing and transmitting optical signals with narrow frequency intervals of Gl (z order). The present invention relates to a de-DM (frequency division) type optical multiplexing transmission system that enables this.

〔従来の技術〕[Conventional technology]

光FDM伝送方式として従来知られているものは、送信
側で各チャンネルごとの平均送信パワーを異なら・ける
手段を有せず、また受信側では以下に説明する構成の光
分波器を用いていた。
The conventionally known optical FDM transmission system does not have a means to vary the average transmission power for each channel on the transmitting side, and uses an optical demultiplexer with the configuration described below on the receiving side. Ta.

第4図は、従来の光FDM伝送用光分波器の一例を示す
ブロック構成図で、マツハツエンダ干渉計を基本構造と
するものである。第4図において、C1およびC2は3
dBの光方向性結合器、L1〜1.6は光導波路、Mは
光学長調整部、Dは光検出器およびC0NTは制御回路
である。ここで光導波路L3とL4とはその長さが違え
である。光方向性結合器C1およびC2は、入力された
光信号を1=1に分割して出力するもので、例えば光方
向性結合器C1についてみると、光導波路L1に入力さ
れた光信号は光導波路L3とL4へ、光導波路L2に入
力された光信号は光導波路L3とL4へ、光導波路L3
から光方向性結合器CIに入った光信号は光導波路L1
とL2へ、光導波路L4から光方向性検出器CIに入っ
た光信号は光導波路L1とL2へ、各々1:1の比で出
力される。
FIG. 4 is a block diagram showing an example of a conventional optical demultiplexer for optical FDM transmission, which has a basic structure of a Matsuhatsu Ender interferometer. In Figure 4, C1 and C2 are 3
dB optical directional coupler, L1 to 1.6 are optical waveguides, M is an optical length adjustment section, D is a photodetector, and C0NT is a control circuit. Here, the optical waveguides L3 and L4 are different in length. The optical directional couplers C1 and C2 divide the input optical signal into 1=1 and output it. For example, in the case of the optical directional coupler C1, the optical signal input to the optical waveguide L1 is divided into two parts. The optical signal input to the optical waveguide L2 is input to the optical waveguide L3 and L4, and the optical signal input to the optical waveguide L3 is input to the optical waveguide L3 and L4.
The optical signal entering the optical directional coupler CI from the optical waveguide L1
and L2, the optical signal entering the optical directionality detector CI from the optical waveguide L4 is output to the optical waveguides L1 and L2 at a ratio of 1:1, respectively.

このとき、分割された光信号は互いの位相が90度ずれ
ている。
At this time, the phases of the divided optical signals are shifted by 90 degrees from each other.

第4図の構成で光導波路L1へ光信号を入力すると、入
力された光信号は光方向性結合器C1で二つに分けられ
た後、光方向性結合器C2で再び合わせられる。このと
き、光導波路L3を通ってきた光信号と光導波路L4を
通ってきた光信号は互いの位相差(伝播遅延位相差)に
応じて干渉しあう。位相差は光導波路L3とL4との光
学長差に依存し、例えば、光導波路L5へ合わされた光
信号が互いに強め合うような位相差のときには光導波路
L 6へ合わされた光信号は互いに弱め合う。
When an optical signal is input to the optical waveguide L1 in the configuration shown in FIG. 4, the input optical signal is divided into two by the optical directional coupler C1, and then combined again by the optical directional coupler C2. At this time, the optical signal passing through the optical waveguide L3 and the optical signal passing through the optical waveguide L4 interfere with each other according to their phase difference (propagation delay phase difference). The phase difference depends on the optical length difference between the optical waveguides L3 and L4. For example, when the phase difference is such that the optical signals combined into the optical waveguide L5 strengthen each other, the optical signals combined into the optical waveguide L6 weaken each other. .

従って、この位相差に応じて光信号は光導波路L5へ出
力されたり光導波路L6へ出力されたりする。
Therefore, depending on this phase difference, the optical signal is outputted to the optical waveguide L5 or to the optical waveguide L6.

これを式で表ずと、光導波路L1から光導波路L5への
i3過特性T(1−5) 、および光導波路L1から光
導波路L6への透過特性T (1−6)はそれぞれ次の
ようになる。
Expressing this in equations, the i3 transient characteristic T (1-5) from the optical waveguide L1 to the optical waveguide L5 and the transmission characteristic T (1-6) from the optical waveguide L1 to the optical waveguide L6 are as follows. become.

′「(1−5)  −5in2(δ) T(1−6) = cos2(δ) ここでnは光導波路の屈折率、ΔLは光導波路L3と1
,4との光路長差、Cは真空中の光速およびfは光周波
数であり、δは伝播遅延位相差を表す。伝播遅延位相差
δは光周波数fに依存する。
'(1-5) -5in2(δ) T(1-6) = cos2(δ) Here, n is the refractive index of the optical waveguide, and ΔL is the optical waveguide L3 and 1
, 4, C is the speed of light in vacuum, f is the optical frequency, and δ represents the propagation delay phase difference. The propagation delay phase difference δ depends on the optical frequency f.

第5図は、透過特性T (1−5)およびT (1−6
)を光周波数fの関数としてプロットしたものである。
Figure 5 shows the transmission characteristics T (1-5) and T (1-6
) is plotted as a function of optical frequency f.

この透過特性の光周波数依存性を利用すれば、例えば第
5図に示す光周波数f1とf2の光信号を各々光導波路
L5およびL6へ分離できる。すなわちマツハツエンダ
干渉計を基本構造した光分波器として機能する。
By utilizing this optical frequency dependence of the transmission characteristic, for example, the optical signals of optical frequencies f1 and f2 shown in FIG. 5 can be separated into optical waveguides L5 and L6, respectively. In other words, it functions as an optical demultiplexer with the basic structure of a Matsuhatsu Enda interferometer.

分波する各光周波数の絶対値および周波数間隔は光導波
路L3とL4との光路長差によって決まる。周波数間隔
へfは 2   n・ΔL で表され、例えばn=1.5(ガラスの屈折率)、Δf
=10GHz とするとΔL=10.hnとなる。この
周波数間隔の設定は光導波路製作時の光路長差により十
分な精度で設定可能である。
The absolute value and frequency interval of each optical frequency to be demultiplexed is determined by the difference in optical path length between the optical waveguides L3 and L4. f to the frequency interval is expressed as 2 n・ΔL, for example, n=1.5 (refractive index of glass), Δf
=10GHz, then ΔL=10. It becomes hn. This frequency interval can be set with sufficient accuracy based on the difference in optical path length when manufacturing the optical waveguide.

一方、入力光周波数f、が第5図に示す透過特性の山(
あるいは谷)の位置にあるための条件は、であるが、光
周波数f、が約200THzと大きな値のため、屈折率
nまたは光路長差ΔLが微妙にずれただけで、 n π ・ ΔL はmπからずれるので、製作時の光路長差ΔLの設定だ
けではこの条件を満たすのは困難である。
On the other hand, when the input optical frequency f is the peak of the transmission characteristic shown in FIG.
However, since the optical frequency f is a large value of about 200 THz, even if the refractive index n or the optical path length difference ΔL is slightly shifted, n π ・ ΔL is Since it deviates from mπ, it is difficult to satisfy this condition simply by setting the optical path length difference ΔL during manufacturing.

かりに一時的にこの条件が満たされたとしても、温度変
動等の外部擾乱による光路長差ΔLの変動により分波光
周波数は時間的に不安定となる。そこで、分波光周波数
を人力光周波数に一致させる方法として、以下に述べる
方法が従来考えられていた(特開昭61〜80109号
公報参照)。
Even if this condition is temporarily satisfied, the demultiplexed optical frequency becomes temporally unstable due to fluctuations in the optical path length difference ΔL due to external disturbances such as temperature fluctuations. Therefore, as a method of matching the demultiplexed optical frequency to the human-powered optical frequency, the method described below has been conventionally considered (see Japanese Patent Laid-Open Nos. 61-80109).

第4図の光検出器D、光学長調整部Mおよび制御回路C
0NTは、分波光周波数を制御するための構成要素であ
る。さらにこの構成で光導波路L5の一端において、通
過してきた光信号の一部が反射するようになっている。
Photodetector D, optical length adjustment section M and control circuit C in Fig. 4
0NT is a component for controlling the demultiplexed optical frequency. Furthermore, with this configuration, a portion of the optical signal that has passed is reflected at one end of the optical waveguide L5.

光導波路L5の一端での反射は、光導波路のへき開によ
る自然反射でもよいし、必要があれば反射コーティング
を施してもよい。光学長調整部Mは外部信号により光導
波路の屈折率が変化するもので、例えば誘電体導波路で
は電界印加により、またガラス光導波路では加熱するこ
とにより屈折率を変え光学長を調整するようになってい
る。
The reflection at one end of the optical waveguide L5 may be natural reflection due to a cleavage of the optical waveguide, or a reflective coating may be applied if necessary. The optical length adjustment section M changes the refractive index of the optical waveguide by an external signal. For example, in the case of a dielectric waveguide, the refractive index is changed by applying an electric field, and in the case of a glass optical waveguide, the optical length is adjusted by changing the refractive index by applying heat. It has become.

いま、光導波路L1に光周波数f、およびf2の光信号
を入力すると、入力光周波数と光分波器の透過中心周波
数が一致している場合には、光周波数f1の光信号は光
導波路L5へ、光周波数f2の光信号は先導波路L6へ
(あるいはその逆)出力される。このとき、光導波路L
5での一部反射された光周波数f、(あるいはr2)の
光信号はもとの径路をたどって光導波路L1へ戻り、光
導波路L2へは何も出力されない。一方、周波数が不一
致のときには、光導波路L1に入力された光周波数f1
の光信号は、光導波路L5とL6とに分かれて出力され
、さらに光導波路L5で反射された光信号は光導波路L
2とLlへ出力される。すなわち周波数がずれた分だけ
光導波路L2には光出力があられれることになる。そこ
で光検出器りにより光導波路L2から出力される光信号
パワーを検出し、これを最小にするように制御回路C0
NTにより光学長調整部Mに信号を加えれば、入力光周
波数と分波光周波数を一致させることができる。
Now, when optical signals of optical frequencies f and f2 are input to the optical waveguide L1, if the input optical frequency and the transmission center frequency of the optical demultiplexer match, the optical signal of the optical frequency f1 is transmitted to the optical waveguide L5. , the optical signal of optical frequency f2 is output to the leading wavepath L6 (or vice versa). At this time, the optical waveguide L
The partially reflected optical signal of optical frequency f, (or r2) at 5 returns to the optical waveguide L1 along the original path, and nothing is output to the optical waveguide L2. On the other hand, when the frequencies do not match, the optical frequency f1 input to the optical waveguide L1
The optical signal is divided into optical waveguides L5 and L6 and outputted, and the optical signal reflected by optical waveguide L5 is further outputted to optical waveguide L5.
2 and output to Ll. In other words, the optical waveguide L2 receives an optical output corresponding to the frequency shift. Therefore, the optical signal power outputted from the optical waveguide L2 is detected by a photodetector, and the control circuit C0 is configured to minimize this power.
By applying a signal to the optical length adjustment section M using the NT, the input optical frequency and the demultiplexed optical frequency can be matched.

以−ヒ述べてきた光分波器の動作原理は、2波多重光信
号を分波する場合の話であった。2波以上の光信号を分
波するには、この光分波器のもつ周期性を利用する。例
えば4波多重光信号を分波するには、分波周波数間隔の
異なる3個の光分波器を、第6図のようにカスケード状
に配置する。第6図において(光導波路L1〜L6、光
方向性結合器01〜C2、光学長調整部M1、制御回路
C0NT1および光検出器DI)で1段目の光分波器を
、(光導波路L5、L7〜Lll、光方向性結合器03
〜C4、光学長調整部M2、制御回路C0NT2および
光検出器D2)および(光導波路L 6、L12〜L1
6、光方向性結合器05〜C6、光学長調整部M3、制
御回路C0NT3および光検出器D3)で各々2段目の
分波器を構成している。ここで光導波路L8とL9およ
び光導波路L13とLl4の光路長差が光導波路L3と
L4の光路長差の1/2とし、かつ光検出器D1〜D3
に受かる光信号パワーが最小となるように光学長調整部
M1〜M3に制御信号を加えれば、各光分波器はそれぞ
れ第7図(a)〜(dlに示す透過特性を持つ。第7図
(alおよび第7図(C1はそれぞれ1段目の光分波器
での光導波路L1からL5への分波特性および光導波路
L1からL6への分波特性を示し、第7図(blおよび
(diは2段目の光分波器のそれぞれの分波特性を示す
The operating principle of the optical demultiplexer described hereinabove was for the case of demultiplexing a two-wave multiplexed optical signal. To separate two or more waves of optical signals, the periodicity of this optical demultiplexer is utilized. For example, to demultiplex a four-wave multiplexed optical signal, three optical demultiplexers with different demultiplexing frequency intervals are arranged in a cascade as shown in FIG. In FIG. 6, (optical waveguides L1 to L6, optical directional couplers 01 to C2, optical length adjustment section M1, control circuit C0NT1 and photodetector DI) constitute the first stage optical demultiplexer, (optical waveguide L5 , L7~Lll, optical directional coupler 03
~C4, optical length adjustment unit M2, control circuit C0NT2 and photodetector D2) and (optical waveguide L6, L12~L1)
6. The optical directional couplers 05 to C6, the optical length adjustment section M3, the control circuit C0NT3, and the photodetector D3) each constitute a second-stage demultiplexer. Here, the optical path length difference between the optical waveguides L8 and L9 and the optical waveguide L13 and Ll4 is set to 1/2 of the optical path length difference between the optical waveguides L3 and L4, and the photodetectors D1 to D3
If a control signal is applied to the optical length adjustment units M1 to M3 so that the optical signal power received by the optical demultiplexer is minimized, each optical demultiplexer has the transmission characteristics shown in FIGS. 7(a) to (dl). Figure (al) and Figure 7 (C1 respectively show the demultiplexing characteristics from the optical waveguide L1 to L5 and from the optical waveguide L1 to L6 in the first stage optical demultiplexer; (bl and (di) indicate the demultiplexing characteristics of the second-stage optical demultiplexer.

従って、周波数間隔が一定の光周波数f、、f2、f3
およびf4の光信号が1段目の光分波器に入力されると
、まず1段目で光周波数f1と13のグループと、光周
波数f2とf4のグループとに分けられ、さらに2段目
で、各々光周波数r1とf3のグループから光周波数f
1とf3へ、光周波数f2とf4とのグループから光周
波数f2とf4へ分波することができる。4波以上の多
重光信号を分波する場合も同様にしてカスケード状に光
分波器に組合せていけばよい。
Therefore, the optical frequencies f, , f2, f3 with constant frequency intervals
When the optical signals of f4 and Then, the optical frequency f is obtained from the group of optical frequencies r1 and f3, respectively.
1 and f3, and a group of optical frequencies f2 and f4 can be split into optical frequencies f2 and f4. When multiplexed optical signals of four or more waves are to be demultiplexed, they may be combined in a cascade in the optical demultiplexer in the same manner.

以上が従来考えられていた光FDM伝送用の光分波器お
よびその分波周波数制御方法であった。
The above are conventionally considered optical demultiplexers for optical FDM transmission and their demultiplexing frequency control methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来例では問題点が二つあった。一
つは、第4図で示したように光導波路L5で入力光信号
を反射させているので、光分波器の透過損失をもたらす
こと。これを改善しようと反射率を下げると制御用の光
検出器に検出される光信号強度が小さくなり制御が困難
となること。
However, this conventional example has two problems. One is that, as shown in FIG. 4, the input optical signal is reflected by the optical waveguide L5, resulting in a transmission loss of the optical demultiplexer. If the reflectance is lowered in an attempt to improve this, the intensity of the optical signal detected by the control photodetector decreases, making control difficult.

二つ目は実際の製作上の問題である。上記光分波器では
本来の光信号を分波するのに必要な入出力導波路以外に
制御用の光導波路が必要である。実際に製作可能な光導
波路基盤の寸法および光導波路の曲げ半径には限度があ
るため、余分な光導波路が必要であることは、多重数を
上げた光分波器を同一平面光導波路上に作製しようとし
た場合に困難をもたらす。
The second problem is actual production. The above-mentioned optical demultiplexer requires a control optical waveguide in addition to the input/output waveguide necessary for demultiplexing the original optical signal. Because there are limits to the dimensions of the optical waveguide substrate and the bending radius of the optical waveguide that can actually be manufactured, the need for an extra optical waveguide means that an optical demultiplexer with increased multiplexing can be placed on the same plane optical waveguide. This poses difficulties when attempting to fabricate them.

例えば4波用の平面光導波路光分波器の構成例としては
第8図のような形が考えられる。こごてL1〜1.16
、M1〜M3、C1〜C6は第6図の記号と対応してい
る。この構成例では、先導波路I、7への反射光信号を
外へ取り出すことができず分波光周波数を制御すること
ができない。このように本来必要な光導波路以外の光導
波路を必要とする従来例では、多段の光分波器を同一平
面導波路上に作製し多重数を上げるのは困難である問題
点があった。
For example, a configuration example of a planar optical waveguide optical demultiplexer for four waves can be considered as shown in FIG. Kokote L1~1.16
, M1 to M3, and C1 to C6 correspond to the symbols in FIG. In this configuration example, it is not possible to take out the reflected optical signals to the leading waveguides I and 7 to the outside, and it is not possible to control the demultiplexed optical frequency. In conventional examples that require optical waveguides other than the originally required optical waveguides, there is a problem in that it is difficult to increase the number of multiplexed optical demultiplexers by fabricating multi-stage optical demultiplexers on the same plane waveguide.

本発明の目的は、上記の問題点を解決することにより、
受信側で特別な制御用端子を用いることなく多重光信号
を分波することを可能とした光多重伝送方式を提供する
ことにある。
The purpose of the present invention is to solve the above problems.
An object of the present invention is to provide an optical multiplex transmission system that makes it possible to demultiplex multiplexed optical signals without using special control terminals on the receiving side.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、異なる光周波数の複数の光信号を合波して送
信する送信手段と、この送信手段からの多重光信号を受
信し上記複数の光信号に分離する受信手段とを含む光多
重伝送方式において、上記送信手段は、上記複数の光信
号のそれぞれの平均送信パワーを所定の異なる値に設定
する手段を含み、上記受信手段は、2木の光導波路がそ
れぞれ入力および出力に接続された光方向性結合器が複
数個カスケード状に接続された光分波器を含み、この光
分波器は上記2本の光導波路の相対的な実効長をこの光
分波器の出力で検出される光信号の直流成分が最大とな
るように制御する制御手段が付110されたことを特徴
とする。
The present invention provides optical multiplex transmission including a transmitting means for multiplexing and transmitting a plurality of optical signals of different optical frequencies, and a receiving means for receiving the multiplexed optical signal from the transmitting means and separating it into the plurality of optical signals. In the method, the transmitting means includes means for setting the average transmission power of each of the plurality of optical signals to a predetermined different value, and the receiving means includes two optical waveguides connected to input and output, respectively. The optical demultiplexer includes a plurality of optical directional couplers connected in a cascade, and this optical demultiplexer detects the relative effective length of the two optical waveguides using the output of the optical demultiplexer. The present invention is characterized in that a control means 110 is provided for controlling the DC component of the optical signal to be maximized.

〔作 用〕[For production]

第4図に示すマツハツエンダ干渉計を基本構造とする光
分波器において、例えば、それぞれ相異なる平均送信パ
ワーatおよびaz (at >a、)を有する光周波
数f、およびr2の光信号の多重光信υが人力されたと
き、その変調成分を取り除き直流成分だけ取り出した出
力パワーは、平均送1εパワーa、およびa2と、光周
波数f1と、光周波数f1とf2との周波数間隔Δfと
、光路長差ΔLとを含む式で与えられる。
In the optical demultiplexer having the basic structure of the Matsuhatsu Ender interferometer shown in FIG. When υ is manually input, the output power obtained by removing the modulation component and extracting only the DC component is the average sending 1ε power a and a2, the optical frequency f1, the frequency interval Δf between the optical frequencies f1 and f2, and the optical path length. It is given by a formula including the difference ΔL.

そこで、光分波器の分波光周波数間隔と上記入力光周波
数間隔へfとを、あらかじめ製作時において上記光路長
差ΔLの値を所定値とすることで一致させておき、制御
手段により上記光分波器の出力の直流成分が最大になる
ように2本の光導波路の相対的な実効長を制御すること
により、分波光周波数の絶対値を人力光周波数r、に一
致させ1す ることかできる。
Therefore, the splitting optical frequency interval of the optical demultiplexer and the input optical frequency interval f are made to match in advance by setting the value of the optical path length difference ΔL to a predetermined value at the time of manufacture, and the control means By controlling the relative effective lengths of the two optical waveguides so that the DC component of the output of the demultiplexer is maximized, the absolute value of the demultiplexed optical frequency can be made equal to the human-powered optical frequency r. can.

すなわち、従来のように制御用端子を取り出す必要がな
く、多数の光分波器を一つの平面光導波路上に作製し多
重光信号数を増やすことが可能となる。
That is, there is no need to take out the control terminals as in the conventional method, and it becomes possible to fabricate a large number of optical demultiplexers on one planar optical waveguide and increase the number of multiplexed optical signals.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すブロック構成図である
。ここでO31〜034は光発振器、MO1〜MO4は
光変調器、MUXは光合波器、DEMUXは光分波器、
R1−R4は光レシーバである。光発振器O3I〜O3
4、光変調器MO1〜MO4および光合波器MUXによ
り送信部1を、光分波器DEMUXおよびレシーバR1
〜R4により受信部2を構成している。この構成で送信
部1においては、光発振器031〜O34の光出力に光
変調器MO1−MO4により信号をのせて送信する。こ
のとき、各光発振器031〜O34の出力レベルはその
光周波数ごとに異なるように設置3 定する。第2図および第3図は受信部2の光分波器1)
 E M jJ Xの詳細図で、第2図は2波多重の場
合、第3図は4波多重の場合の構成図である。光分波器
の構成およびその動作原理は基本的には従来例で述べた
ものと同じであるが、特別な制御用導波路端子を用いず
に分波光周波数を制御する点が従来例と異なる。以下で
はこの構成で分波光周波数を制御できることを示す。
FIG. 1 is a block diagram showing one embodiment of the present invention. Here, O31 to 034 are optical oscillators, MO1 to MO4 are optical modulators, MUX is an optical multiplexer, DEMUX is an optical demultiplexer,
R1-R4 are optical receivers. Optical oscillator O3I~O3
4. The transmitter 1 is connected to the optical modulators MO1 to MO4 and the optical multiplexer MUX, and the optical demultiplexer DEMUX and the receiver R1
~R4 constitute the receiving section 2. With this configuration, in the transmitter 1, signals are added to the optical outputs of the optical oscillators 031 to O34 by the optical modulators MO1 to MO4 and transmitted. At this time, the output level of each of the optical oscillators 031 to 034 is set to be different depending on the optical frequency. Figures 2 and 3 show the optical demultiplexer 1 of the receiving section 2)
FIG. 2 is a detailed diagram of E M jJ The configuration of the optical demultiplexer and its operating principle are basically the same as those described in the conventional example, but it differs from the conventional example in that the demultiplexed optical frequency is controlled without using a special control waveguide terminal. . In the following, it will be shown that the demultiplexed optical frequency can be controlled with this configuration.

まず2波多重の場合から述べる。第2図において、Ll
−L6は光導波路、C1、C2は3dBの光方向性結合
器、DIOは光検出器、MIOは光学長調整部およびC
0NTIOは制御回路である。光検出器DIOは分波光
周波数制御用に特別に具備したものではなく、送信され
た光信号を受信するためのもので、この出力によって分
波光周波数を制御する。光検出器DIOに受信された光
信号のうち、変調成分を取り除き直流成分だけ取り出す
と、その出力パワーPは、 P−at cos2(K−f +) + az cos
2(K−f、)−a 1cos”(K−f I)+ a
7 cos”(K−f 、+K・Δf)−−−−−−+
11 に=n π ・ ΔL / c Δf=f2−f。
First, we will discuss the case of two-wave multiplexing. In Figure 2, Ll
-L6 is an optical waveguide, C1 and C2 are 3 dB optical directional couplers, DIO is a photodetector, MIO is an optical length adjustment unit and C
0NTIO is a control circuit. The photodetector DIO is not specially equipped for controlling the frequency of the demultiplexed light, but is for receiving the transmitted optical signal, and controls the frequency of the demultiplexed light using this output. When the modulation component is removed and only the DC component is extracted from the optical signal received by the photodetector DIO, the output power P is: P-at cos2 (K-f +) + az cos
2(K-f,)-a 1cos"(K-f I)+a
7 cos” (K-f, +K・Δf)−−−−−−+
11 = n π · ΔL / c Δf = f2 - f.

と表せる。ただし、alおよびa2はそれぞれ光周波数
f1およびf2の光信号の平均送信パワー、nは光導波
路の実効屈折率、ΔLは光導波路L3とL4との光路長
差、Cは真空中の光速およびΔfは入力光周波数間隔で
ある。(1)式において右辺第一項は光周波数f1の光
信号の透過、第二項は光周波数f2の光信号の透過を表
す。光分波器の分波光周波数間隔が入力光周波数間隔Δ
fと一致する条件は、 K・Δf−π/2  (rn:整数)−−−−−(2)
また、分波光周波数の絶対値が入力光周波数と一致する
条件は、 K−f、−mπ         −−−−−−(3)
である。(2)式の条件は、例えば実効屈折率n=1.
5とすると、Δf=10GHzに対して光路長差ΔL−
10,2mmとなる。これは光導波路作製時の光路長差
ΔLの設定により満足させることができる。
It can be expressed as However, al and a2 are the average transmission powers of optical signals of optical frequencies f1 and f2, respectively, n is the effective refractive index of the optical waveguide, ΔL is the optical path length difference between optical waveguides L3 and L4, C is the speed of light in vacuum, and Δf is the input optical frequency interval. In equation (1), the first term on the right side represents the transmission of the optical signal with the optical frequency f1, and the second term represents the transmission of the optical signal with the optical frequency f2. The splitting optical frequency interval of the optical demultiplexer is the input optical frequency interval Δ
The condition that matches f is K・Δf−π/2 (rn: integer)---(2)
Also, the condition that the absolute value of the demultiplexed optical frequency matches the input optical frequency is K−f, −mπ −−−−−−(3)
It is. The condition of equation (2) is, for example, effective refractive index n=1.
5, the optical path length difference ΔL- for Δf=10GHz
It becomes 10.2 mm. This can be satisfied by setting the optical path length difference ΔL when manufacturing the optical waveguide.

一方(3)式の条件を満たすには、光学長調整部M10
を用いた制御を行う必要がある。いま、光導波路作製時
の設定により(2)式の条件が満たされているとすると
(1)式は、 P = a 、 C082(K・f +)+ 32si
n”(K、f 2)= (a +−a z)cos2(
K−f +) + a 2       (41となる
。ここで例えば、送信部1でa、>32と設定すると、
出力パワーPは に−f、=mπ のとき最大となる。そこで光検出器DIOで検出される
光信ηの直流成分が最大になるように制御回路C0NT
l0cこまって光学長調整部MIOへ信号を加えれば、
常に に−f、−mπ が満たされ、入力光周波数と分波光周波数を一致さ・け
ることができる。
On the other hand, in order to satisfy the condition of formula (3), the optical length adjustment section M10
It is necessary to perform control using Now, assuming that the conditions of formula (2) are satisfied by the settings at the time of optical waveguide fabrication, formula (1) is as follows: P = a, C082(K・f +) + 32si
n”(K, f 2) = (a + − a z) cos2(
K-f +) + a 2 (41. Here, for example, if a is set as >32 in the transmitter 1,
The output power P becomes maximum when -f,=mπ. Therefore, the control circuit C0NT is set so that the DC component of the optical signal η detected by the photodetector DIO is maximized.
l0cIf you add a signal to the optical length adjustment unit MIO,
-f and -mπ are always satisfied, and the input optical frequency and demultiplexed optical frequency can be matched.

このように入力光信号の平均送信パワーをその光周波数
ごとに違えることによって分波光周波数の制御を行うこ
とが可能である。これによれば第4図に示す従来例のよ
うに制御用の光導波路L2を用いる必要はなくなる。
In this way, by varying the average transmission power of the input optical signal for each optical frequency, it is possible to control the demultiplexed optical frequency. According to this, there is no need to use the optical waveguide L2 for control as in the conventional example shown in FIG.

次に、4波多重の場合について説明する。第3図におい
て、L1〜L6は光導波路、01〜C6は3dBの光方
向性結合器、Mll〜M13は光学長調整部、Dllお
よびD12は光検出器、CON Tll〜C0NT13
は制御回路である。第3図は第2図の光分波器を3個カ
スケード状に組合せた構成をしており、(光導波路L1
〜L6、光方向性結合器01〜C2、光学長調整部Ml
lおよび制御回路CON Tl1)で1段目の光分波器
を、(光導波路L5、L7〜Lll、光方向性結合器0
3〜C4、光学長調整部M12および制御回路C0NT
12)および(光導波路L6、L12〜L16、光方向
性結合器05〜C6、光学長調整部M13および制御回
路C0NT13)で各々2段目の光分波器を構成してい
る。この構成において先導波路L1へ光周波数f1、f
2、f3およびf、の光信号が入力されると、光検出器
Dllで検出される光信号の直流成分である出力パワー
pHおよび光検出器DI2で検出される光信号の直流成
分である出力パワーP12は、P11= a 、5in
2(K +・f +)cos2(Kz−f +)+a 
、 5in2(K +・f 2)cos2(Kz・f 
2)+ a 3sin”(K +・f :1)CO32
(K 2.f 3)+a a 5in2(K +・f 
4)CO3”(K2・f 4)PI3− a +  c
os2(K +・f +)cos”(K3・f +)+
a 2cos”(K +−f z)cos”(K3・f
 2)+ a、 cos”(K+・f 3)cos”(
K3・f :+)+a 、 cos2(K +−f 4
)cos2(K 3− f 4)K、=n π ・ Δ
L 1 / c Kz=nn−ΔL 2 / c K3 =n π ・ ΔL 3 / cと表・ける。こ
こでa1〜a4は省々光周波数f1〜r4の光信号の平
均送信パワー、ΔLlは光導波路l、3と1.4との光
路長差、ΔL2は光導波路L 8とL9との光路長差、
ΔL 3は光導波路L13とI、14との光路長差であ
る。(5)式および(6)弐の右辺は、第一項、第二項
、第三項および第四項が各々光周波数f、 、f2、f
3およびf、の光信号の透過を表す。入力光周波数間隔
Δfと分波光周波数間隔が一致する条件は、 であり、これは光導波路製作時に満たすことが可能であ
る。(7)式の条件が満たされているとすると、(5)
式および(6)式は、 P11= a 15inJK1・f +)cos”(K
z・f +)+ a 2cos”(K+・f +)co
s”(K2− f 、+ π/4)+a 3sin2(
K +・f +)sin2(K z・f +)+ a 
a cos2(K+・f +)sin2(Kz、f +
 +TC/ 4)P 12= a + 5inJK+・
’ z)sin2(K3・f 2 + yr/ 4)+
 a z con2(K +・f 2)CO3”(K 
3・f J十23sin2(K+・f2)cos”(K
3・fg+π/4)+ a a cos2(K I−f
 2)sin2(K 3− f g)−=〜(9) となる。分波光周波数を一致させる条件は、例えば光周
波数f、の光信号を光導波路LIOへ、光周波数f2の
光信号を光導波路L16へ、光周波数f3の光信号を光
導波路Lllへ、光周波数f4の光信号を光導波路L1
5へ出力する場合には、K+’f+=(m++1/2)
π〜−−(101K 2− f 、 = m 2n  
       −−−−−−αDK、・f2=m3π 
       −−−一−−−θつである。ただし、m
、、m2およびm3は整数である。K1−に3は光学長
調整部Mll〜M13によって各々微調整することがで
きるので、光学長調整部Mll〜M13に適切な信号を
加えられれば、00)弐〜02式の条件を満たしてやる
ことが可能である。
Next, the case of four-wave multiplexing will be explained. In Fig. 3, L1 to L6 are optical waveguides, 01 to C6 are 3 dB optical directional couplers, Mll to M13 are optical length adjustment units, Dll and D12 are photodetectors, CON Tll to C0NT13
is the control circuit. Fig. 3 shows a configuration in which three optical demultiplexers shown in Fig. 2 are combined in a cascade configuration (optical waveguide L1
~L6, optical directional coupler 01~C2, optical length adjustment unit Ml
1 and control circuit CON Tl1), the first stage optical demultiplexer is connected to (optical waveguides L5, L7 to Lll, optical directional coupler 0
3 to C4, optical length adjustment section M12 and control circuit C0NT
12) and (optical waveguides L6, L12 to L16, optical directional couplers 05 to C6, optical length adjustment section M13 and control circuit C0NT13) each constitute a second stage optical demultiplexer. In this configuration, the optical frequencies f1 and f are sent to the leading waveguide L1.
When the optical signals of 2, f3 and f are input, the output power pH is the DC component of the optical signal detected by the photodetector Dll, and the output is the DC component of the optical signal detected by the photodetector DI2. Power P12 is P11=a, 5in
2(K+・f+)cos2(Kz−f+)+a
, 5in2(K+・f 2)cos2(Kz・f
2)+a 3sin”(K+・f:1)CO32
(K 2.f 3)+a a 5in2(K +・f
4) CO3” (K2・f 4) PI3- a + c
os2(K+・f+)cos”(K3・f+)+
a 2cos”(K +-f z)cos”(K3・f
2) + a, cos”(K+・f 3) cos”(
K3・f:+)+a, cos2(K+-f4
)cos2(K3-f4)K,=nπ・Δ
It can be expressed as L 1 / c Kz = nn - ΔL 2 / c K3 = n π · ΔL 3 / c. Here, a1 to a4 are the average transmission powers of optical signals with optical frequencies f1 to r4, ΔLl is the optical path length difference between optical waveguides L, 3 and 1.4, and ΔL2 is the optical path length between optical waveguides L8 and L9. difference,
ΔL 3 is the difference in optical path length between the optical waveguides L13 and I,14. In the right-hand side of equation (5) and (6), the first term, second term, third term, and fourth term are respectively optical frequencies f, , f2, f
3 and f, represent the transmission of optical signals. The condition that the input optical frequency interval Δf and the demultiplexed optical frequency interval match is as follows, and this can be satisfied when manufacturing the optical waveguide. Assuming that the condition of equation (7) is satisfied, (5)
Equation and equation (6) are as follows: P11= a 15inJK1・f +)cos”(K
z・f +)+ a 2cos”(K+・f +)co
s”(K2- f, + π/4)+a 3sin2(
K +・f +) sin2 (K z・f +) + a
a cos2 (K+・f +) sin2 (Kz, f +
+TC/ 4)P 12= a + 5inJK+・
' z) sin2 (K3・f 2 + yr/ 4) +
a z con2(K+・f2)CO3”(K
3・f J123sin2(K+・f2)cos”(K
3・fg+π/4)+a a cos2(K I-f
2) sin2(K3-fg)-=~(9). The conditions for matching the demultiplexed optical frequencies are, for example, an optical signal of optical frequency f is sent to the optical waveguide LIO, an optical signal of optical frequency f2 is sent to the optical waveguide L16, an optical signal of optical frequency f3 is sent to the optical waveguide Lll, and an optical signal of optical frequency f4 is sent to the optical waveguide L16. The optical signal of
When outputting to 5, K+'f+=(m++1/2)
π〜−−(101K 2− f , = m 2n
−−−−−−αDK, ・f2=m3π
---1---θ. However, m
, , m2 and m3 are integers. Since K1- and 3 can be finely adjusted by the optical length adjustment units Mll to M13, if appropriate signals can be applied to the optical length adjustment units Mll to M13, the conditions of formulas 00)2 to 02 can be satisfied. is possible.

平均送信パワーa1〜a4の間にある関係が成り立って
いれば、光学長調整部Mll〜M13に00)弐〜0乃
式の条件を満たすように制御信号を与えることができる
ことを以下に示す。
It will be shown below that if a certain relationship holds between the average transmission powers a1 to a4, a control signal can be given to the optical length adjustment units Mll to M13 so as to satisfy the conditions of formulas 00)2 to 0.

簡単のため、 K、−f、−O1 に2 ・f、 −O2 に3 ・f2−O3 と記すと、(8)式は次のように書き直すことができる
For simplicity, if K, -f, -O1 are written as 2.f and -O2 is written as 3.f2-O3, equation (8) can be rewritten as follows.

P 11 = 1/2 ・sin”(O1)・((a 
、 −a 3) cos(2・θz)+(O2O4)s
in(2・O2)+(a、+a3 ax  aa))+
 1/24a z   a a) cos(2・O2)
+az/2+3・a、/2    −−−−−−030
3式より出力パワーpHを01の関数としてみると、右
辺の〔〕内が、〔〕〉0であれば、θ+  =  (m
++1/2) のときに出力パワーpHは最大となることがわかる。従
って、〔〕内が、〔〕〉0であれば出力バワ−pHが最
大になるように光学長調整部M11に信号を加えれば、
常にC101式の条件が満たされる。
P 11 = 1/2 ・sin”(O1)・((a
, -a 3) cos(2・θz)+(O2O4)s
in(2・O2)+(a,+a3 ax aa))+
1/24a z a a) cos(2・O2)
+az/2+3・a,/2 −−−−−030
Looking at the output power pH as a function of 01 from equation 3, if the value in brackets on the right side is []〉0, then θ+ = (m
It can be seen that the output power pH is maximum when ++1/2). Therefore, if the value in [ ] is 0, then if a signal is applied to the optical length adjustment unit M11 so that the output power-pH is maximized,
The condition of formula C101 is always satisfied.

平均送信パワーa1〜a4の間にある関係を与えれば、
常に〔〕〉0となり、001式の条件の実現が可能であ
ることを以下に示す。〔〕内を書き直すと、 (〕=(a、−a、、)cos(2,θz)”(a++
a3)−(a 4− a z)sin(2・O2)−(
az+an)−−−−−−圓 となる。ここでal 〉aa、O4〉O2とする。
Given a certain relationship between the average transmission powers a1 to a4,
It will be shown below that [ ] is always 0 and that the condition of formula 001 can be realized. If we rewrite the inside [], (]=(a,-a,,)cos(2,θz)”(a++
a3)-(a 4- a z) sin(2・O2)-(
az+an) ---------It becomes a circle. Here, it is assumed that al>aa, O4>O2.

Jると、 (1勇弐右辺>−(at−aa)+(at  +33)
(O4O2)   (ax +a4) = 2− < a 3−a a)      −−−−
−O5となる。(ロ)式よりaa>O4であれば〔〕内
は常に正であることがわかる。すなわち a 、  > a 3 > a 4> a 2   −
−−− +IQとすれば常に〔〕〉0となり、出力パワ
ーpHを最大とするように光学長調整部Mllに信号を
加えることにより00)式の条件を満たすことができる
J, (1Yu2 right side>-(at-aa)+(at+33)
(O4O2) (ax + a4) = 2- < a 3-a a) -----
-O5. From equation (b), it can be seen that if aa>O4, the value in [ ] is always positive. That is, a , > a 3 > a 4 > a 2 −
--- If +IQ is set, it will always be []>0, and the condition of equation 00) can be satisfied by applying a signal to the optical length adjustment unit Mll so as to maximize the output power pH.

00)式の条件が満たされている状態では出力パワ−p
Hは Pll−(at  aa) CO32(Kz−f+)+
23−−−−−−責m となる。O0式の条件が満たされているとすると、K2
 ・f、=m2π のときに出力パワーpHは最大となる。従って、CIQ
式の条件を満たすように入力光信号パワーを設定した状
態で、出力パワーpHが最大となるように光学長調整部
MllおよびM12に信号を加えれば、まず光学長調整
部Mllへの信号により00)式の条件が満たされ、し
かるのちαD弐の条件が満たされる。
00) When the condition of the formula is satisfied, the output power -p
H is Pll-(at aa) CO32(Kz-f+)+
23-------Responsibility m. Assuming that the condition of the O0 formula is satisfied, K2
・The output power pH is maximum when f,=m2π. Therefore, CIQ
With the input optical signal power set to satisfy the condition of the formula, if a signal is applied to the optical length adjustment units Mll and M12 so that the output power pH becomes maximum, first, the signal to the optical length adjustment unit Mll becomes 00. ) is satisfied, and then the condition of αD2 is satisfied.

一方、(9)式は00)式の条件が満たされているとす
ると、 PI3−(az  a4) cos”(K3・f z)
 + a4−−−m となる。(2)式の条件が満たされているとすると、K
2 °f2−m3π のときに出力パワーP12は最大となる。従って光学長
調整部Mllへ制御信号がかけられている状態で出力パ
ワーP12を最大とするように光学長調整部M13に信
号を加えれば、常に(13式の条件が満たされる。
On the other hand, if equation (9) satisfies the conditions of equation 00), then PI3-(az a4) cos''(K3・f z)
+a4---m. Assuming that the condition of equation (2) is satisfied, K
The output power P12 becomes maximum when 2°f2−m3π. Therefore, if a signal is applied to the optical length adjustment section M13 so as to maximize the output power P12 while a control signal is being applied to the optical length adjustment section Mll, the condition of Equation 13 is always satisfied.

本発明の特徴は第1図において、光変調器MO1〜MO
4および第2図または第3図に示す光分波器からなる光
分波器DEMUXを設け、多重する光信号の各光周波数
の平均送信パワーを異ならせ、制御手段を光分波器の出
力の直流成分が最大となるように制御するように構成し
たことにある。
The feature of the present invention is that in FIG.
4 and an optical demultiplexer DEMUX consisting of the optical demultiplexer shown in FIG. The reason is that the control is configured so that the DC component of the current is maximized.

すなわら、従来技術とは、 +a)  送信側で多重光信号の各周波数の平均送信パ
ワーを変える手段を備えている、 (1))受信側の光分波器で特別な制御用の端子を用い
ていない、 点が異なる。
In other words, the conventional technology includes: +a) A means for changing the average transmission power of each frequency of a multiplexed optical signal on the transmitting side; (1)) A special control terminal on the optical demultiplexer on the receiving side. The difference is that it does not use .

〔発明の効果〕〔Effect of the invention〕

以−ヒ説明したように、本発明は、送信側で多重する光
信号間の平均送信パワーを変えて送信し、受信側で第2
図または第3図に示すような構成の光分波器を用いて、
出力で検出される光信号の直流成分が最大となるように
制御手段を構成するにより、多重された光周波数と光分
波器の透過周波数を一致させることができる。従って光
分波器において特別な制御用端子を用いる必要がないの
で、従来例に比べて多数の光分波器を一つの平面光導波
路−にに作製し、多重光信号数を増やすことができる効
果がある。
As explained below, the present invention transmits by changing the average transmission power between multiplexed optical signals on the transmitting side, and
Using an optical demultiplexer configured as shown in the figure or Fig. 3,
By configuring the control means so that the DC component of the optical signal detected at the output is maximized, the multiplexed optical frequency and the transmission frequency of the optical demultiplexer can be matched. Therefore, there is no need to use special control terminals in the optical demultiplexer, so compared to the conventional example, a large number of optical demultiplexers can be fabricated in one planar optical waveguide, and the number of multiplexed optical signals can be increased. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック構成図。 第2図は第1図の光分波器の一実施例を示すブロック構
成図。 第3図は第1図の光分波器の他の実施例を示すブロック
構成図。 第4図は従来例の光分波器の一例を示すブロック構成図
。 第5図はその透過特性図。 第6図は従来例の光分波器の他の例を示すブロック構成
図。 第7図はその透過特性図。 第8図は従来例の光分波器の実際の構造を示す説明図。 1・・・送信部、2・・・受信部、01〜C6・・・光
方向性結合器、C0NT、、C0NTl 〜C0NT3
、C0NTIO〜C0NT13・・・制御回路、DXD
I〜D3、DIO〜DI2・・・光検出器、DEMUX
・・・光分波器、f1〜f4・・・光周波数、L1〜L
16・・・光導9 ら 波路、M、Ml〜M3、MIO〜M13・・・光学長調
整部、MOI〜MO4・・・光変調器、MUX・・・光
合波器、O81〜O34・・・光発振器、R1−R4・
・・光レシーバ。
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a block diagram showing an embodiment of the optical demultiplexer shown in FIG. 1. FIG. 3 is a block diagram showing another embodiment of the optical demultiplexer shown in FIG. 1. FIG. 4 is a block diagram showing an example of a conventional optical demultiplexer. Figure 5 shows its transmission characteristics. FIG. 6 is a block diagram showing another example of a conventional optical demultiplexer. Figure 7 shows its transmission characteristics. FIG. 8 is an explanatory diagram showing the actual structure of a conventional optical demultiplexer. DESCRIPTION OF SYMBOLS 1... Transmission part, 2... Receiving part, 01-C6... Optical directional coupler, C0NT,, C0NTl - C0NT3
, C0NTIO to C0NT13...control circuit, DXD
I~D3, DIO~DI2...photodetector, DEMUX
... Optical demultiplexer, f1 to f4... Optical frequency, L1 to L
16... Optical guide 9 wave path, M, Ml to M3, MIO to M13... Optical length adjustment section, MOI to MO4... Optical modulator, MUX... Optical multiplexer, O81 to O34... Optical oscillator, R1-R4・
...Optical receiver.

Claims (1)

【特許請求の範囲】[Claims] (1)異なる光周波数の複数の光信号を合波して送信す
る送信手段と、この送信手段からの多重光信号を受信し
上記複数の光信号に分離する受信手段とを含む光多重伝
送方式において、 上記送信手段は、上記複数の光信号のそれぞれの平均送
信パワーを所定の異なる値に設定する手段を含み、 上記受信手段は、2本の光導波路がそれぞれ入力および
出力に接続された光方向性結合器が複数個カスケード状
に接続された光分波器を含み、この光分波器は上記2本
の光導波路の相対的な実効長をこの光分波器の出力で検
出される光信号の直流成分が最大となるように制御する
制御手段が付加されたこと を特徴とする光多重伝送方式。
(1) Optical multiplex transmission system including a transmitting means for multiplexing and transmitting a plurality of optical signals of different optical frequencies, and a receiving means for receiving the multiplexed optical signal from the transmitting means and separating it into the plurality of optical signals. In the above, the transmitting means includes means for setting the average transmission power of each of the plurality of optical signals to predetermined different values, and the receiving means includes an optical waveguide having two optical waveguides connected to input and output, respectively. The optical demultiplexer includes a plurality of directional couplers connected in a cascade, and the relative effective length of the two optical waveguides is detected by the output of the optical demultiplexer. An optical multiplex transmission system characterized by the addition of a control means for controlling the DC component of an optical signal to a maximum.
JP61189848A 1986-08-13 1986-08-13 Optical multiplex transmission system Pending JPS6346022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189848A JPS6346022A (en) 1986-08-13 1986-08-13 Optical multiplex transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189848A JPS6346022A (en) 1986-08-13 1986-08-13 Optical multiplex transmission system

Publications (1)

Publication Number Publication Date
JPS6346022A true JPS6346022A (en) 1988-02-26

Family

ID=16248207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189848A Pending JPS6346022A (en) 1986-08-13 1986-08-13 Optical multiplex transmission system

Country Status (1)

Country Link
JP (1) JPS6346022A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210846A (en) * 1990-01-16 1991-09-13 Hitachi Cable Ltd Optical communication equipment
JPH0758702A (en) * 1993-08-13 1995-03-03 Nec Corp Optical receiving circuit
JP2019135524A (en) * 2018-02-05 2019-08-15 富士通株式会社 Optical transmission device, optical demultiplexer, and optical demultiplexing control method
JP2020194114A (en) * 2019-05-29 2020-12-03 富士通株式会社 Optical demultiplexer, optical transmission device and optical demultiplexing control method
US11709317B2 (en) 2021-01-27 2023-07-25 Fujitsu Limited Wavelength demultiplexer, optical transceiver front-end module, photonic circuit, and wavelength demultiplexing control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210846A (en) * 1990-01-16 1991-09-13 Hitachi Cable Ltd Optical communication equipment
JPH0758702A (en) * 1993-08-13 1995-03-03 Nec Corp Optical receiving circuit
JP2019135524A (en) * 2018-02-05 2019-08-15 富士通株式会社 Optical transmission device, optical demultiplexer, and optical demultiplexing control method
US10491321B2 (en) 2018-02-05 2019-11-26 Fujitsu Limited Optical transport apparatus, optical demultiplexer, and method of controlling optical demultiplexing
JP2020194114A (en) * 2019-05-29 2020-12-03 富士通株式会社 Optical demultiplexer, optical transmission device and optical demultiplexing control method
US11119278B2 (en) 2019-05-29 2021-09-14 Fujitsu Limited Optical demultiplexer, optical transport apparatus, and method of controlling optical demultiplexing
US11709317B2 (en) 2021-01-27 2023-07-25 Fujitsu Limited Wavelength demultiplexer, optical transceiver front-end module, photonic circuit, and wavelength demultiplexing control method

Similar Documents

Publication Publication Date Title
US5852505A (en) Dense waveguide division multiplexers implemented using a first stage fourier filter
US6208444B1 (en) Apparatus for wavelength demultiplexing using a multi-cavity etalon
US6330255B1 (en) Integrated optic device for optical wavelength selection
US6665113B2 (en) Wavelength converter and wavelength division multiplexing transmission method using same
US7113702B2 (en) Wavelength division multiplexing optical transmission system and transmission method
EP1973252B1 (en) Controllable optical add/drop multiplexer
CN113031163B (en) Optical filter structure and optical filter
JPH09289349A (en) Optical equalizer, optical amplifier using it and wavelength-multiple optical transmitter
JPS62100706A (en) Optical ring filter
JPS6346022A (en) Optical multiplex transmission system
JPS63281104A (en) Optical ring filter
JP2003051810A (en) Optical orthogonal frequency division multiplex transmission system and transmission method
US6263128B1 (en) Fiber unbalanced Mach-Zehnder interferometers with flat-top spectral response for application in wavelength division multiplexers
CN111448498B (en) Optical wavelength multiplexer/demultiplexer
US6600852B1 (en) Wavelength selective device and switch and method thereby
JP6509626B2 (en) Wavelength multiplexing / demultiplexing device, optical receiver and optical transmitter
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
US7327912B2 (en) Wavelength division multiplexer/demultiplexer
EP0938017B1 (en) Optical filter apparatus based on cascaded acousto-optical tunable filters
US7693366B2 (en) Aligned narrowband optical filters having flat passbands and comprising offset cascaded broadband optical filters
JPH0659291A (en) Waveguide type optical multiplexer-branching filter for four-wave multiplex transmission and eight-wave multiple transmission
KR20020079577A (en) Optical multiplexer/demultiplexer
JPS63148207A (en) Optical multiplexing and demultiplexing element
JPH05323389A (en) Optical variable branching filter device
JPS62100742A (en) Mach-zehnder interferometer type optical multiplexer/ demultiplexer