JPS6345785B2 - - Google Patents

Info

Publication number
JPS6345785B2
JPS6345785B2 JP58101646A JP10164683A JPS6345785B2 JP S6345785 B2 JPS6345785 B2 JP S6345785B2 JP 58101646 A JP58101646 A JP 58101646A JP 10164683 A JP10164683 A JP 10164683A JP S6345785 B2 JPS6345785 B2 JP S6345785B2
Authority
JP
Japan
Prior art keywords
sucrose
sugar
molasses
fructooligosaccharide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58101646A
Other languages
Japanese (ja)
Other versions
JPS59227269A (en
Inventor
Koji Sayama
Takayuki Muratsubaki
Yoshuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP58101646A priority Critical patent/JPS59227269A/en
Publication of JPS59227269A publication Critical patent/JPS59227269A/en
Publication of JPS6345785B2 publication Critical patent/JPS6345785B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフラクトオリゴ糖を含有する甘味料
の製造に関するもので、更に詳しく説明すると、
原料として甜菜糖蜜を使用しフラクトシルトラン
スフエラーゼでフラクトオリゴ糖を生成させ、未
反応のシユークロース等をCa型補強酸性陽イオ
ン交換樹脂のカラムで分離しフラクトオリゴ糖を
収率よく安価に製造するものである。 フラクトオリゴ糖はさわやかな甘味を有し、シ
ユークロースの如く虫歯発生原因といわれる不溶
性デキストリンの生成が少なく、その上フラクト
オリゴ糖自体がシユークロースから不溶性デキス
トリンの生成を抑制するので近年難う蝕性甘味料
として注目されている糖類である。フラクトオリ
ゴ糖はシユークロースにフラクトースが結合した
糖類でフラクトースが1分子結合した糖(以下
GF2という)とフラクトースが2分子結合した糖
(以下GF3という)とフラクトースが3分子結合
した糖(以下GF4という)が主として混合構成さ
れている。その製造方法は特開昭56―154969号公
報に記載されている如く、シユークロース溶液に
フラクトシルトランスフエラーゼ酵素を作用させ
ると得られ、酵素フラクトシルトランスフエラー
ゼ給源としてはオウレオバシダム
(Aureobasidium)属やアスペルギルス
(Asperigillus)属等の菌株を培養して菌体より
分離するか、菌体に固定するか、あるいはアスパ
ラ、キクイモ等の植物に含まれている酵素を分離
して、酵素給源とするものである。通常微生物の
培養物より菌体を分離し、酵素を固定して純度の
高いシユークロース溶液と接触させ生化学的反応
により製造するのでどうしても高価なものとなら
ざるを得ない。これを安価な糖蜜中のシユークロ
ースに代えることを考えられるがシユークロース
の多い甜菜糖蜜ではラフイノース、ガラクチノー
ル等のオリゴ糖が存在し、これが反応を圧迫した
り、両者の物性が似ている関係上分離が困難でと
うてい実用的な製造方法とはなり得ない。 この発明は上記事情によりなされたもので、安
価な糖蜜を原料として安価で収率よくフラクトオ
リゴ糖を製造し難う蝕性の甘味料とせんと研究し
た結果、フラクトオリゴ糖はCa型強酸性陽イオ
ン交換樹脂のカラムでクロマト分離できることに
着目し、甜菜糖蜜を精製し、シユークロースの純
度を向上さす第1工程と、第1工程で得たシユー
クロース溶液をフラクトシルトランスフエラーゼ
でフラクトオリゴ糖に変換する第2工程と第2工
程で得たフラクトオリゴ糖をCa型強酸性陽イオ
ン交換樹脂のカラムで分離する第3工程と、第3
工程で分離したフラクトオリゴ糖に各種糖類を混
合し、難う蝕性甘味料とすることで解決したので
ある。 この発明に使用する甜菜糖蜜は不純物を含む安
価な糖蜜で、好ましくはステフエン法による製糖
時に排出される廃糖蜜、又はイオン交換樹脂法に
よる製糖時に排出される廃糖蜜である。今その組
成の例を第1表に示す。
This invention relates to the production of sweeteners containing fructooligosaccharides, and will be explained in more detail as follows:
Using sugar beet molasses as a raw material, fructooligosaccharides are produced using fructosyltransferase, and unreacted sucrose, etc. are separated using a Ca-type reinforced acidic cation exchange resin column to produce fructooligosaccharides with high yield and at low cost. be. Fructooligosaccharide has a refreshing sweet taste, and unlike sucrose, it produces less insoluble dextrin, which is said to cause dental caries.Furthermore, fructooligosaccharide itself suppresses the production of insoluble dextrin from sucrose, so it has recently attracted attention as a cariogenic-resistant sweetener. It is a sugar that is Fructooligosaccharide is a sugar in which fructose is bound to sucrose.
It mainly consists of a mixture of sugars (hereinafter referred to as GF 2 ), two molecules of fructose (hereinafter referred to as GF 3 ), and sugars that have three molecules of fructose (hereinafter referred to as GF 4 ). As described in JP-A-56-154969, the production method is as follows: it is obtained by reacting a fructosyltransferase enzyme with a sucrose solution, and sources of the enzyme fructosyltransferase include Aureobasidium sp. It is used as an enzyme source by cultivating strains of the genus Aspergillus and isolating or fixing them from the bacterial cells, or by isolating enzymes contained in plants such as asparagus and Jerusalem artichoke. be. It is usually produced by separating bacterial cells from a culture of microorganisms, immobilizing enzymes, and contacting them with a highly pure sucrose solution through a biochemical reaction, which inevitably results in an expensive product. It is possible to replace this with sucrose in molasses, which is inexpensive, but beet molasses containing a lot of sucrose contains oligosaccharides such as raffinose and galactinol, which may put pressure on the reaction or make separation difficult due to their similar physical properties. This is difficult and cannot be a very practical manufacturing method. This invention was made in view of the above circumstances, and as a result of research into a carious sweetener that is difficult to produce fructooligosaccharide at low cost and in good yield using cheap molasses as a raw material, it was discovered that fructooligosaccharide is a Ca-type strongly acidic cation exchanger. The first step is to purify sugar beet molasses and improve the purity of sucrose, focusing on the fact that it can be chromatographically separated using a resin column.The second step is to convert the sucrose solution obtained in the first step into fructooligosaccharide using fructosyltransferase. A third step in which the fructooligosaccharides obtained in the step and second step are separated using a Ca-type strongly acidic cation exchange resin column;
They solved the problem by mixing various sugars with the fructooligosaccharides separated during the process to create a cariogenic-resistant sweetener. The sugar beet molasses used in this invention is an inexpensive molasses containing impurities, preferably blackstrap molasses discharged during sugar production by the Steffen method or blackstrap molasses discharged during sugar production by the ion exchange resin method. Examples of their compositions are now shown in Table 1.

【表】 上記糖蜜は甘蔗糖蜜と異なりシユークロースを
主成分とするが不純物が多いのでそのまゝフラク
トオリゴ糖の製造に供しても回収が実質的に不可
能となり、精製しなければならない。精製はシユ
ークロース含量を増加させたり不純物を除去して
純度を向上さすことを目的とするもので種々の精
製法が適用でき、特に好ましい精製方法としては
甜菜糖蜜中に多量含まれているラフイノース、ガ
ラクチノール等を加水分解しシユークロースと分
離容易な糖類に変え、シユークロースの濃度を高
めると共にNa型強酸性陽イオン樹脂の樹脂塔に
通液し、クロマト的にシユークロースを分離する
方法である。ラフイノース等を加水分解する方法
としては、例えばアブシデア・リグニエリー
IFO8084の菌株を培養して菌体酵素を調製し、こ
れを前記甜菜糖蜜と接触させると良く、接触によ
りラフイノース等は加水分解し、シユークロース
とガラクトースとなり、第1表に示すイオン交換
法糖蜜の例では第2表の如くなる。
[Table] Unlike cane molasses, the main component of the molasses is sucrose, but since it contains many impurities, it is virtually impossible to recover it even if it is directly used in the production of fructooligosaccharides, and must be purified. The purpose of purification is to increase the sucrose content or remove impurities to improve purity, and various purification methods can be applied. Particularly preferred purification methods include raffinose and galactinol, which are contained in large amounts in sugar beet molasses. In this method, sucrose is hydrolyzed into sugars that can be easily separated from sucrose, the concentration of sucrose is increased, and the liquid is passed through a resin column made of Na-type strongly acidic cation resin to chromatically separate sucrose. As a method of hydrolyzing raffinose etc., for example, Absidea lignieri
It is preferable to culture the IFO8084 strain to prepare a bacterial enzyme and contact it with the above-mentioned sugar beet molasses. Raffinose etc. are hydrolyzed by the contact and become sucrose and galactose. Examples of ion-exchange molasses shown in Table 1 So it will look like Table 2.

【表】 第2表の如くラフイノースは減少しシユークロ
ースは相対的に増加するが、還元糖も増加するの
で、これをNa型強酸性陽イオン交換樹脂塔に通
液し、更にシユークロースの純度を高めるとよ
い。このとき使用するNa型強酸性陽イオン交換
樹脂としては、アンバーライトIR―120、ダウエ
ツキス50W×4、ダイヤイオンSK―1A(何れも
商品名)の如き樹脂で特に架橋度が4程度で50〜
100メツシユの粒度を有する樹脂がよい。通液は
細長カラムに前記樹脂を充填し、前記加水分解し
た糖蜜と押し出し水を交互に通液し、通液速度
(SV)0.5〜2.5で押出すとシユークロースを多量
に含むフラクシヨンが得られる。このようにして
第2表の糖蜜を処理し、得られたシユークロース
フラクシヨンの分析例を第3表に示す。
[Table] As shown in Table 2, ruffinose decreases and sucrose increases relatively, but reducing sugar also increases, so this is passed through a Na-type strongly acidic cation exchange resin column to further increase the purity of sucrose. Good. The Na-type strong acid cation exchange resin used at this time is resin such as Amberlite IR-120, Dowetsukiss 50W x 4, and Diaion SK-1A (all trade names), especially with a degree of crosslinking of about 4 and 50 to 50%.
A resin with a particle size of 100 mesh is preferred. For liquid passage, the resin is packed in a long and narrow column, and the hydrolyzed molasses and extruded water are alternately passed through the column and extruded at a liquid passage rate (SV) of 0.5 to 2.5 to obtain a fraction containing a large amount of sucrose. Table 3 shows an analysis example of the sucrose fraction obtained by treating the molasses shown in Table 2 in this manner.

【表】 第3表より判明する如く、多少のラフイノース
は共存し最終製品に移行するが、この程度の量は
製品組成に大して影響を与えない。又該溶液は濃
度が低くそのまゝでは大量となり取扱いに不便を
伴うのでBx50前後に濃縮しておくとよい。 上記精製し、濃縮した糖蜜は次いで第2工程と
してフラクトシルトランスフエラーゼによりフラ
クトオリゴ糖にかえるが、フラクトシルトランス
フエラーゼとしては公知のものが使用でき、例え
ばアペルギルス・オリゼーIAM2600菌株を甜菜
糖蜜5%(全糖として)に稀釈し、これに
KH2PO40.1%、MgSO4・7H2O0.05%、尿素0.1
%、NaNO30.1%、ポリペプトン0.3%、コーステ
ーブリカー0.1%を添加し培養基を作り、通気培
養して菌体を増殖せしめ、菌糸体を遠心分離して
洗滌し、常法により酵素を固定してインベルター
ゼ活性の少ない菌体酵素として使用するとよい。
このようにして製造した菌体酵素は通常フラクト
シルトランスフエラーゼ活性20〜40単位/mg乾物
を有する。但し、活性単位はシユークロース50g
をM/10リン酸緩衝液(PH5.0)50mlに溶解し、
菌体酵素5gを添加し50℃で5時間反応させた後
液を高速液体クロマトグラフイーでグルコース
を定量し、1時間に1μMolのグルコースを生成す
る酵素量を1単位とし、菌体乾の1mg当りで示し
たものである。 反応は前記精製濃縮したシユークローズ溶液を
PH5.0前後に調整し、40〜60℃に加熱し、加熱後
その10に対しフラクトシルトランスフエラーゼ
活性30単位/mg乾物を有する生の菌体酵素約500
gを加え、撹拌しつつ3〜7時間その温度に保持
するとよい。保持により反応が進み多量のフラク
トオリゴ糖が生成するので反応がほぼ完了すると
菌体酵素を除去する。今、前記条件で5時間反応
させた後過し、液を分析した例を第4表に示
す。
[Table] As is clear from Table 3, some raffinose coexists and transfers to the final product, but this amount does not significantly affect the product composition. Also, since the concentration of the solution is low and it is inconvenient to handle as it becomes a large amount as it is, it is preferable to concentrate it to around Bx50. The purified and concentrated molasses is then converted into fructo-oligosaccharides using fructosyltransferase in the second step. As the fructosyltransferase, known ones can be used. (as total sugar) and add to this
KH 2 PO 4 0.1%, MgSO 4 7H 2 O 0.05%, Urea 0.1
%, 0.1% NaNO 3 , 0.3% polypeptone, and 0.1% coast liquor were added to prepare a culture medium, aeration culture was performed to grow the mycelia, the mycelium was centrifuged and washed, and the enzyme was fixed using a conventional method. It is recommended to use it as a bacterial enzyme with low invertase activity.
The bacterial enzyme thus produced usually has a fructosyltransferase activity of 20 to 40 units/mg dry matter. However, the active unit is 50g of sucrose.
Dissolve in 50ml of M/10 phosphate buffer (PH5.0),
After adding 5 g of bacterial enzyme and reacting at 50°C for 5 hours, glucose was quantified using high-performance liquid chromatography, and the amount of enzyme that produced 1 μMol of glucose per hour was defined as 1 unit, and 1 mg of dried bacterial cells was added. This is shown as a hit. The reaction is carried out using the purified and concentrated seurose solution.
Adjust the pH to around 5.0, heat to 40-60℃, and after heating, add about 500 raw bacterial enzymes with fructosyltransferase activity of 30 units/mg dry matter per 10.
g and maintain the temperature for 3 to 7 hours while stirring. Due to the retention, the reaction progresses and a large amount of fructooligosaccharide is produced, so when the reaction is almost completed, the bacterial enzyme is removed. Table 4 shows an example in which the solution was analyzed after reacting for 5 hours under the above conditions.

【表】 但し〓は全糖に対する割合でフラクトオリ
ゴ糖中に少量のラフイノースを含む。
第4表より判明する如く、フラクトオリゴ糖は
全糖中約60%を占めGF2が最も多く、GF3,GF4
の順となり、未反応のシユークロース、及び主と
して反応中に生成したグルコース、フラクトース
等の糖類が約40%残ることになる。 上記反応生成物からシユークロース等を分離す
るには第3工程としてCa型強酸性陽イオン交換
樹脂のカラムを使用するのがこの発明の特徴の一
つでカラムによる分離を良好にするため活性化し
た強酸性陽イオン交換樹脂と強塩基性陰イオン交
換樹脂により完全に脱塩して阻害イオンを除去し
ておく必要がある。この発明で使用するCa型強
酸性陽イオン交換樹脂としてはアンバーライト
IR―120、ダウエツキス50W×6、ダイヤイオン
SK―1A(何れも商品名)等の樹脂で特に架橋度
4〜6で粒度が50〜100メツシユのものがよい。
該樹脂はCaCl2等の溶液で処理しCa型となし、ク
ロマト分離に便利な細長樹脂塔に充填し、30〜60
℃の温度で糖液と押出水を交互に通液し、SV0.1
〜2の速度で分別分離する。今、ダウエツキス
50W×6(商品名)の100メツシユの樹脂をCa型
に変え、その2.5を樹脂塔に充填し、前記処理
した糖液をSV0.3で通液し、最初流出する800ml
はすて、次いで流出する125mlづつを分取すると
第5表に示すような糖液組成物が得られる。
[Table] However, 〓 contains a small amount of raffinose in the fructooligosaccharide in proportion to the total sugar.
As is clear from Table 4, fructooligosaccharides account for approximately 60% of the total sugars, with GF 2 being the most abundant, GF 3 and GF 4
About 40% of the unreacted sucrose and sugars mainly produced during the reaction, such as glucose and fructose, remain. One of the features of this invention is the use of a Ca-type strongly acidic cation exchange resin column in the third step to separate sucrose, etc. from the above reaction products. It is necessary to completely desalt and remove inhibiting ions using a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Amberlite is the Ca-type strongly acidic cation exchange resin used in this invention.
IR-120, Dowetsukiss 50W x 6, Diamond Ion
A resin such as SK-1A (all trade names) with a degree of crosslinking of 4 to 6 and a particle size of 50 to 100 mesh is particularly preferred.
The resin is treated with a solution such as CaCl 2 to form a Ca type, and packed into a long and narrow resin tower convenient for chromatographic separation.
Pass sugar solution and extruded water alternately at a temperature of ℃, SV0.1
Fractional separation is performed at a speed of ~2. Now Dawetzkiss
Convert 100 meshes of resin of 50W x 6 (trade name) to Ca type, fill 2.5 of it into a resin tower, and pass the treated sugar solution at SV0.3, and the first 800ml that flows out.
The sugar solution composition shown in Table 5 is obtained by discarding the liquid and then collecting 125 ml of the liquid that flows out.

【表】 第5表から判明するように最初流出する糖はフ
ラクトオリゴ糖の如き分子量の大きい糖類で、こ
の中には最初から糖蜜中に含まれていたラフイノ
ース等も少量含まれている。次いで流出する糖類
はシユークローズで最後にグルコースの如き単糖
類が流出する。従つてフラクシヨン1〜5とフラ
クシヨン1〜9を回収し、Bx50迄濃縮後活性炭
で脱色し、更にBx75に濃縮すると第6表に示す
糖組成のものが得られる。
[Table] As is clear from Table 5, the sugars that first flow out are high molecular weight sugars such as fructooligosaccharides, and this also contains a small amount of raffinose, etc., which were contained in the molasses from the beginning. Next, the saccharides that flow out are sucrose, and finally, monosaccharides such as glucose flow out. Therefore, fractions 1 to 5 and fractions 1 to 9 are collected, concentrated to Bx50, decolorized with activated carbon, and further concentrated to Bx75 to obtain the sugar compositions shown in Table 6.

【表】 第6表より判明する如く回収されるフラクトオ
リゴ糖はGF3が最も多く、少量のシユークロース
が混合し、1〜5フラクシヨンでは95%の純度の
フラクトオリゴ糖が1〜9フラクシヨンでは90.8
%のフラクトオリゴ糖が含まれている。 従つて、上記フラクトオリゴ糖の多いフラクシ
ヨンを集め、これをBx60〜80に濃縮すれば長期
保存ができるさわやかな甘味の甘味料とすること
ができる。更にグルコース、フラクトース、ソル
ビトール、カツプリングシユガー等の溶液を混合
すると甘味を調節することができ、何れも難う蝕
性の甘味料とし虫歯予防食品の製造原料として使
用することができ、特に虫歯に侵かされ易い子供
の時期の甘味料としては好適である。 この発明は上記の如くしてなり、安価な甜菜糖
蜜中のシユークロースを原料とし、高収率でフラ
クトオリゴ糖を製造するものであるから安価に製
造できる利点を有する。又この方法はシユークロ
ースを出発原料のう蝕性を改良するマルトオルゴ
シルフラクトシツドその他オリゴ糖類の生化学的
製造に使用できるものである。 以下実施例により説明する。 実施例 1 内径87cm、高さ250cm、樹脂層高さ170cmのジヤ
ケツト付ステンレスカラムに粒度50〜100メツシ
ユのダウエツクス50W×4(商品名)樹脂を1
充填し、予じめα―ガラクトシダーゼにより処理
しラフイノースを95%加水分解した第2表に示す
イオン交換脂脱塩法の甜菜糖蜜稀釈液125を
SV1.3で前記樹脂カラムに通液し温水で押し出し
てシユークロース区分の糖液を回収し、Bx50迄
減圧濃縮して濃縮液48Kgを得た。 この濃縮液をPH5.0に調整後16Kgを20容の槽
に入れ温度55℃に加熱しこれにアスペルギルスオ
リゼー(Aspergillus Oryze)IAM2600菌株の凍
結菌体を55℃の温水で1時間処理し、フラクトシ
ルトランスフエラーゼを30単位/mg乾物を含む遠
心脱水した菌体酵素を500g添加し5時間その温
度に撹拌保持して反応させた。反応後了後遠心分
離により菌体と糖液を分離し、菌体は再度同じ槽
に戻して3回酵素反応を繰返した。 酵素処理液全量は次いでH型のダウエツクス
HCR―W2(商品名)2のカラムとOH型レバチ
ツトCa9249(商品名)4のカラムに通液し脱塩
した。脱塩後内径15cm、高さ220cmのジヤケツト
付ステンレスカラムにCa型のダウエツクス50W
×6(商品名)(粒度100メツシユ)を35充填し、
脱塩した糖液をBx30,SV0.3,温度60℃、チヤ
ージ量3.5で通液し、次いで60℃の温水を同じ
SVで供給し、糖液のチヤージと温水の供給を繰
返す連続運転を行ないフラクトオリゴ糖の多いフ
ラクシヨンを集め90%純度の糖液を得た。 上記糖液は減圧でBx50に濃縮し、少量の活性
炭を加えて脱色し、過後更にBx75迄濃縮した。
得られたフラクトオリゴ糖はさわやかな甘味を有
し、グルコース、フラクトース、ソルビトール、
シユークロース等の他の甘味料と任意に混合する
ことができ難う蝕性甘味料として好適であつた。
[Table] As can be seen from Table 6, most of the recovered fructooligosaccharides are GF 3 , with a small amount of sucrose mixed in, with fructooligosaccharides having a purity of 95% in fractions 1 to 5 and 90.8 in fractions 1 to 9.
Contains % fructooligosaccharides. Therefore, by collecting the above fructooligosaccharide-rich fractions and concentrating them to a Bx of 60 to 80, a refreshing sweetener that can be stored for a long period of time can be obtained. Furthermore, the sweetness can be adjusted by mixing solutions of glucose, fructose, sorbitol, cupping sugar, etc. All of these can be used as non-cariogenic sweeteners and raw materials for the production of caries-preventing foods, and are particularly effective against caries. It is suitable as a sweetener for children who are easily spoiled. The present invention is made as described above, and has the advantage of producing fructooligosaccharide at a high yield using inexpensive sucrose in sugar beet molasses as a raw material, and can therefore be produced at low cost. This method also allows the use of sucrose in the biochemical production of maltoolgosylfructosides and other oligosaccharides that improve the cariogenic properties of starting materials. This will be explained below using examples. Example 1 Dowex 50W x 4 (trade name) resin with a particle size of 50 to 100 mesh was added to a jacketed stainless steel column with an inner diameter of 87 cm, a height of 250 cm, and a resin layer height of 170 cm.
The diluted sugar beet molasses solution 125 of the ion-exchange fat desalination method shown in Table 2 was filled and previously treated with α-galactosidase to hydrolyze 95% of raffinose.
The liquid was passed through the resin column at SV1.3 and extruded with hot water to recover the sugar solution in the sucrose section, and concentrated under reduced pressure to Bx50 to obtain 48 kg of concentrated liquid. After adjusting the pH of this concentrate to 5.0, 16 kg was placed in a 20-volume tank and heated to 55°C.Frozen cells of Aspergillus Oryze strain IAM2600 were treated with warm water at 55°C for 1 hour to form a fruct. 500 g of centrifugally dehydrated bacterial enzyme containing 30 units/mg dry matter of siltransferase was added, and the mixture was stirred and maintained at that temperature for 5 hours to react. After the reaction was completed, the bacterial cells and sugar solution were separated by centrifugation, and the bacterial cells were returned to the same tank and the enzymatic reaction was repeated three times. The entire amount of the enzyme treatment solution was then transferred to an H-type dowex.
The solution was desalted by passing it through a column of HCR-W 2 (trade name) 2 and a column of OH type Revacit Ca9249 (trade name) 4. After desalination, a stainless steel column with a jacket of 15 cm in inner diameter and 220 cm in height was loaded with Ca-type Dowex 50W.
Filled with 35 ×6 (product name) (particle size 100 mesh),
Pour the desalted sugar solution at Bx30, SV0.3, temperature 60℃, charge amount 3.5, and then pour hot water at 60℃ in the same manner.
The sugar solution was supplied by SV, and a continuous operation was performed in which charging the sugar solution and supplying hot water were repeated, and a fraction containing a large amount of fructooligosaccharides was collected to obtain a sugar solution with a purity of 90%. The above sugar solution was concentrated to Bx50 under reduced pressure, decolorized by adding a small amount of activated carbon, and further concentrated to Bx75 after filtration.
The obtained fructooligosaccharide has a refreshing sweet taste and contains glucose, fructose, sorbitol,
It was suitable as a cariogenic sweetener that could not be mixed with other sweeteners such as sucrose.

Claims (1)

【特許請求の範囲】[Claims] 1 甜菜糖蜜を精製しシユークロース純度を向上
さす第1工程と、第1工程で得たシユークロース
溶液をフラクトシルトランスフエラーゼでフラク
トオリゴ糖に変換する第2工程と、第2工程で得
たフラクトオリゴ糖溶液をCa型強酸性陽イオン
交換樹脂のカラムでクロマト分離する第3工程の
組合せを特徴とする甜菜糖蜜より難う蝕性甘味料
の製造方法。
1 The first step of refining sugar beet molasses to improve the purity of sucrose, the second step of converting the sucrose solution obtained in the first step into fructooligosaccharide using fructosyltransferase, and the fructooligosaccharide solution obtained in the second step A method for producing a cariogenic sweetener that is less cariogenic than sugar beet molasses, characterized by a combination of a third step of chromatographically separating the sweetener using a Ca-type strongly acidic cation exchange resin column.
JP58101646A 1983-06-09 1983-06-09 Production of slightly carious sweetening agent from beet molasses Granted JPS59227269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101646A JPS59227269A (en) 1983-06-09 1983-06-09 Production of slightly carious sweetening agent from beet molasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101646A JPS59227269A (en) 1983-06-09 1983-06-09 Production of slightly carious sweetening agent from beet molasses

Publications (2)

Publication Number Publication Date
JPS59227269A JPS59227269A (en) 1984-12-20
JPS6345785B2 true JPS6345785B2 (en) 1988-09-12

Family

ID=14306139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101646A Granted JPS59227269A (en) 1983-06-09 1983-06-09 Production of slightly carious sweetening agent from beet molasses

Country Status (1)

Country Link
JP (1) JPS59227269A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274259A (en) * 1985-09-27 1987-04-06 Zenkoku Shokubutsu Tanpaku Shokuhin Kyodo Kumiai Sauce for fermented soybean
EP1781116A4 (en) * 2004-06-04 2009-07-29 Horizon Science Pty Ltd Natural sweetener

Also Published As

Publication number Publication date
JPS59227269A (en) 1984-12-20

Similar Documents

Publication Publication Date Title
EP2264041B1 (en) Process for manufacturing tagatose using soy oligosaccharide
AU666073B2 (en) Sweetener, process for the preparation thereof and the use thereof
JP2947609B2 (en) Method for producing xylitol from xylose-containing mixture
FI80706B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN PRODUKT MED HOEG MALTITOLHALT OCH ANVAENDNINGEN AV PRODUKTEN.
CA1246556A (en) Production of fructose syrup
KR0157304B1 (en) Novel preparation method of xylose
US8865948B2 (en) Method for manufacturing high-purity sorbitol syrups from sucrose and uses thereof
US6146856A (en) Process for the production of isomatulose and other products
JPS6013677B2 (en) Enzymatic transfructosylation method of sucrose
KR100508724B1 (en) How to prepare trehalose and sugar alcohol
JPS6365301B2 (en)
JPS6345785B2 (en)
WO2005103276A1 (en) Sugar with high content of lactosucrose, process for producing the same and use thereof
US4463093A (en) Process for isomerizing L-glucose to L-fructose
JP4617077B2 (en) Method for purifying difructose dianhydride III
JPH05211900A (en) Production of sweetener
JPS61271295A (en) Production of condensed fructose
JPS6345191B2 (en)
JP3252295B2 (en) Method for producing L-galactose
CA2290735A1 (en) Process for the production of isomaltulose and other products
KUSAKABE et al. Studies on the Mannanase of Streptomyces V. Preparation of Crystalline Mannobiose from Copra Mannan by a Mannanase System from Streptomyces sp.
KR900008744B1 (en) Process for the production of a fermentation starting material
KR860000913B1 (en) Method for producing sweeter
JP2002262899A (en) Method for isolating l-arabinose
JPH0892273A (en) Xylosyl fructoside crystal and its production