JPS63456A - Transparent conductive film and its production - Google Patents

Transparent conductive film and its production

Info

Publication number
JPS63456A
JPS63456A JP14296686A JP14296686A JPS63456A JP S63456 A JPS63456 A JP S63456A JP 14296686 A JP14296686 A JP 14296686A JP 14296686 A JP14296686 A JP 14296686A JP S63456 A JPS63456 A JP S63456A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
substrate
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14296686A
Other languages
Japanese (ja)
Other versions
JPH0784651B2 (en
Inventor
Kazuo Tozawa
戸沢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61142966A priority Critical patent/JPH0784651B2/en
Publication of JPS63456A publication Critical patent/JPS63456A/en
Publication of JPH0784651B2 publication Critical patent/JPH0784651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To decrease the reflection loss of light by a transparent conductive film consisting of a polycrystalline metal oxide and to improve transmittance by grading the <111> axis of the crystal grains on the film surface to the direction perpendicular to the substrate surface and forming rugged structure of such crystal grains at the time of forming the transparent conductive film on the substrate. CONSTITUTION:The transparent conductive film 2 consisting of the mixture composed of In2O3 and SnO3 is deposited by evaporation at 15-30Angstrom /sec on the surface of the glass substrate 1 in the production stage of a solar battery and an amorphous Si film is deposited thereon; further, an Al metallic electrode film 4 is formed thereon. The surface of the transparent conductive film in contact with the amorphous Si film 3 is so graded that the <111> axis is perpendicular to the surface of the glass substrate 1; therefore, said surface has the rugged structure and the multiple reflections by the plans parallel with the (100) face of the crystal grains are extremely accelerated when the light entered from the substrate 1 side is made to enter the amorphous Si film 3 through the transparent conductive film 2. The quantity of the light arriving at the amorphous Si film 3 is thereby considerably increased and the photoelectric conversion efficiency of the solar battery is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は透明導電膜およびその製造方法、特に太陽電池
の透明電極として用いるのに好適な透明導電膜およびそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a transparent conductive film and a method for manufacturing the same, particularly a transparent conductive film suitable for use as a transparent electrode of a solar cell and a method for manufacturing the same.

(従来の技術) 従来、例えばアモルファス・シリコン太陽電池の窓側電
極として透明導電膜が用いられている。
(Prior Art) Conventionally, a transparent conductive film has been used, for example, as a window electrode of an amorphous silicon solar cell.

この透明導電膜としてはITO13n 02等の金属酸
化物をガラス等の透明基板上に蒸着している。
As this transparent conductive film, a metal oxide such as ITO13n 02 is deposited on a transparent substrate such as glass.

このような透明導電膜の特性としては透過率が高いこと
および比抵抗が低いことが要求される。特に透過率が高
いことは太陽電池の光゛市変換効率を向上する上できわ
めて重要である。従来、金属酸化物より成る透明導電膜
を、表面に凹凸構造を有する杆状結晶粒を以て形成して
多重反)1を起させて入射光の反射損失を減らすことが
知られている。
Such transparent conductive films are required to have high transmittance and low specific resistance. In particular, high transmittance is extremely important in improving the light conversion efficiency of solar cells. Conventionally, it has been known to reduce reflection loss of incident light by forming a transparent conductive film made of a metal oxide with rod-shaped crystal grains having an uneven structure on the surface to cause multiple reflections (1).

(発明が解決しようとする問題点) 上述した従来の透明導電膜の表面は、<  110>軸
方向に配向した結晶粒より形成されており、(100)
面が基板表面に平行となっている結晶粒が多数存在して
いる。したがって多くの入射光はそのまま多重反tJJ
されることなく反射されるので反射損失の低減効果が十
分ではなく、透過率が低い欠点があった。
(Problems to be Solved by the Invention) The surface of the conventional transparent conductive film described above is formed of crystal grains oriented in the <110> axis direction, and the (100)
There are many crystal grains whose planes are parallel to the substrate surface. Therefore, much of the incident light is directly multiplexed by tJJ
Since it is reflected without being reflected, the effect of reducing reflection loss is not sufficient, and the transmittance is low.

本発明の目的は上述した欠点を除去し、多重反射によっ
て反(ト)損失を十分に軽減することができる透明導電
膜およびその製造方法を提供しようとするものである。
An object of the present invention is to provide a transparent conductive film that can eliminate the above-mentioned drawbacks and sufficiently reduce reflection loss due to multiple reflections, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明は、基板上に堆積形成した多結晶金属酸化物より
成る透明導電膜において、膜表面が結晶粒による凹凸構
造を有しかつ半数以上の結晶粒の<  111>軸が基
板表面に対し垂直な方向にほぼ配向していることを特徴
とするものである。
(Means for Solving the Problems) The present invention provides a transparent conductive film made of a polycrystalline metal oxide deposited on a substrate, in which the film surface has an uneven structure formed by crystal grains, and more than half of the crystal grains are It is characterized in that the <111> axis is substantially oriented in a direction perpendicular to the substrate surface.

ざらに本発明は、膜表面が金属酸化物の結晶粒による凹
凸構造を有しかつ半数以上の結晶粒のく111〉軸が基
板表面にほぼ垂直な方向に配向している透明導電膜を形
成するに当り、基板および金属酸化物材料を真空容器内
に入れ、金属酸化物材料を加熱して15〜30Å/秒の
蒸着速度で基板上に蒸着することを特徴とするものであ
る。
Roughly speaking, the present invention forms a transparent conductive film whose surface has an uneven structure formed by crystal grains of a metal oxide, and in which the 111> axis of more than half of the crystal grains is oriented in a direction substantially perpendicular to the substrate surface. In doing so, the substrate and the metal oxide material are placed in a vacuum container, and the metal oxide material is heated and deposited onto the substrate at a deposition rate of 15 to 30 Å/sec.

(作用) 本発明の透明導電膜においては、金FAM化物の柱状結
晶粒は、その<  111>軸が基板表面に対して垂直
な方向に強く配勾されているため、結晶粒の(,222
)面が基板と平行となっている。したがって透明導電膜
の表面の凹凸構造は第1図(a )に示すように三角錐
状となり、7字状の溝が形成されることになる。したが
って入射光はv字状の溝の中で多重反射をすることにな
り、入射側に反射されで戻る光は著しく少なくなり、反
射損失はきわめて少なくなる。
(Function) In the transparent conductive film of the present invention, the columnar crystal grains of the gold FAM compound have their <111> axes strongly oriented in a direction perpendicular to the substrate surface.
) plane is parallel to the substrate. Therefore, the uneven structure on the surface of the transparent conductive film has a triangular pyramid shape as shown in FIG. 1(a), and a 7-shaped groove is formed. Therefore, the incident light undergoes multiple reflections within the V-shaped groove, and the amount of light reflected back to the incident side is significantly reduced, resulting in extremely low reflection loss.

これに対し、従来の透明導電膜では第1図(b)に示す
ように結晶粒はその<  110>軸が基板表面に垂直
な方向に配勾されているため、(100)面が基板と平
行となっている。したがって多重反射される光線は少な
く、反射による損失が多いため、透過率は小さいもので
ある。
On the other hand, in conventional transparent conductive films, the <110> axis of the crystal grains is oriented in a direction perpendicular to the substrate surface, as shown in Figure 1(b), so the (100) plane is aligned with the substrate. They are parallel. Therefore, the number of multiple reflected light rays is small and the loss due to reflection is large, so the transmittance is low.

また本発明の製造方法のように蒸着速度を15〜30Å
/秒とすること°により、半数以上の結晶粒はその< 
 Nl>軸が基板表面に対して垂直な方向に配勾するこ
とになり、透過率の高い透明導電膜を得ることができ、
特に蒸着速度を20〜25Å/秒とすることにより70
〜80%以上の結晶粒は、そのく111〉軸が基板表面
に対して垂直な方向に配勾されるようになり、透過率の
改善効果は特に顕著となることを確めた。
In addition, as in the manufacturing method of the present invention, the deposition rate is 15 to 30 Å.
/second, more than half of the grains are
The Nl> axis is oriented in a direction perpendicular to the substrate surface, and a transparent conductive film with high transmittance can be obtained.
In particular, by setting the deposition rate to 20 to 25 Å/sec,
It was confirmed that the crystal grains of ~80% or more have their 111> axes oriented in a direction perpendicular to the substrate surface, and the transmittance improvement effect becomes particularly remarkable.

(実施例) 本発明による透明導電膜の製造方法の一実施例において
は、電子線ビーム加熱による真空蒸着装置を用い、この
装置に直流アーク放電によるイオン化装置を設ける。ソ
ーダガラス等の基板を真空熱着装置のホルダに取付【プ
、真空槽内を5 X 1Q−6Torr以下の圧力に減
圧する。また、基板ホルダに隣接して設けたヒータによ
り基板を200〜500℃、好ましくは300〜400
℃の温度に保つ。また、蒸着るつぼ内には、例えばIT
Oの焼結体を収納しておぎ、これに電子線ビームを照射
してITOを基板上に蒸着させる。この際蒸着速度およ
び膜厚は水晶振動子の発振周波数の変化によりモニタす
る。本発明においては蒸着速度が15〜30Å/秒、好
ましくは20〜25Å/秒となるように電子線ビームの
強度を制御する。このとき通常の酸素雰囲気蒸着ではI
TOが還元され、金属インジウムおよび錫が蒸着される
ようになる。そこでアーク放電によりイオン化を行なう
。イオン化電力80W(40Vx2A)にて還元された
インジウムおよび錫は再び酸化されITO膜が基板上に
堆積形成される。
(Example) In one embodiment of the method for manufacturing a transparent conductive film according to the present invention, a vacuum evaporation apparatus using electron beam heating is used, and this apparatus is provided with an ionization apparatus using DC arc discharge. Attach a substrate such as soda glass to the holder of a vacuum thermal bonding device and reduce the pressure in the vacuum chamber to 5 x 1Q-6 Torr or less. In addition, the substrate is heated to 200 to 500°C, preferably 300 to 400°C by a heater provided adjacent to the substrate holder.
Keep at temperature of °C. In addition, inside the evaporation pot, for example, IT
A sintered body of O is stored and irradiated with an electron beam to deposit ITO on the substrate. At this time, the deposition rate and film thickness are monitored by changes in the oscillation frequency of the crystal resonator. In the present invention, the intensity of the electron beam is controlled so that the deposition rate is 15 to 30 Å/sec, preferably 20 to 25 Å/sec. At this time, in normal oxygen atmosphere evaporation, I
TO is reduced and metallic indium and tin become deposited. Therefore, ionization is performed by arc discharge. Indium and tin reduced with ionization power of 80 W (40 V x 2 A) are oxidized again, and an ITO film is deposited on the substrate.

膜厚が600〜10,000人、好ましくは2000〜
3000人に達したら蒸着を終了する。このようにして
in 203およびSnO2の混合物より成る透明導電
膜が得られる。このようにして得られる膜の比抵抗は約
2X10−4Ω−印で、従来作られているITO膜の比
抵抗と同等である。
The film thickness is 600 to 10,000, preferably 2000 to 10,000.
Once the number of participants reaches 3,000, the deposition will be completed. In this way, a transparent conductive film made of a mixture of in203 and SnO2 is obtained. The resistivity of the film thus obtained is approximately 2×10 −4 Ω−, which is equivalent to the resistivity of conventionally produced ITO films.

第2図(a >は上述したようにして形成した本発明の
透明導電膜の走査形霜子顕微鏡による20.000倍の
顕微鏡写真を示す乙ので三角形状の柱状結晶粒が多数形
成されていることがわかる。また、第2図(b)は従来
の凹凸構造を有する透明導電膜の顕微鏡写真を示すもの
で、四角形状の柱状結晶粒が多数形成されていることが
わかる。これら第2図(a)および(b)の写真におい
て、下方の白扱きの枠の長さは1μmである。この従来
の透明導電膜は(100)面が基板表面と平行に配勾し
ているのに対し、本発明の透明導Tt、 Muでは(2
22)而が基板表面と平行、すなわち<  111>軸
が基板表面に対して垂直になるように配勾している。
Figure 2 (a) shows a 20,000x micrograph taken with a scanning frost microscope of the transparent conductive film of the present invention formed as described above, showing that many triangular columnar crystal grains are formed. Furthermore, Fig. 2(b) shows a micrograph of a conventional transparent conductive film having an uneven structure, and it can be seen that a large number of square columnar crystal grains are formed. In the photographs in (a) and (b), the length of the lower white frame is 1 μm.In contrast to this conventional transparent conductive film, the (100) plane is oriented parallel to the substrate surface. , in the transparent conductor Tt, Mu of the present invention (2
22) It is parallel to the substrate surface, that is, the <111> axis is perpendicular to the substrate surface.

このことをさらに確認すめために本発明の透明導電膜の
原子面(222) 、  (440) 、  (400
)および(211)によるX線回折ピークの相対強度比
を求めた結果を第3図に示す。このグラフから明らかな
ように本発明の透明導電膜では(222)面が基板表面
と平行になっており、<  111>軸が基板表面と垂
直となるように著しく配勾していることがわかる。
In order to further confirm this, the atomic planes (222), (440), (400) of the transparent conductive film of the present invention
) and (211), the results of determining the relative intensity ratio of the X-ray diffraction peaks are shown in FIG. As is clear from this graph, in the transparent conductive film of the present invention, the (222) plane is parallel to the substrate surface, and the <111> axis is markedly inclined to be perpendicular to the substrate surface. .

第4図は本発明の透明導電膜を具える太11!m電池の
一例の構成を示す断面図であり、ガラス基板1の上に透
明導電g!2を形成し、その上にアモルファス・シリコ
ン膜3を堆積し、さらにその上にアルミニウムの金属電
極膜4を形成したものである。
FIG. 4 shows a 11-inch model equipped with the transparent conductive film of the present invention! FIG. 2 is a cross-sectional view showing the configuration of an example of an m-cell, in which a transparent conductive g! 2, an amorphous silicon film 3 is deposited thereon, and an aluminum metal electrode film 4 is further formed thereon.

ガラス基板1側から入射した光は透明導電膜2を経てア
モルファス・シリコン膜3に入射することになるが、透
明導電1美2の、アモルファス・シリコン膜3と接触す
る表面は<  111>軸がガラス基板1の表面と垂直
となるように配勾されており、凹凸構造となっているた
め、結晶粒の(1oo)面と平行な面による多重反射が
顕著となり、アモルファス・シリコン膜3に入射する光
量が著しく増大することになる。
Light incident from the glass substrate 1 side passes through the transparent conductive film 2 and enters the amorphous silicon film 3, but the surface of the transparent conductive film 2 that comes into contact with the amorphous silicon film 3 has a <111> axis. Since it is oriented perpendicularly to the surface of the glass substrate 1 and has an uneven structure, multiple reflections due to planes parallel to the (1oo) plane of the crystal grains become noticeable, and the light incident on the amorphous silicon film 3 This results in a significant increase in the amount of light.

第5図はガラス基板1から透明導電膜2に入射する光の
反射率を示すものであり、曲線Aは本発明によるものを
示し、曲線Bは従来の凹凸構造を有するものを示す。こ
れらの曲線から明らかなように本発明の透明導電膜によ
ればほぼ全波長域に亘り従来のものに比べて反射率が低
下していることがわかる。特に600〜800nmの波
長域における反射率の低下が顕著に現われている。
FIG. 5 shows the reflectance of light incident on the transparent conductive film 2 from the glass substrate 1, where curve A shows the one according to the present invention and curve B shows the one having a conventional uneven structure. As is clear from these curves, it can be seen that the transparent conductive film of the present invention has a lower reflectance than the conventional film over almost the entire wavelength range. In particular, the decrease in reflectance in the wavelength range of 600 to 800 nm is noticeable.

第4図に示した太陽電池のA−M(AirM ass 
)  1.5 (100mW / +j )でのI  
−V特性を第6図の曲線Aで示す。また、第6図の曲線
Bは従来の凹凸構造を有する透明導電膜を有する太陽電
池のI  −V特性を示し、曲線Cは従来の無配勾性の
透明導電膜を有する太陽電池のI  −V特性を示すも
のである。これらの曲線から明らかなように、本発明に
よる透明導電膜を有する太陽電池の短絡電流は20m 
A / c7で、従来の凹凸構造を有するもの(181
nA/cぜ)および無配勾性構造を有するもの(16m
A/cffl)に比べてそれぞれ13%および25%も
増大しており、大きな光電変換効率を有している。
A-M (AirM ass) of the solar cell shown in Fig. 4
) I at 1.5 (100mW/+j)
-V characteristics are shown by curve A in FIG. Further, curve B in FIG. 6 shows the I-V characteristics of a solar cell having a conventional transparent conductive film having an uneven structure, and curve C shows the I-V characteristic of a solar cell having a conventional non-gradient transparent conductive film. It shows the characteristics. As is clear from these curves, the short circuit current of the solar cell having the transparent conductive film according to the present invention is 20 m
A/c7 with conventional uneven structure (181
nA/cze) and one with a non-gradient structure (16m
A/cffl), the photoelectric conversion efficiency is increased by 13% and 25%, respectively, and has a large photoelectric conversion efficiency.

本発明は上述した実施例に限定されるもものではなく幾
多の変更を加えることができる。例えば上)ホした例で
は透明導電膜をITOを以て形成したが3n 02を以
て形成することもできる。 さらに上述した実施例では
ITOの焼結体を電子線ビームにより加熱したが、他の
手段、例えばレープビームによって加熱することもでき
る。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, in the above example, the transparent conductive film was formed using ITO, but it can also be formed using 3n02. Furthermore, although the ITO sintered body was heated by an electron beam in the above-described embodiment, it can also be heated by other means, such as a rape beam.

さらに、第4図に示した太陽電池においては、ガラス基
板上に透明導電膜を形成したが、第7図に示すようにP
型シリコンウェファ11上にn゛型単結晶シリコン層1
2を成長させ、その上に本発明の透明54電膜13を形
成することもできる。
Furthermore, in the solar cell shown in FIG. 4, a transparent conductive film was formed on the glass substrate, but as shown in FIG.
An n-type single crystal silicon layer 1 is formed on a type silicon wafer 11.
2, and then the transparent 54-electrode film 13 of the present invention can be formed thereon.

(発明の効果) 上述したように本発明の透明導電膜によれば、<  1
11>軸を基板表面に垂直な方向に配勾させたため入射
光は多重反射されるようになり、反射による損失を大幅
に低減することができる。したがって、このような透明
導電膜を有する太陽電池では大きな短絡電流が得られ、
光電変換効率が暑しく向上する。また、本発明の方法に
よれば、蒸着速度を15〜30Å/秒の範囲とするとい
う#I甲な処理によって半数以上の柱状結晶粒を、その
<  111>軸が基板表面と垂直な方向となるように
強く配勾させることができ、従来の製造設備をほぼその
まま用いて高い透過率を有する透明導電膜を形成するこ
とができる。
(Effect of the invention) As described above, according to the transparent conductive film of the present invention, < 1
Since the 11> axis is oriented in a direction perpendicular to the substrate surface, the incident light is subjected to multiple reflections, and loss due to reflection can be significantly reduced. Therefore, a solar cell with such a transparent conductive film can obtain a large short circuit current,
Photoelectric conversion efficiency improves dramatically. Furthermore, according to the method of the present invention, more than half of the columnar crystal grains are formed in a direction in which the <111> axis is perpendicular to the substrate surface by a #I process in which the deposition rate is set in the range of 15 to 30 Å/sec. A transparent conductive film having a high transmittance can be formed using conventional manufacturing equipment almost as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a )および(b)は本発明の透明導電膜と従
来の透明導電膜の表面の凹凸構造を模式的に示す断面図
、 第2図(a )および(b)は本発明による透明導電膜
と従来の透明導電膜の顕微鏡写真、第3図は本発明によ
る透明導電膜のX線回折ピークの相対強度比を示すグラ
フ、 第4図は本発明による透明導電膜を有する太陽電池の一
例の構造を示す断面図、 第5図は本発明による透明導電膜と従来の透明導電膜の
分光反射率を示すグラフ、 第6図は本発明による透明導電膜と従来の透明導電膜を
具える太陽電池のI  −V特性を示すグラフ、 第7図は本発明による透明導電膜を有する太陽電池の他
の実施例の構成を示す断面図である。 1・・・ガラス基板    2・・・透明導電膜3・・
・アモルファス・シリコン膜 4・・・金属電極膜 11・・・ρ型シリコンウエフ? 12・・・n゛型シリコン層 13・・・透明導電膜特
許出願人   ティーディーケイ株式会社(a) (b) 第3図 第4図 第5図 第6図 電圧(V) 手続補正書(方式) 昭和61 年9 月 9日 1、事件の表示 昭和61年特 許 願第142966号Z発明の名称 透明導電膜およびその製造方法 3、補正をする者 事件との関係 特許出願人 ティーディーケイ株式会社 昭和61年8月26日 a  補正o対象  明細書の「図面の簡単な説明」の
贋1、明細書第11頁第5行の「透明導電膜の顕微鏡写
真、」を「透明導電膜の粒子溝造の顕微鏡写真、jに訂
正する。
FIGS. 1(a) and (b) are cross-sectional views schematically showing the uneven structure of the surface of the transparent conductive film of the present invention and a conventional transparent conductive film, and FIGS. 2(a) and (b) are the A photomicrograph of a transparent conductive film and a conventional transparent conductive film, FIG. 3 is a graph showing the relative intensity ratio of the X-ray diffraction peaks of the transparent conductive film according to the present invention, and FIG. 4 is a solar cell having the transparent conductive film according to the present invention. FIG. 5 is a graph showing the spectral reflectance of the transparent conductive film according to the present invention and the conventional transparent conductive film. FIG. 6 is a cross-sectional view showing the structure of an example of the transparent conductive film according to the present invention and the conventional transparent conductive film. FIG. 7 is a cross-sectional view showing the structure of another example of the solar cell having a transparent conductive film according to the present invention. 1...Glass substrate 2...Transparent conductive film 3...
・Amorphous silicon film 4...Metal electrode film 11...ρ type silicon wafer? 12...n-type silicon layer 13...Transparent conductive film patent applicant TDC Co., Ltd. (a) (b) Figure 3 Figure 4 Figure 5 Figure 6 Voltage (V) Procedural amendment ( Method) September 9, 1985 1, Display of the case 1986 Patent Application No. 142966 Z Name of the invention Transparent conductive film and its manufacturing method 3 Person making the amendment Relationship with the case Patent applicant TDC Co., Ltd. August 26, 1986 a Correction: False 1 of "Brief explanation of drawings" in the specification, "Microphotograph of transparent conductive film" on page 11, line 5 of the specification was changed to "transparent conductive film" Photomicrograph of particle groove structure, corrected to j.

Claims (1)

【特許請求の範囲】 1、基板上に堆積形成した多結晶金属酸化物より成る透
明導電膜において、膜表面が結晶粒による凹凸構造を有
しかつ半数以上の結晶粒の〈111〉軸が基板表面に対
し垂直な方向にほぼ配向していることを特徴とする透明
導電膜。 2、前記多結晶金属酸化膜がIn_2O_3とSnO_
2との混合物より成ることを特徴とする特許請求の範囲
第1項記載の透明導電膜。 3、膜表面が金属酸化物の結晶粒による凹凸構造を有し
かつ半数以上の結晶粒の〈111〉軸が基板表面にほぼ
垂直な方向に配向している透明導電膜を形成するに当り
、基板および金属酸化物材料を真空容器内に入れ、金属
酸化物材料を加熱して15〜30Å/秒の蒸着速度で基
板上に蒸着することを特徴とする透明導電膜の形成方法
[Claims] 1. In a transparent conductive film made of a polycrystalline metal oxide deposited on a substrate, the film surface has an uneven structure due to crystal grains, and the <111> axis of more than half of the crystal grains is aligned with the substrate. A transparent conductive film characterized by being oriented substantially perpendicular to the surface. 2. The polycrystalline metal oxide film is In_2O_3 and SnO_
2. The transparent conductive film according to claim 1, wherein the transparent conductive film is made of a mixture of 2 and 2. 3. In forming a transparent conductive film in which the film surface has an uneven structure due to metal oxide crystal grains and the <111> axis of more than half of the crystal grains is oriented in a direction substantially perpendicular to the substrate surface, A method for forming a transparent conductive film, comprising placing a substrate and a metal oxide material in a vacuum container, heating the metal oxide material, and depositing the metal oxide material onto the substrate at a deposition rate of 15 to 30 Å/sec.
JP61142966A 1986-06-20 1986-06-20 Transparent conductive film and method for manufacturing the same Expired - Fee Related JPH0784651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142966A JPH0784651B2 (en) 1986-06-20 1986-06-20 Transparent conductive film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142966A JPH0784651B2 (en) 1986-06-20 1986-06-20 Transparent conductive film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63456A true JPS63456A (en) 1988-01-05
JPH0784651B2 JPH0784651B2 (en) 1995-09-13

Family

ID=15327799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142966A Expired - Fee Related JPH0784651B2 (en) 1986-06-20 1986-06-20 Transparent conductive film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0784651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930025B2 (en) 2001-02-01 2005-08-16 Canon Kabushiki Kaisha Transparent conductive film formation process, photovoltaic device production process, transparent conductive film, and photovoltaic device
JP2006224552A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788028A (en) * 1980-11-14 1982-06-01 Asahi Glass Co Ltd Formation of electrically conductive transparent film of indium oxide
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery
JPS59151705A (en) * 1983-02-18 1984-08-30 株式会社日立製作所 Base with transparent conductive film and method of producing same
JPS59159574A (en) * 1983-03-02 1984-09-10 Komatsu Denshi Kinzoku Kk Amorphous solar battery
JPS6034076A (en) * 1983-08-05 1985-02-21 Taiyo Yuden Co Ltd Amorphous silicon solar cell
JPS60240166A (en) * 1984-05-14 1985-11-29 Taiyo Yuden Co Ltd Amorphous silicon solar battery and manufacture thereof
JPS6196775A (en) * 1984-10-17 1986-05-15 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788028A (en) * 1980-11-14 1982-06-01 Asahi Glass Co Ltd Formation of electrically conductive transparent film of indium oxide
JPS5857756A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Amorphous silicon solar battery
JPS59151705A (en) * 1983-02-18 1984-08-30 株式会社日立製作所 Base with transparent conductive film and method of producing same
JPS59159574A (en) * 1983-03-02 1984-09-10 Komatsu Denshi Kinzoku Kk Amorphous solar battery
JPS6034076A (en) * 1983-08-05 1985-02-21 Taiyo Yuden Co Ltd Amorphous silicon solar cell
JPS60240166A (en) * 1984-05-14 1985-11-29 Taiyo Yuden Co Ltd Amorphous silicon solar battery and manufacture thereof
JPS6196775A (en) * 1984-10-17 1986-05-15 Sanyo Electric Co Ltd Photovoltaic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930025B2 (en) 2001-02-01 2005-08-16 Canon Kabushiki Kaisha Transparent conductive film formation process, photovoltaic device production process, transparent conductive film, and photovoltaic device
JP2006224552A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Laminate
JP4555116B2 (en) * 2005-02-18 2010-09-29 大日本印刷株式会社 Laminated body

Also Published As

Publication number Publication date
JPH0784651B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US4584427A (en) Thin film solar cell with free tin on tin oxide transparent conductor
US5486238A (en) Photovoltaic device
US4162505A (en) Inverted amorphous silicon solar cell utilizing cermet layers
US5977477A (en) Photovoltaic device
US4873118A (en) Oxygen glow treating of ZnO electrode for thin film silicon solar cell
US4167015A (en) Cermet layer for amorphous silicon solar cells
US5668050A (en) Solar cell manufacturing method
JPH08222750A (en) Formation of solar cell on substrate and solar cell containing chalcopyrite absorbing layer
JPH10117006A (en) Thin-film photoelectric conversion device
JPH0590620A (en) Solar battery
US4675469A (en) Amorphous silicon solar battery
Selvan et al. The growth of surface textured aluminum doped ZnO Films for a-Si solar cells by RF magnetron sputtering at low temperature
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
JPS61141185A (en) Manufacture of photovoltaic element
JPS63456A (en) Transparent conductive film and its production
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
US4531015A (en) PIN Amorphous silicon solar cell with nitrogen compensation
JPS6245079A (en) Substrate for solar cell and manufacture thereof
Fantini et al. Electrodeposition of CdSe films on SnO2: F coated glass
JPH0664935B2 (en) Transparent conductive film and method for forming the same
JP3437422B2 (en) Method for forming indium oxide thin film, substrate for semiconductor device using the indium oxide thin film, and photovoltaic device
JPH05343715A (en) Thin film solar cell
JP2000232234A (en) Silicon thin film photoelectric conversion device
JPH0575153A (en) Transparent conductive film for photoelectric conversion element and its production
JPS60216585A (en) Solar cell element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees