JPS634561B2 - - Google Patents

Info

Publication number
JPS634561B2
JPS634561B2 JP56030686A JP3068681A JPS634561B2 JP S634561 B2 JPS634561 B2 JP S634561B2 JP 56030686 A JP56030686 A JP 56030686A JP 3068681 A JP3068681 A JP 3068681A JP S634561 B2 JPS634561 B2 JP S634561B2
Authority
JP
Japan
Prior art keywords
polymer
molecular weight
isoprene
low molecular
cyclized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56030686A
Other languages
Japanese (ja)
Other versions
JPS57145103A (en
Inventor
Hideo Takamatsu
Naotake Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP56030686A priority Critical patent/JPS57145103A/en
Publication of JPS57145103A publication Critical patent/JPS57145103A/en
Publication of JPS634561B2 publication Critical patent/JPS634561B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特定の官能基を有する化合物によつ
て変性された低分子量イソプレン系重合体を出発
原料として用いる環化重合体の製造方法に関す
る。 天然ゴム(NR)や合成イソプレンゴム(IR)
等のイソプレン系ゴムは、酸性触媒の存在により
容易に環化され、それによつて得られる環化ゴム
は、ポリオレフインに対する付着性、金属等への
接着性、耐摩擦性および耐薬品性に優れる等の特
長を有しており、接着剤、塗料、印刷インキ用ビ
ヒクル、電気絶縁材料等に利用されてきた。また
近年、分子鎖に反応性の高い二重結合を有するこ
とから感光性材料への応用も試られている。 しかしながら、従来より環化重合体の出発原料
として用いられてきた天然ゴム(NR)や合成イ
ソプレンゴム(IR)は、極めて分子量の高い重
合体であり、溶解作業性が著しく劣り、環化反応
を行なうとしても低濃度で行なわざるを得ず、そ
の生産性は極めて低いものであつた。また、低固
型分濃度の反応により生産性を度外視してつくら
れた環化ゴムは、アルキツド樹脂のような極性の
高い樹脂との相溶性がかなり劣つたものであるの
みならず、ポリオレフインや金属に対する接着性
もかならずしも充分なものでなかつた。 これらの欠点を解消するため、低分子量ゴムを
用いることが種々提案されてはいるが、それから
得られる環化重合体もまた、接着性、樹脂との相
溶性の点で充分満足できるものではない。 本発明者等は、接着性、樹脂との相溶性に優れ
た環化重合体を容易に製造すべく、鋭意検討を重
ねた結果、低分子量ジエン重合体を環化してヨウ
素価が100〜300である環化重合体を製造するに際
して、低分子量ジエン重合体としてシス―1,4
結合量が70%以上であつた分子量が10000〜
150000である低分子量イソプレン系重合体に無水
マレイン酸またはその誘導体を前記重合体のイソ
プレン単量体単位あたり0.3〜12モル%付加した
変性低分子量イソプレン系ゴムを用いることによ
り、環化重合体が本来有している優れた性能をな
んら損うことなく、接着性および樹脂との相溶性
に優れ、したがつて印刷インキ、塗料、コーテイ
ング材等に好適な環化重合体が得られることを見
出し、本発明を完成するに到つた。 本発明の製造方法において、まず第一に重要な
ことは、環化される変性重合体のベースとなる低
分子量イソプレン系重合体が、特定のミクロ構造
および分子量を有するものを用いることである。
すなわち、前記低分子量イソプレン系重合体とし
ては、そのシス―1,4結合が70%以上で、かつ
分子量が10000〜150000であることが必要である。 シス―1,4結合量が上記範囲より少な過ぎる
と、最終的に得られる環化重合体をフイルムとし
たときそのフイルム物性が劣つたものとなり、例
えば塗料、印刷インキとして用いた場合にその塗
膜が脆いものとなり、実用に供し得ない。したが
つてこのような観点から好ましくはシス―1,4
結合量80%以上が望ましい。なお、このシス―
1,4結合量は赤外線吸収スペクトル法により求
められるものである。 また、分子量が10000未満であると、得られる
環化重合体は、そのフイルム物性が悪く、塗料と
して使用した場合に塗膜が劣化しやすく、脆いも
のとなる。逆に分子量が150000を越えると、得ら
れる環化重合体は溶剤に溶解して使用する場合に
溶液粘度が高くなり過ぎて作業性が著しく悪いも
のとなつてしまう。このような観点より、より望
ましい分子量は20000〜80000程度である。なお、
本発明でいう分子量とは粘度平均分子量(Mv)
を意味し、30℃のトルエン溶液中で測定される極
限粘度(〔η〕)により次式から算出されるもので
ある。 〔η〕=1.21×10-4Mv0.77 このような特定のミクロ構造および分子量を有
する低分子量イソプレン系重合体としては、アニ
オン重合法によつて得られた低分子量イソプレン
系重合体、天然ゴム(NR)やチーグラー触媒ま
たはリチウム系触媒を用いて製造された高分子量
の合成イソプレンゴム(IR)等の固形ゴムを熱
分解等によつて得られる酸化減成型の低分子量イ
ソプレン系ゴム等が挙げられる。しかしながら酸
化減成型の低分子量イソプレン系重合体は、その
品質が不安定であり、また不純物を多く含むの
で、アニオン重合法によつて得られた低分子量イ
ソプレン重合体が好ましい。 前述したアニオン重合法によつて製造される低
分子量イソプレン系ゴムは、イソプレン単量体あ
るいはイソプレン単量体と少量のブタジエンやス
チレン等のイソプレンと共重合しうる単量体とを
重合溶媒の存在下あるいは不存在下にリチウム系
重合触媒を用いて重合することによつて得られ
る。リチウム系重合触媒の代表的な例としては、
金属リチウム、またはメチルリチウム、プロピル
リチウム、ブチルリチウム、α―ナフチルリチウ
ム、メチレンジリチウムあるいはジスチレニルリ
チウム等の有機リチウムなどが挙げられる。低分
子量イソプレン系重合体の分子量は、よく知れて
いるように、イソプレン単量体と触媒との使用比
率で容易に制御される。また重合触媒は重合の制
御が容易であり、使用する方が適切であり、その
例としてはn―ブタン、イソペンタン、n―ヘキ
サン、n―ヘプタン、ベンゼンあるいはキシレン
等の不活性炭化水素が挙げられるが、重合系に極
性の炭化水素化合物が存在すると得られる重合体
のシスー1,4結合量が小さなものになる場合が
多いのでその使用に際しては留意しなければなら
ない。 このような特定のミクロ構造および分子量を有
する低分子量イソプレン系重合体は、無水マレイ
ン酸、またはマレイン酸、マレイン酸エステル、
マレインアミドあるいはマレインイミド等の無水
マレイン酸誘導体を付加させることによつて変性
低分子量イソプレン系重合体にされ、環化重合体
の出発原料とされる。低分子量イソプレン系重合
体への無水マレイン酸またはその誘導体の付加反
応は、例えば低分子量イソプレン系重合体中に無
水マレイン酸またはその誘導体を加えて、溶媒ま
たはラジカル触媒の存在下または不存在下に加熱
反応することによつて容易に行なうことができ
る。ここで使用される溶媒としては、n―ブタ
ン、n―ヘキサン、n―ヘプタン、シクロヘキサ
ン、ベンゼン、トルエンあるいはキシレン、さら
にはそれらのハロゲン化物であるハロゲン化炭化
水素が挙げられる。なお、本発明において使用さ
れる変性低分子量イソプレン系重合体としては、
上述した変性低分子量イソプレン系重合体の他
に、低分子量イソプレン系重合体に付加導入され
た無水マレイン酸基等に、例えばp―トルエンス
フオン酸のような触媒の存在下または不存在下に
メタノール、エタノール、プロパノール等のアル
コールを反応させて無水マレイン酸等に基づくカ
ルボキシル基の一方あるいは両方をエステルの形
にしたもの、またアンモニアやプロピルアミン、
ブチルアミン等の第1級モノアミンを反応させて
アミド化したもの、さらにはこのアミド化物の脱
水反応によりイミド化したもの、エタノールアミ
ン、イソプロパノールアミン等のアミノアルコー
ルを反応させてアミド化し、さらに脱水すること
によりN―(ヒドロキシヒドロカルビル)―マレ
インイミドを付加した形のもの、第1級、第3級
ジアミンと反応させてアミド化し、脱水すること
によりN―(アミノヒドロカルビル)―マレイン
イミドを付加した形のものも包含する。かかる誘
導体を得るための反応は、低分子量イソプレン系
重合体に無水マレイン酸が付加された後に行なわ
れる。 これらの変性低分子量イソプレン系重合体のな
かでも、それ自身の長期間にわたる粘度安定性の
点から無水マレイン酸を付加した変性イソプレン
系重合体よりも、該変性低分子量イソプレン系重
合体の無水マレイン酸基をアルコール誘導体、ア
ミン類の誘導体、イミド類の誘導体の形となつて
いる変性低分子量イソプレン系重合体が好まし
い。 このようにして本発明の製造方法における環化
重合体の出発原料である、変性低分子量イソプレ
ン系重合体が製造されるが、ここで重要なこと
は、低分子量イソプレン系重合体に付加される無
水マレイン酸またはその誘導体の量(以下、付加
量という)が前記重合体のイソプレン単量体単位
に対して0.3〜12モル%でなければならないとい
うことである。すなわち、付加量が低過ぎると最
終的に得られる環化重合体において接着性や、樹
脂との相溶性の改良効果が乏しいものとなり、ま
た逆に付加量が多過ぎると溶液とした場合に粘度
が高くなり過ぎて作業性の著しく悪いものとなつ
てしまい、所期の目的を達成することができなく
なる。このような観点からより好ましい付加量は
1〜6モル%である。 変性低分子量イソプレン系重合体の環化方法
は、従来より行なわれている公知の方法が用いら
れる。例えば、変性低分子量イソプレン系重合体
を、ベンゼン、トルエン、キシレン等の芳香族炭
化水素の溶媒に溶解した後に、濃硫酸またはp―
トルエンスルホン酸等の有機スルフオン酸類、四
塩化スズ、四塩化チタン等のフリーデルクラフツ
触媒、塩化水素、臭化水素等のハロゲン化水素、
三塩化ホウ素等の非金属ハロゲン化物、あるいは
五酸化リン、三塩化ホスホリン化合物のリン化合
物を加えて加熱することにより得られる。また該
変性低分子量イソプレン系ゴム重合体を界面活性
剤の存在下または不存在下に水を分散させ、水性
分散体とした後に前述の触媒を添加し、加熱反応
させることによつても得られる。また、直接ロー
ル等により触媒とともに加熱混合することによつ
ても得ることが可能である。かかる環化反応にお
いて、本発明の主旨を損なわない程度に天然ゴム
(NR)や合成イソプレンゴム(IR)を混合して
用いることも可能である。溶液中で反応を行なう
場合には変性低分子量イソプレン系ゴム重合体の
濃度は5〜80%程度で行なうことができる。反応
はいずれの方法をとるにしても、室温〜200℃、
好ましくは80〜150℃の範囲で2〜10時間行なわ
れる。 環化反応は、環化重合体のヨウ素価が100〜300
となるよう、反応温度、反応時間、反応系の濃度
を決めて行なわれる。ヨウ素価が100より小さい
と得られる環化重合体は脆いものとなつてしま
い、塗料、印刷インキ等の用途への適用は不可能
となる。またヨウ素価が300より大きいと、得ら
れる環化重合体の接着性、密着性が不充分とな
り、好ましくない。かかる観点よりより好ましい
ヨウ素価は170〜280の範囲にある。 本発明の方法によつて得られる環化重合体は、
本来それが有している耐摩擦性、耐薬品性等の特
性を具えていることは無論のこと、改善された接
着性、ポリオレフイン等への密着性、アルキツド
樹脂等への極性樹脂への相溶性に特徴を有してい
るものである。 このような環化重合体は、必要に応じて種々の
配合剤を添加して印刷インキ、ポリオレフイン用
塗装剤、防水防蝕用塗料、コーテイング剤、コン
クリート等の防水浸潤剤、耐薬品コーテイング
剤、電気絶縁材、ゴムと金属等の接着剤、フオト
レジスト等の感光性樹脂材料、またはゴムの硬
度、モジユラス等の改良のための配合剤として好
ましく用いられる。さらには、天然ゴム(NR)
や合成イソプレンゴム(IR)等から得られる環
化重合体(環化ゴム)に対する、接着性、相溶性
等の改良するための配合剤として用いられる。 以下、実施例によつて、本発明を具体的に説明
するが、本発明はそれらの実施例になんら限定さ
れるものではない。 実施例 1 耐圧重合容器にn―ヘプタンを溶媒としてイソ
プレン単量体を仕込み、次いで触媒としてn―ブ
チルリチウムを添加し、不活性ガス存在下、60℃
で5時間重合し、重合終了後重合溶液を水洗し、
減圧下に乾燥して粘稠な液状の低分子量イソプレ
ン重合体を得た。なお該重合体について赤外線吸
収スペクトル法および粘度法によりシス―1,4
結合量および粘度平均分子量を評価したところ、
シス―1,4結合量は83%であり、粘度平均分子
量は31000であつた。この低分子量イソプレン重
合体(第1表中、PIPと略記す)をトルエンに溶
解した後、無水マレイン酸(第1表中、MAnと
略記す)を前記重合体100重量部に対して0.4〜20
重量部添加し、180℃の雰囲気中で撹拌すること
により無水マレイン酸が低分子量イソプレン重合
体のイソプレン単量体あたり0.27〜13.2モル%付
加した変性低分子量イソプレン重合体を得た。 前記変性低分子量イソプレン重合体100重量部
をトルエン100重量部に溶解し、触媒としてp―
トルエンスルホン酸5重量部を添加し、100℃の
温度下で撹拌して環化反応を行なつた。反応終了
後、冷却し、アンモニア水(25%濃度)4重量部
を添加して反応を停止し、次いで反応溶液を水洗
した後、メタノール中に注ぎ込んで環化重合体を
分別し、乾燥した。 得られた環化重合体は、黄褐色の固体であり、
ウイイス法にて評価したヨウ素価は、第1表のと
おりであつた。なお、変性低分子量イソプレン重
合体の代りに、未変性低分子量イソプレン重合体
を用いて環化反応を行なつたところ、ヨウ素価が
209で、黄褐色の環化重合体が得られた。 このようにして得られた環化重合体20重量部を
各々トルエン100重量部に溶解し、これに酸化チ
タン20重量部を加えて、いわゆるインキ配合物と
した。この配合物を0.2mmのバーコータにより低
密度ポリエチレンフイルム上に塗布し、1晩室温
にて乾燥した。次いで得られた塗膜にセロテープ
を貼り、次いでセロテープをはがし、その時にセ
ロテープによる塗膜の剥離が認められるか否かの
セロテープ剥離試験に供し、環化重合体を含むイ
ンキ配合物のポリエチレンフイルムに対する接着
性を評価した。その結果を第1表に示した。その
結果については、まつたく剥離が認められない場
合を「優」で、10数回に1回の割合で極く一部に
剥離が認められる場合を「可」で、また毎回一部
に剥離が認められる場合を「不可」で表わした。 また、同様に、インキ配合物が塗布された前記
ポリエチレンフイルムを手で20数回もみ、塗膜面
の状態の変化を観察し(以下、耐もみ性試験と称
す。)、もみによる塗膜面のひび割れの生成状況を
評価した。その結果を第1表に示した。その結果
については、ひび割れがまつたく認められない場
合には「優」、ひび割れがたまに認められる場合
には「可」、およびひび割れが多数認められる場
合には「不可」で表わした。 また、環化重合体10重量部およびアルキツド樹
脂(日立化成工業(株)製、商品名フタルキツド355
−50)10重量部をトルエン100重量部に溶解し、
該溶液をスライドガラスに流延し、次いで乾燥し
た。得られた被膜の状態を観察し、環化重合体の
アルキツド樹脂に対する相溶性を調べた(以下、
相溶性試験と称す。)。その結果を第1表に示し
た。その結果について、均一で透明な被膜が形成
されている場合には「優」で、充分ではないが一
応透明性のある被膜が成形されている場合には
「可」で、また不透明で相分離が認められる被膜
が形成されている場合には「不可」で表わした。
なお、無水マレイン酸が11.9モル%および12.5モ
ル%付加された変性低分子量イソプレン重合体を
用いた場合には、溶解作業性が著しく悪いもので
あつた。
The present invention relates to a method for producing a cyclized polymer using, as a starting material, a low molecular weight isoprene polymer modified with a compound having a specific functional group. Natural rubber (NR) and synthetic isoprene rubber (IR)
Isoprene-based rubbers such as these are easily cyclized in the presence of acidic catalysts, and the resulting cyclized rubbers have excellent adhesion to polyolefins, adhesion to metals, etc., abrasion resistance, chemical resistance, etc. It has the following characteristics and has been used in adhesives, paints, vehicles for printing inks, electrical insulation materials, etc. Furthermore, in recent years, attempts have been made to apply it to photosensitive materials because it has a highly reactive double bond in its molecular chain. However, natural rubber (NR) and synthetic isoprene rubber (IR), which have traditionally been used as starting materials for cyclized polymers, are polymers with extremely high molecular weights, have extremely poor dissolution workability, and are difficult to handle in cyclization reactions. Even if it were attempted, it had to be done at a low concentration, and the productivity was extremely low. In addition, cyclized rubbers produced by reactions at low solid content without regard to productivity not only have considerably poor compatibility with highly polar resins such as alkyd resins, but also have poor compatibility with polyolefins and other highly polar resins. Adhesion to metals was also not always sufficient. In order to overcome these drawbacks, various proposals have been made to use low molecular weight rubbers, but the cyclized polymers obtained from them are also not fully satisfactory in terms of adhesion and compatibility with resins. . In order to easily produce a cyclized polymer with excellent adhesiveness and compatibility with resins, the inventors of the present invention have conducted extensive studies and found that they have achieved an iodine value of 100 to 300 by cyclizing a low molecular weight diene polymer. When producing a cyclized polymer, cis-1,4 is used as a low molecular weight diene polymer.
Molecular weight with binding amount of 70% or more is 10,000 or more
By using a modified low-molecular-weight isoprene-based rubber in which 0.3 to 12 mol% of maleic anhydride or a derivative thereof is added to a low-molecular-weight isoprene-based polymer with a molecular weight of 150,000 yen, the cyclized polymer is We have discovered that it is possible to obtain a cyclized polymer that has excellent adhesive properties and compatibility with resins, and is therefore suitable for printing inks, paints, coating materials, etc., without sacrificing any of its inherent excellent properties. , we have completed the present invention. In the production method of the present invention, the first important thing is to use a low molecular weight isoprene polymer that is the base of the modified polymer to be cyclized and has a specific microstructure and molecular weight.
That is, the low molecular weight isoprene polymer needs to have a cis-1,4 bond content of 70% or more and a molecular weight of 10,000 to 150,000. If the amount of cis-1,4 bonds is too small than the above range, the physical properties of the final cyclized polymer when made into a film will be poor, and for example, when used as a paint or printing ink, the coating properties will be poor. The film becomes brittle and cannot be put to practical use. Therefore, from this point of view, preferably cis-1,4
A binding amount of 80% or more is desirable. Furthermore, this system
The amount of 1,4 bond is determined by infrared absorption spectroscopy. Furthermore, if the molecular weight is less than 10,000, the obtained cyclized polymer will have poor film properties, and when used as a paint, the coating film will easily deteriorate and become brittle. On the other hand, if the molecular weight exceeds 150,000, the solution viscosity becomes too high when the resulting cyclized polymer is used after being dissolved in a solvent, resulting in extremely poor workability. From this point of view, a more desirable molecular weight is about 20,000 to 80,000. In addition,
In the present invention, the molecular weight refers to the viscosity average molecular weight (Mv).
It is calculated from the following formula using the intrinsic viscosity ([η]) measured in a toluene solution at 30°C. [η] = 1.21×10 -4 Mv 0.77 Examples of low molecular weight isoprene polymers having such a specific microstructure and molecular weight include low molecular weight isoprene polymers obtained by anionic polymerization, natural rubber ( Examples include oxidation-degraded low-molecular-weight isoprene rubber obtained by thermal decomposition of solid rubber such as high-molecular-weight synthetic isoprene rubber (IR) produced using NR), Ziegler catalysts, or lithium-based catalysts. . However, low molecular weight isoprene polymers obtained by oxidative reduction molding are unstable in quality and contain many impurities, so low molecular weight isoprene polymers obtained by anionic polymerization are preferred. The low molecular weight isoprene rubber produced by the above-mentioned anionic polymerization method is produced by combining isoprene monomer or isoprene monomer with a small amount of a monomer copolymerizable with isoprene such as butadiene or styrene in the presence of a polymerization solvent. It can be obtained by polymerization using a lithium-based polymerization catalyst in the presence or absence of a lithium-based polymerization catalyst. Typical examples of lithium-based polymerization catalysts include:
Metallic lithium, or organic lithium such as methyllithium, propyllithium, butyllithium, α-naphthyllithium, methylene dilithium, or distyrenyl lithium, and the like can be mentioned. As is well known, the molecular weight of the low molecular weight isoprene polymer is easily controlled by adjusting the ratio of isoprene monomer to catalyst. Additionally, polymerization catalysts are easier to control and are more appropriate to use; examples include inert hydrocarbons such as n-butane, isopentane, n-hexane, n-heptane, benzene, or xylene. However, if a polar hydrocarbon compound is present in the polymerization system, the amount of cis-1,4 bonds in the resulting polymer will often be small, so care must be taken when using it. Such low molecular weight isoprene-based polymers with specific microstructures and molecular weights include maleic anhydride, maleic acid, maleic acid esters,
By adding a maleic anhydride derivative such as maleinamide or maleimide, it is made into a modified low molecular weight isoprene-based polymer, which is used as a starting material for a cyclized polymer. The addition reaction of maleic anhydride or its derivatives to a low molecular weight isoprene polymer can be carried out, for example, by adding maleic anhydride or its derivative to a low molecular weight isoprene polymer in the presence or absence of a solvent or a radical catalyst. This can be easily carried out by heating the reaction. Examples of the solvent used here include n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene, xylene, and halogenated hydrocarbons, which are halogenated products thereof. The modified low molecular weight isoprene polymer used in the present invention includes:
In addition to the above-mentioned modified low-molecular-weight isoprene-based polymer, maleic anhydride groups etc. added to the low-molecular-weight isoprene-based polymer are added in the presence or absence of a catalyst such as p-toluenesulfonic acid. Alcohols such as methanol, ethanol, and propanol are reacted to form one or both of the carboxyl groups based on maleic anhydride, etc., and ammonia, propylamine,
Amidation by reacting a primary monoamine such as butylamine, imidation by dehydration of this amidide, amidation by reaction with an amino alcohol such as ethanolamine or isopropanolamine, and further dehydration. By reacting with primary and tertiary diamines to amidate and dehydrating, N-(aminohydrocarbyl)-maleimide can be added. It also includes things. The reaction to obtain such a derivative is carried out after maleic anhydride is added to the low molecular weight isoprene-based polymer. Among these modified low-molecular-weight isoprene-based polymers, maleic anhydride of the modified low-molecular-weight isoprene-based polymer is preferred over modified isoprene-based polymers to which maleic anhydride is added in terms of its own long-term viscosity stability. Modified low molecular weight isoprene polymers in which acid groups are in the form of alcohol derivatives, amine derivatives, or imide derivatives are preferred. In this way, the modified low molecular weight isoprene polymer, which is the starting material for the cyclized polymer in the production method of the present invention, is manufactured.What is important here is that the modified low molecular weight isoprene polymer is added to the low molecular weight isoprene polymer. The amount of maleic anhydride or its derivative (hereinafter referred to as the added amount) must be 0.3 to 12 mol % based on the isoprene monomer unit of the polymer. In other words, if the amount added is too low, the final cyclized polymer obtained will have a poor effect on improving adhesion and compatibility with the resin, and conversely, if the amount added is too large, the viscosity will decrease when it is made into a solution. becomes too high, resulting in extremely poor workability and making it impossible to achieve the intended purpose. From this point of view, a more preferable addition amount is 1 to 6 mol%. As a method for cyclizing the modified low molecular weight isoprene polymer, a conventionally known method can be used. For example, after dissolving a modified low molecular weight isoprene polymer in an aromatic hydrocarbon solvent such as benzene, toluene, or xylene,
Organic sulfonic acids such as toluenesulfonic acid, Friedel-Crafts catalysts such as tin tetrachloride and titanium tetrachloride, hydrogen halides such as hydrogen chloride and hydrogen bromide,
It can be obtained by adding and heating a nonmetal halide such as boron trichloride, or a phosphorus compound such as phosphorus pentoxide or phosphorine trichloride compound. It can also be obtained by dispersing the modified low molecular weight isoprene rubber polymer in water in the presence or absence of a surfactant to form an aqueous dispersion, then adding the above-mentioned catalyst and causing a heating reaction. . It can also be obtained by directly heating and mixing with a catalyst using a roll or the like. In such a cyclization reaction, natural rubber (NR) or synthetic isoprene rubber (IR) may be mixed and used to the extent that the gist of the present invention is not impaired. When the reaction is carried out in a solution, the concentration of the modified low molecular weight isoprene rubber polymer can be about 5 to 80%. Regardless of which method is used, the reaction should be carried out at room temperature to 200°C.
It is preferably carried out at a temperature of 80 to 150°C for 2 to 10 hours. The cyclization reaction is performed when the iodine value of the cyclized polymer is 100 to 300.
The reaction temperature, reaction time, and concentration of the reaction system are determined so that When the iodine value is less than 100, the resulting cyclized polymer becomes brittle and cannot be applied to applications such as paints and printing inks. Moreover, if the iodine value is greater than 300, the resulting cyclized polymer will have insufficient adhesion and adhesion, which is not preferable. From this point of view, a more preferable iodine value is in the range of 170 to 280. The cyclized polymer obtained by the method of the present invention is
It goes without saying that it has the inherent characteristics such as abrasion resistance and chemical resistance, but also has improved adhesion, adhesion to polyolefins, etc., and compatibility with polar resins such as alkyd resins. It is characterized by its solubility. Such cyclized polymers can be used as printing inks, coating agents for polyolefins, waterproof and corrosion-resistant paints, coating agents, waterproof infiltration agents for concrete, chemical-resistant coating agents, electrical coatings, etc. by adding various compounding agents as necessary. It is preferably used as an insulating material, an adhesive between rubber and metal, a photosensitive resin material such as a photoresist, or a compounding agent for improving the hardness, modulus, etc. of rubber. Furthermore, natural rubber (NR)
It is used as a compounding agent to improve the adhesion, compatibility, etc. of cyclized polymers (cyclized rubber) obtained from synthetic isoprene rubber (IR), etc. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 Isoprene monomer was charged into a pressure-resistant polymerization container using n-heptane as a solvent, then n-butyllithium was added as a catalyst, and the mixture was heated at 60°C in the presence of an inert gas.
Polymerization was performed for 5 hours, and after the polymerization was completed, the polymerization solution was washed with water.
A viscous liquid low molecular weight isoprene polymer was obtained by drying under reduced pressure. The polymer was determined to be cis-1,4 by infrared absorption spectroscopy and viscosity method.
When evaluating the bond amount and viscosity average molecular weight,
The amount of cis-1,4 bonds was 83%, and the viscosity average molecular weight was 31,000. After dissolving this low molecular weight isoprene polymer (abbreviated as PIP in Table 1) in toluene, maleic anhydride (abbreviated as MAn in Table 1) was added from 0.4 to 100 parts by weight of the polymer. 20
A modified low molecular weight isoprene polymer in which maleic anhydride was added in an amount of 0.27 to 13.2 mol % based on the isoprene monomer of the low molecular weight isoprene polymer was obtained by adding parts by weight and stirring in an atmosphere at 180°C. 100 parts by weight of the modified low molecular weight isoprene polymer was dissolved in 100 parts by weight of toluene, and p-
5 parts by weight of toluenesulfonic acid was added and stirred at a temperature of 100°C to carry out a cyclization reaction. After the reaction was completed, the mixture was cooled and 4 parts by weight of aqueous ammonia (25% concentration) was added to terminate the reaction.The reaction solution was then washed with water, poured into methanol, and the cyclized polymer was separated and dried. The obtained cyclized polymer is a yellowish brown solid,
The iodine value evaluated by the Wijs method was as shown in Table 1. In addition, when the cyclization reaction was carried out using an unmodified low molecular weight isoprene polymer instead of the modified low molecular weight isoprene polymer, the iodine value was
209, a yellow-brown cyclized polymer was obtained. 20 parts by weight of the cyclized polymers thus obtained were each dissolved in 100 parts by weight of toluene, and 20 parts by weight of titanium oxide was added thereto to prepare a so-called ink formulation. This formulation was coated onto a low density polyethylene film using a 0.2 mm bar coater and dried overnight at room temperature. Next, cellophane tape was applied to the resulting coating film, and then cellophane tape was peeled off, and a cellophane peel test was conducted to determine whether or not peeling of the coating film by cellophane tape was observed. Adhesion was evaluated. The results are shown in Table 1. Regarding the results, "excellent" means that no peeling is observed at all, "fair" means that peeling is observed in only a small part of the test once every ten times, and "fair" means that peeling is observed only in a small area every time. Cases in which this is acceptable are indicated as "not possible." Similarly, the polyethylene film coated with the ink formulation was rubbed by hand over 20 times, and changes in the state of the coating film surface were observed (hereinafter referred to as the rubbing resistance test). The crack formation status was evaluated. The results are shown in Table 1. The results were graded as "excellent" if no cracks were observed, "fair" if cracks were occasionally observed, and "poor" if many cracks were observed. In addition, 10 parts by weight of cyclized polymer and alkyd resin (manufactured by Hitachi Chemical Co., Ltd., trade name Phthalkyd 355)
-50) Dissolve 10 parts by weight in 100 parts by weight of toluene,
The solution was cast onto glass slides and then dried. The state of the obtained film was observed and the compatibility of the cyclized polymer with the alkyd resin was investigated (hereinafter referred to as
This is called a compatibility test. ). The results are shown in Table 1. The result is "excellent" if a uniform and transparent film is formed, "fair" if a transparent film is formed although it is not sufficient, and "fair" if the film is opaque and has phase separation. In the case where a film was formed in which oxidation was observed, it was indicated as "unacceptable".
Note that when modified low molecular weight isoprene polymers to which 11.9 mol % and 12.5 mol % of maleic anhydride were added were used, the dissolution workability was extremely poor.

【表】 マレイン酸を付加した変性低重合体を意味する

MAn:無水マレイン酸を意味する。
実施例 2 無水マレイン酸の添加量を2重量部とすること
以外は、実施例1と同様にして、無水マレイン酸
の付加量が1.3モル%の変性低分子量イソプレン
重合体を得た。 この変性低分子量イソプレン重合体100重量部
をトルエン50重量部に溶解し、触媒として濃硫酸
(98%)5重量部および四塩化チタン5重量部を
添加し、100℃の温度で撹拌し、環化反応を行な
つた。反応終了後は、実施例1と同様にして環化
重合体を分別し、乾燥した。 得られた環化重合体は、黄褐色の固体であり、
そのヨウ素価は201であつた。 この環化重合体を、実施例1と同様に、セロテ
ープ剥離試験,耐もみ性試験および相溶性試験に
供し、その接着性および相溶性等の性能を調べ
た。その結果を第2表に示すが、前記環化重合体
は、いずれの試験においても優れた性能を示すも
のであつた。 実施例 3 実施例1において、n―ブチルリチウムの使用
量をかえることにより、シス―1,4結合量が85
%で粘度平均分子量が58000である低分子量イソ
プレン重合体を得た。実施例1と同様にして該重
合体に無水マレイン酸を反応させ、無水マレイン
酸の付加量が2.4モル%の無水マレイン酸変性低
分子量イソプレン重合体を作つた後、70℃の温度
下でメタノールを接触させることにより、マレイ
ン酸モノメチルエステルの付加した変性低分子量
イソプレン重合体を得た。 この変性重合体100重量部をトルエン100重量部
に溶解し、触媒としてp―トルエンスルホン酸10
重量部を添加し、100℃に保持して撹拌下に反応
を行なつた後、アンモニア水10重量部の添加によ
り、反応を停止し、反応液を水洗した後、メタノ
ール中に注ぎ、環化重合体を分別し、次いで乾燥
した。 このようにして得られた環化重合体は、黄色の
固体であり、ヨウ素価238のものであつた。 この環化重合体を、実施例1と同様に、セロテ
ープ剥離試験,耐もみ性試験,および相溶性試験
に供し、その性能を調べた。その結果を第2表に
示すが、この環化重合体は、接着性,相溶性に優
れたものであつた。 実施例 4 実施例1の実験No.4で用いた無水マレイン酸を
付加した変性低分子量イソプレン重合体に、ジメ
チルアミノプロピルアミンを加え、付加した無水
マレイン酸基を半アミド化し、さらに該半アミド
化物を150℃で加熱することにより、N―(ジメ
チルアミノプロピル)―マレインイミドが付加し
た変性低分子量イソプレン重合体を得た。 該変性重合体を用い、実施例1と同様の方法に
より環化反応を行ない、黄褐色でヨウ素価が227
の環化重合体を得た。 この環化重合体を実施例1と同様に、セロテー
プ剥離試験,耐もみ性試験および相溶性試験に供
し、その性能を調べた。その結果を第2表に示す
が、この環化重合体は、接着性,相溶性に優れた
ものであつた。
[Table] Means a modified low polymer to which maleic acid has been added.
MAn: means maleic anhydride.
Example 2 A modified low molecular weight isoprene polymer with an added amount of maleic anhydride of 1.3 mol % was obtained in the same manner as in Example 1, except that the added amount of maleic anhydride was 2 parts by weight. 100 parts by weight of this modified low molecular weight isoprene polymer was dissolved in 50 parts by weight of toluene, 5 parts by weight of concentrated sulfuric acid (98%) and 5 parts by weight of titanium tetrachloride were added as catalysts, and the mixture was stirred at a temperature of 100°C. A chemical reaction was carried out. After the reaction was completed, the cyclized polymer was separated and dried in the same manner as in Example 1. The obtained cyclized polymer is a yellowish brown solid,
Its iodine value was 201. This cyclized polymer was subjected to a cellophane tape peeling test, a kneading resistance test, and a compatibility test in the same manner as in Example 1 to examine its performance such as adhesiveness and compatibility. The results are shown in Table 2, and the cyclized polymer showed excellent performance in all tests. Example 3 In Example 1, by changing the amount of n-butyllithium used, the amount of cis-1,4 bonds was increased to 85
% and a viscosity average molecular weight of 58000 was obtained. The polymer was reacted with maleic anhydride in the same manner as in Example 1 to produce a maleic anhydride-modified low molecular weight isoprene polymer with an added amount of maleic anhydride of 2.4 mol%, and then methanol was added at a temperature of 70°C. A modified low molecular weight isoprene polymer to which monomethyl maleate was added was obtained. 100 parts by weight of this modified polymer was dissolved in 100 parts by weight of toluene, and 10 parts by weight of p-toluenesulfonic acid was used as a catalyst.
After adding 10 parts by weight and carrying out the reaction with stirring while maintaining the temperature at 100°C, the reaction was stopped by adding 10 parts by weight of aqueous ammonia, and after washing the reaction solution with water, it was poured into methanol and cyclized. The polymer was fractionated and then dried. The cyclized polymer thus obtained was a yellow solid with an iodine value of 238. This cyclized polymer was subjected to a cellophane tape peeling test, a kneading resistance test, and a compatibility test in the same manner as in Example 1 to examine its performance. The results are shown in Table 2, and the cyclized polymer had excellent adhesiveness and compatibility. Example 4 Dimethylaminopropylamine was added to the modified low molecular weight isoprene polymer to which maleic anhydride used in Experiment No. 4 of Example 1 was added, the added maleic anhydride groups were semi-amidated, and the semi-amide By heating the compound at 150°C, a modified low molecular weight isoprene polymer to which N-(dimethylaminopropyl)-maleimide was added was obtained. Using the modified polymer, a cyclization reaction was carried out in the same manner as in Example 1, resulting in a yellowish brown color with an iodine value of 227.
A cyclized polymer was obtained. This cyclized polymer was subjected to a cellophane tape peeling test, a kneading resistance test, and a compatibility test in the same manner as in Example 1 to examine its performance. The results are shown in Table 2, and the cyclized polymer had excellent adhesiveness and compatibility.

【表】 第2表から明らかなように、実施例2〜4で得
られた環化重合体は、いずれも優れた密着性,樹
脂との相溶性を示す。
[Table] As is clear from Table 2, the cyclized polymers obtained in Examples 2 to 4 all exhibit excellent adhesion and compatibility with the resin.

Claims (1)

【特許請求の範囲】[Claims] 1 低分子量ジエン重合体を環化する際に、低分
子量ジエン重合体としてシス―1,4結合量70%
以上、分子量10000〜150000の低分子量イソプレ
ン系重合体に無水マレイン酸またはその誘導体を
前記重合体のイソプレン単量体単位あたり0,3
〜12モル%付加した変性重合体を用いることを特
徴とする環化重合体の製造方法。
1 When cyclizing a low molecular weight diene polymer, the amount of cis-1,4 bonds is 70% as a low molecular weight diene polymer.
In the above, maleic anhydride or a derivative thereof is added to a low molecular weight isoprene polymer having a molecular weight of 10,000 to 150,000 in an amount of 0.3 per isoprene monomer unit of the polymer.
A method for producing a cyclized polymer, characterized by using a modified polymer added with ~12 mol%.
JP56030686A 1981-03-03 1981-03-03 Production of cyclized polymer Granted JPS57145103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56030686A JPS57145103A (en) 1981-03-03 1981-03-03 Production of cyclized polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56030686A JPS57145103A (en) 1981-03-03 1981-03-03 Production of cyclized polymer

Publications (2)

Publication Number Publication Date
JPS57145103A JPS57145103A (en) 1982-09-08
JPS634561B2 true JPS634561B2 (en) 1988-01-29

Family

ID=12310563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56030686A Granted JPS57145103A (en) 1981-03-03 1981-03-03 Production of cyclized polymer

Country Status (1)

Country Link
JP (1) JPS57145103A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033255A1 (en) 2001-10-16 2003-04-24 Zeon Corporation Composite molding with adhesive composition layer comprising conjugated diene polymer having cyclic structure, and coating material
JP3985139B2 (en) * 2002-02-06 2007-10-03 日本ゼオン株式会社 Modified polymers and coating materials
WO2003082934A1 (en) 2002-03-28 2003-10-09 Zeon Corporation Modifier for hydrocarbon polymers, hydrocarbon polymer compositions and moldings
EP1586445A4 (en) 2003-01-20 2009-09-16 Zeon Corp Multilayer body and method for producing same
WO2004065427A1 (en) 2003-01-23 2004-08-05 Zeon Corporation Polar group-containing cyclized rubber and method for producing same
DE602005026787D1 (en) 2004-03-29 2011-04-21 Zeon Corp BLOCK COPOLYMER AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JPS57145103A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
AU676232B2 (en) Randomly epoxidized small star polymers
US4405786A (en) Addition products of di-acetylene-terminated polyimide derivatives and an dienophile having ethylene groups
JP3113049B2 (en) Hydrogenated block copolymers containing epoxy groups and their preparation
JPS63260947A (en) Moisture curable binder composition
JPS634561B2 (en)
JPS6020423B2 (en) Method for manufacturing coating composition
US20050209412A1 (en) Modified polymer and coating material
US4145490A (en) Carboxylated copolymers of isobutylene and a vinylbenzene
US20150094405A1 (en) Process For Preparing Graft Polymers Without Initiator And Without Solvent And Bitumen/Polymer Compositions Comprising Said Graft Polymers
JPS5946522B2 (en) Method for producing water-dispersible coating film-forming substance
WO2003064481A1 (en) Organic particles and powder coating material
JPS5817553B2 (en) Chlorinated polyethylene paint composition
US4031168A (en) Copolymers of isobutylene and a vinylbenzene and graft polymers thereof with pivalolactone
US4988773A (en) Homopolymers or block copolymers of vinylaromatics and/or dienes with ammonium groups, and preparation of same
JPH0269545A (en) Rubber composition improved in adhesiveness
TWI832951B (en) Functionalized rubbers
JPS6329700B2 (en)
JPS61215666A (en) Coating composition for polyolefin resin
TWI631193B (en) Moisture-proof and insulating coating material and uses thereof
JP2003301153A (en) Modified-polymer-containing hardenable pressure- sensitive adhesive composition
JPH0123520B2 (en)
JPS6160767B2 (en)
JPH0116243B2 (en)
JPH0128763B2 (en)
Stevens et al. Oxidation Products of Rubber: Rubbone