JPS6345525Y2 - - Google Patents

Info

Publication number
JPS6345525Y2
JPS6345525Y2 JP19773183U JP19773183U JPS6345525Y2 JP S6345525 Y2 JPS6345525 Y2 JP S6345525Y2 JP 19773183 U JP19773183 U JP 19773183U JP 19773183 U JP19773183 U JP 19773183U JP S6345525 Y2 JPS6345525 Y2 JP S6345525Y2
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
temperature
valve
communication passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19773183U
Other languages
Japanese (ja)
Other versions
JPS60107309U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19773183U priority Critical patent/JPS60107309U/en
Publication of JPS60107309U publication Critical patent/JPS60107309U/en
Application granted granted Critical
Publication of JPS6345525Y2 publication Critical patent/JPS6345525Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業の利用分野〕 本考案は内燃機関の潤滑油供給装置、特に車両
の内燃機関の潤滑油供給装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a lubricating oil supply device for an internal combustion engine, particularly to a lubricating oil supply device for an internal combustion engine of a vehicle.

〔従来の技術〕[Conventional technology]

第3図は従来の車両の内燃機関の潤滑油供給装
置を示したもので、この潤滑油供給装置はオイル
パンa内の潤滑油を吸い上げるオイルポンプbの
下流側にオイルクーラc及び浄化するオイルフイ
ルターdを介してメインオイルギヤラリーeを連
結し、そのメインオイルギヤラリーeからクラン
クシヤフト系f、ピストン系g、カムシヤフト系
h及び動弁系iへ潤滑油を供給するようにしたも
のである。そして、これら潤滑系のクランクシヤ
フト系f、ピストン系g、カムシヤフト系h及び
動弁系iの摩擦損失や摩耗を低減している(例え
ば実開昭55−121914号公報)。
Fig. 3 shows a conventional lubricating oil supply system for an internal combustion engine of a vehicle.This lubricating oil supply system includes an oil cooler c and an oil pump b located downstream of an oil pump b that sucks up lubricating oil from an oil pan a. A main oil gear rally e is connected through a filter d, and lubricating oil is supplied from the main oil gear rally e to a crankshaft system f, a piston system g, a camshaft system h, and a valve train system i. The friction loss and wear of these lubrication systems, such as crankshaft system f, piston system g, camshaft system h, and valve train system i, are reduced (for example, Japanese Utility Model Publication No. 121914/1983).

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

しかし乍ら、上記潤滑油供給装置にあつては、
機関の通常走行(部分負荷運転)、登坂時の高負
荷運転に係わりなく即ち潤滑油油温状態に係わり
なくオイルクーラを通して各潤滑系へ供給され
る。第4図に示すように登坂等の高負荷運転時に
おいてはオイルパンa中の潤滑油油温(60℃〜70
℃)は機関冷却水水温(80℃)より高いので、オ
イルクーラcで冷却し各潤滑系へ油温の低い高粘
度の潤滑油を供給することができるが、通常走行
の部分負荷運転時においてはオイルパンa中の潤
滑油油温は冷却水水温より低くなるため、オイル
クーラcを通すことにより逆に暖められて各潤滑
系へ比較的油温の高い高粘度の潤滑油が供給され
る。そのため特に粘度の高い潤滑油を必要とする
動弁系iにも比較的高温の低粘度の潤滑油が供給
されることになる。潤滑油温度及び潤滑油粘度と
摩擦損失との関係は、第5図に示すようになつて
おり、潤滑油温度が高く潤滑油粘度の低いほど摩
擦損失が大きくなつている。従つて動弁系iの摩
擦損失や摩耗に対する影響が大きかつた。
However, regarding the above lubricating oil supply device,
It is supplied to each lubrication system through the oil cooler regardless of whether the engine is running normally (partial load operation) or high load operation when climbing a slope, that is, regardless of the lubricating oil temperature state. As shown in Figure 4, during high-load operation such as when climbing hills, the temperature of the lubricating oil in oil pan a (60°C to 70°C)
℃) is higher than the engine cooling water temperature (80℃), so it is possible to cool it with oil cooler c and supply high viscosity lubricating oil with low oil temperature to each lubrication system, but during normal partial load operation, Since the temperature of the lubricating oil in oil pan a is lower than that of the cooling water, it is conversely warmed by passing through oil cooler c, and high-viscosity lubricating oil with a relatively high oil temperature is supplied to each lubrication system. . Therefore, relatively high temperature and low viscosity lubricating oil is supplied even to the valve train system i which particularly requires lubricating oil with high viscosity. The relationship between the lubricating oil temperature, lubricating oil viscosity, and friction loss is as shown in FIG. 5, and the higher the lubricating oil temperature and the lower the lubricating oil viscosity, the larger the friction loss. Therefore, the influence on the friction loss and wear of the valve train i was large.

尚、動弁系iの摩擦損失等に直接関連はない
が、潤滑油供給装置としてこの他に実開昭57−
8307号公報に記載されているものがある。
Although it is not directly related to the friction loss of the valve train i, it is also used as a lubricating oil supply device.
Some are described in Publication No. 8307.

本考案は上記問題に対処するためになされたも
ので、機関運転中、通常走行の部分負荷運転時に
おいても低温高粘度の潤滑油を供給することによ
つて主として動弁系の摩擦損失及び摩耗を低減す
る内燃機関の潤滑供給装置を提供することを目的
とするものである。
The present invention was developed to solve the above problem, and mainly reduces friction loss and wear in the valve train by supplying low-temperature, high-viscosity lubricating oil even during partial load operation during engine operation and normal running. The object of the present invention is to provide a lubrication supply device for an internal combustion engine that reduces the

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本考案の構成は、オ
イルポンプの下流側にオイルクーラを介してメイ
ンオイルギヤラリーを連結して動弁系を含む潤滑
系へ潤滑油を供給する内燃機関の潤滑油供給装置
において、前記メインオイルギヤラリーに連通路
を介して動弁系へ潤滑油を供給するサブオイルギ
ヤラリーを連結すると共にその連通路に潤滑油油
温が機関冷却水水温より高い時開く開閉弁を設置
し、前記オイルポンプの下流側にバイパス連絡通
路を介してサブオイルギヤラリーを連結すると共
にそのバイパス連絡通路に潤滑油油温が機関冷却
水水温より低い時開く開閉弁を設置したことであ
る。
The structure of the present invention to achieve the above object is to supply lubricating oil to an internal combustion engine by connecting a main oil gear rally to the downstream side of an oil pump via an oil cooler to supply lubricating oil to the lubricating system including the valve train. In the device, a sub-oil gear rally that supplies lubricating oil to the valve train system via a communication path is connected to the main oil gear rally, and an on-off valve that opens when the lubricating oil temperature is higher than the engine cooling water temperature is installed in the communication path. A sub-oil gear rally is connected to the downstream side of the oil pump via a bypass communication passage, and an on-off valve that opens when the lubricating oil temperature is lower than the engine cooling water temperature is installed in the bypass communication passage.

〔作用〕[Effect]

オイルパン中の潤滑油油温が登坂走行等の高負
荷運転時等の機関冷却水水温よりも高いときに
は、連通路に設けられた開閉弁が開放されてオイ
ルクーラで冷却された高粘度の潤滑油が動弁系に
供給される。
When the lubricating oil temperature in the oil pan is higher than the engine cooling water temperature during high-load operation such as climbing hills, the on-off valve installed in the communication passage is opened and the high-viscosity lubrication is cooled by the oil cooler. Oil is supplied to the valve train.

一方オイルパン中の潤滑油油温が通常走行等の
部分負荷運転時等の機関冷却水水温よりも低いと
きには、バイパス連絡通路に設けられた開閉弁が
開放されてオイルクーラを通らず直接オイルパン
から低油温高粘度の潤滑油が動弁系に供給されて
摩擦損失、摩耗が低減される。
On the other hand, when the lubricating oil temperature in the oil pan is lower than the engine cooling water temperature during partial load operation such as normal driving, the on-off valve installed in the bypass communication passage is opened and the lubricating oil is directly supplied to the oil pan without passing through the oil cooler. lubricating oil with low oil temperature and high viscosity is supplied to the valve train, reducing friction loss and wear.

〔実施例〕〔Example〕

以下、図面により本考案を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本考案に係る内燃機関の潤滑油供給
装置の一実施例を示したものである。
FIG. 1 shows an embodiment of a lubricating oil supply device for an internal combustion engine according to the present invention.

図において、1はオイルパン、2はオイルパン
1中の潤滑油を吸い上げるオイルポンプである。
オイルポンプ2の下流側にはオイルクーラ3及び
オイルフイルター4が設けられた連結通路5が接
続され、その連結通路5はメインオイルギヤラリ
ー6に連結されている。メインオイルギヤラリー
6には各潤滑系、即ちクランクシヤフト系7、ピ
ストン系8及びカムシヤフト系9に潤滑油を供給
又はジエツト噴射供給する分岐路7a,8a,9
aが接続されている。またメインオイルギヤラリ
ー6には連通路10を介してサブオイルギヤラリ
ー11が連結され、そのサブオイルギヤラリー1
1から動弁系12に対し潤滑油を供給する分岐路
12aが接続されている。また一方、前記オイル
ポンプ2の下流側に、バイパス連絡通路13を介
して直接サブオイルギヤラリー11が連結されて
いる。そして前記メインオイルギヤラリー6とサ
ブオイルギヤラリー11との間を連結している連
通路10には、潤滑油油温が機関冷却水水温より
高い時開く開閉弁(サーモスタツト)14が設置
され、オイルクーラ3の下流側とサブオイルギヤ
ラリー11との間を連結しているバイパス連絡通
路13には、潤滑油油温が機関冷却水水温より低
い時開く開閉弁(サーモスタツト)15が設置さ
れている。
In the figure, 1 is an oil pan, and 2 is an oil pump that sucks up lubricating oil from the oil pan 1.
A connecting passage 5 in which an oil cooler 3 and an oil filter 4 are provided is connected to the downstream side of the oil pump 2, and the connecting passage 5 is connected to a main oil gear rally 6. The main oil gear rally 6 has branch passages 7a, 8a, 9 for supplying or jetting lubricating oil to each lubrication system, that is, the crankshaft system 7, the piston system 8, and the camshaft system 9.
a is connected. Further, a sub oil gear rally 11 is connected to the main oil gear rally 6 via a communication path 10.
A branch passage 12a that supplies lubricating oil to the valve train 12 is connected from the valve train 1 to the valve train 12. On the other hand, a sub-oil gear rally 11 is directly connected to the downstream side of the oil pump 2 via a bypass communication passage 13. A communication passage 10 connecting the main oil gear rally 6 and the sub oil gear rally 11 is provided with an on-off valve (thermostat) 14 that opens when the lubricating oil temperature is higher than the engine cooling water temperature. A bypass communication passage 13 connecting the downstream side of the cooler 3 and the sub-oil gear rally 11 is provided with an on-off valve (thermostat) 15 that opens when the lubricating oil temperature is lower than the engine cooling water temperature. .

尚、各潤滑系、即ちクランクシヤフト系7、ピ
ストン系8、カムシヤフト系9及び動弁系12に
は図示されてないが余分な潤滑油がオイルパン1
に戻る戻り系路が設けられている。
Incidentally, although not shown in the drawings, excess lubricating oil is deposited in each of the lubrication systems, that is, the crankshaft system 7, the piston system 8, the camshaft system 9, and the valve train 12.
A return route is provided to return to.

そして、例えば登坂走行の高負荷運転時の如く
オイルパン1の潤滑油油温が機関冷却水水温より
も高いときには、連通路10の開閉弁14を開き
バイパス連絡通路13の開閉弁15を閉じ、オイ
ルパン1からの潤滑油を全てオイルクーラ3を通
つて冷却する。オイルクーラ3で冷却された潤滑
油油温の低い高粘度の潤滑油はメインオイルギヤ
ラリー6を通して各潤滑系、即ちクランクシヤフ
ト系7、ピストン系8、カムシヤフト系9に供給
され、またサブオイルギヤラリー11を通つて動
弁系12に供給される。従つて高負荷走行中各潤
滑系には低温の高粘度の潤滑油が供給されて各潤
滑系の摩擦損失や摩耗が低減される。
For example, when the lubricating oil temperature in the oil pan 1 is higher than the engine cooling water temperature, such as during high-load operation when traveling uphill, the on-off valve 14 of the communication passage 10 is opened and the on-off valve 15 of the bypass communication passage 13 is closed. All lubricating oil from an oil pan 1 is cooled through an oil cooler 3. The low-temperature, high-viscosity lubricating oil cooled by the oil cooler 3 is supplied to each lubrication system, that is, the crankshaft system 7, the piston system 8, and the camshaft system 9, through the main oil gear rally 6, and is also supplied to the sub oil gear rally 11. It is supplied to the valve train 12 through. Therefore, during high-load running, low-temperature, high-viscosity lubricating oil is supplied to each lubrication system, reducing friction loss and wear in each lubrication system.

一方通常走行の部分負荷運転時の如くオイルパ
ン1の潤滑油油温が機関冷却水水温よりも低い時
には、連通路10の開閉弁14が閉じバイパス連
絡通路13の開閉弁15が開きオイルパン1から
の潤滑油の一部がオイルクーラ3を通つてメイン
オイルギヤラリー6を通つてクランクシヤフト系
7、ピストン系8、カムシヤフト系9に供給され
る。また潤滑油の他の一部はオイルクーラ3を通
らず、サブオイルギヤラリー11を通つて高粘度
の潤滑油を必要とする動弁系12に直接供給され
る。従つて通常走行の部分負荷運転時において動
弁系12の摩擦損失や摩耗が低減される。
On the other hand, when the lubricating oil temperature in the oil pan 1 is lower than the engine cooling water temperature, such as during partial load operation during normal driving, the on-off valve 14 of the communication passage 10 is closed and the on-off valve 15 of the bypass communication passage 13 is opened. A portion of the lubricating oil from the oil cooler 3 is supplied to the crankshaft system 7, piston system 8, and camshaft system 9 through the main oil gear rally 6. The other part of the lubricating oil does not pass through the oil cooler 3, but passes through the sub-oil gear rally 11 and is directly supplied to the valve train 12, which requires high-viscosity lubricating oil. Therefore, friction loss and wear of the valve train 12 are reduced during normal partial load operation.

第2図は、本考案の内燃機関の潤滑油供給装置
の他の実施例を示したものである。
FIG. 2 shows another embodiment of the lubricating oil supply device for an internal combustion engine according to the present invention.

この実施例は、バイパス連絡通路13の途中に
空冷オイルクーラ16を設けたバイパス連通路1
7を接続し、その分岐部に所定の温度で開閉する
開閉弁(サーモスタツト)18を設置するように
したものである。
This embodiment has a bypass communication passage 1 in which an air-cooled oil cooler 16 is provided in the middle of the bypass communication passage 13.
7 is connected, and an on-off valve (thermostat) 18 that opens and closes at a predetermined temperature is installed at the branch part.

そして、例えば通常走行の部分負荷運転時にお
いてオイルパン1中の潤滑油油温が機関冷却水水
温より低い時、バイパス連絡通路13の開閉弁1
5を開放し、潤滑油をバイパス連絡通路13を通
してサブオイルギヤラリー11に直接送つてそこ
から動弁系12に供給する場合、始動時等の如く
潤滑油が低温のときには空冷オイルクーラ16を
通さず直接サブオイルギヤラリー11に導いて動
弁系12に供給する。一方潤滑油が所定温度を超
えたときには空冷オイルギヤラリー16を通して
動弁系12に供給する。
For example, when the lubricating oil temperature in the oil pan 1 is lower than the engine cooling water temperature during normal driving with a partial load, the on-off valve 1 of the bypass communication passage 13
5 is opened and the lubricating oil is sent directly to the sub-oil gear rally 11 through the bypass communication passage 13 and from there to the valve train 12, when the lubricating oil is at a low temperature such as during startup, it is not passed through the air-cooled oil cooler 16. The oil is directly led to the sub-oil gear rally 11 and supplied to the valve train 12. On the other hand, when the lubricating oil exceeds a predetermined temperature, it is supplied to the valve train 12 through the air-cooled oil gear rally 16.

このようにバイパス連絡通路13を通して直接
動弁系12へ供給する潤滑油を、油温に応じて開
閉弁18を開閉して直接又は空冷オイルクーラ1
6で冷却することによつてより機関の状況に対し
て正確な油温及び粘度の調整が可能となる。
In this way, lubricating oil is supplied directly to the valve train 12 through the bypass communication passage 13 by opening and closing the on-off valve 18 depending on the oil temperature, or directly to the air-cooled oil cooler 1.
By cooling at step 6, it becomes possible to more accurately adjust the oil temperature and viscosity depending on the engine situation.

〔考案の効果〕[Effect of idea]

以上述べた如く本考案は、メインオイルギヤラ
リーに連通路を介して動弁系へ潤滑油を供給する
サブオイルギヤラリーを連結すると共にその連通
路に潤滑油油温が機関冷却水水温より高い時開く
開閉弁を設置し、前記オイルポンプの下流側にバ
イパス連絡通路を介してサブオイルギヤラリーを
連結すると共にそのバイパス連絡通路に潤滑油油
温が機関冷却水より低い時開く開閉弁を設置した
ので、機関運転中各潤滑系に高粘度の潤滑油を供
給でき、とりわけ動弁系には通常走行時の部分負
荷運転時等においても低温高粘度の潤滑油を供給
することができ、摩擦損失及び摩耗が低減され
る。
As described above, the present invention connects a sub-oil gear rally that supplies lubricating oil to the valve train through a communication path to the main oil gear rally, and opens the communication path when the lubricating oil temperature is higher than the engine cooling water temperature. An on-off valve is installed, and the sub-oil gear rally is connected to the downstream side of the oil pump via a bypass communication passage, and an on-off valve that opens when the lubricating oil temperature is lower than the engine cooling water is installed in the bypass communication passage. High-viscosity lubricating oil can be supplied to each lubricating system during engine operation, and low-temperature, high-viscosity lubricating oil can be supplied to the valve train system even during partial load operation during normal running, reducing friction loss and wear. is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の潤滑系統図、第2
図は本考案の他の実施例の要部潤滑系統図、第3
図は従来の潤滑系統図、第4図は時間に対する潤
滑油油温及び機関冷却水水温の特性を示す特性
図、第5図は潤滑油温度及び潤滑油粘度と摩擦損
失との関係を示す特性曲線図である。 1……オイルパン、2……オイルポンプ、3…
…オイルクーラ、6……メインオイルギヤラリ
ー、10……連通路、11……サブオイルギヤラ
リー、12……動弁系、13……バイパス連絡通
路、14,15,18……開閉弁、16……空冷
オイルクーラ、17……バイパス連通路。
Figure 1 is a lubrication system diagram of one embodiment of the present invention, Figure 2
The figure is a main part lubrication system diagram of another embodiment of the present invention.
The figure is a conventional lubrication system diagram, Figure 4 is a characteristic diagram showing the characteristics of lubricating oil temperature and engine cooling water temperature with respect to time, and Figure 5 is a characteristic diagram showing the relationship between lubricating oil temperature, lubricating oil viscosity, and friction loss. It is a curve diagram. 1...Oil pan, 2...Oil pump, 3...
...Oil cooler, 6...Main oil gear rally, 10...Communication passage, 11...Sub oil gear rally, 12...Valve train system, 13...Bypass communication passage, 14, 15, 18...Opening/closing valve, 16... ...Air-cooled oil cooler, 17...Bypass communication passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] オイルポンプの下流側にオイルクーラを介して
メインオイルギヤラリーを連結して動弁系を含む
潤滑系へ潤滑油を供給する内燃機関の潤滑油供給
装置において、前記メインオイルギヤラリーに連
通路を介して動弁系へ潤滑油を供給するサブオイ
ルギヤラリーを連結すると共にその連通路に潤滑
油油温が機関冷却水水温より高い時開く開閉弁を
設置し、前記オイルポンプの下流側にバイパス連
絡通路を介してサブオイルギヤラリーを連結する
と共にそのバイパス連絡通路に潤滑油油温が機関
冷却水水温より低い時開く開閉弁を設置したこと
を特徴とする内燃機関の潤滑油供給装置。
In a lubricating oil supply device for an internal combustion engine that connects a main oil gear rally downstream of an oil pump via an oil cooler to supply lubricating oil to a lubrication system including a valve train, the main oil gear rally is connected to the main oil gear rally via a communication path. A sub-oil gear rally that supplies lubricating oil to the valve train is connected, and an on-off valve that opens when the lubricating oil temperature is higher than the engine cooling water temperature is installed in the communication passage, and a bypass communication passage is provided downstream of the oil pump. A lubricating oil supply device for an internal combustion engine, characterized in that a sub-oil gear rally is connected to the sub-oil gear rally via the bypass connecting passage, and an on-off valve that opens when the lubricating oil temperature is lower than the engine cooling water temperature is installed in the bypass communication passage.
JP19773183U 1983-12-22 1983-12-22 Internal combustion engine lubricating oil supply system Granted JPS60107309U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19773183U JPS60107309U (en) 1983-12-22 1983-12-22 Internal combustion engine lubricating oil supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19773183U JPS60107309U (en) 1983-12-22 1983-12-22 Internal combustion engine lubricating oil supply system

Publications (2)

Publication Number Publication Date
JPS60107309U JPS60107309U (en) 1985-07-22
JPS6345525Y2 true JPS6345525Y2 (en) 1988-11-25

Family

ID=30756183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19773183U Granted JPS60107309U (en) 1983-12-22 1983-12-22 Internal combustion engine lubricating oil supply system

Country Status (1)

Country Link
JP (1) JPS60107309U (en)

Also Published As

Publication number Publication date
JPS60107309U (en) 1985-07-22

Similar Documents

Publication Publication Date Title
US5339776A (en) Lubrication system with an oil bypass valve
GB2085524A (en) Dual coolant ic engine cooling system
JPS6336018A (en) Engine cooling/lubricating device
JPS6345525Y2 (en)
JPH0451649B2 (en)
JPS6221690Y2 (en)
JPS63106312A (en) Lubricant cooling system of air-cooled type internal combustion engine
JPH08270428A (en) Lubricating device for internal combustion engine
JPH0437212Y2 (en)
US5823159A (en) Independent valve train lubrication system
CN206054032U (en) Engine lubrication system, electromotor and vehicle
JPH0229209Y2 (en)
JPH0650118A (en) Lubricating device for internal combustion engine
JP3355996B2 (en) Internal combustion engine lubrication system
JPH0447374Y2 (en)
JPH0739809B2 (en) Separate cooling / separating lubrication engine
JPS61247809A (en) Lubricating device of internal-combustion engine
JPH032654Y2 (en)
JPS62288308A (en) Cooling device for engine
JPH0366495B2 (en)
JPH0540267Y2 (en)
JPH0326272Y2 (en)
JPH0732883Y2 (en) Engine lubricator
JPH0113769Y2 (en)
JPS6128005Y2 (en)