JPS6345268B2 - - Google Patents

Info

Publication number
JPS6345268B2
JPS6345268B2 JP56185096A JP18509681A JPS6345268B2 JP S6345268 B2 JPS6345268 B2 JP S6345268B2 JP 56185096 A JP56185096 A JP 56185096A JP 18509681 A JP18509681 A JP 18509681A JP S6345268 B2 JPS6345268 B2 JP S6345268B2
Authority
JP
Japan
Prior art keywords
solid particles
liquid
hollow container
volatile components
liquid substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56185096A
Other languages
Japanese (ja)
Other versions
JPS5888087A (en
Inventor
Tsutomu Inoe
Eiichi Mizutani
Noryasu Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO KAKOKI
Original Assignee
CHUO KAKOKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO KAKOKI filed Critical CHUO KAKOKI
Priority to JP18509681A priority Critical patent/JPS5888087A/en
Publication of JPS5888087A publication Critical patent/JPS5888087A/en
Publication of JPS6345268B2 publication Critical patent/JPS6345268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 本発明は液状体物質の濃度乾燥装置、更に詳し
くは各種の有機物や無機物を含有する有機溶剤系
の液状体物質を処理するに好適な濃度乾燥装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a concentration drying apparatus for liquid substances, and more particularly to a concentration drying apparatus suitable for treating organic solvent-based liquid substances containing various organic and inorganic substances.

化学工場や製薬工場等の製造工場から発生する
排液には、活性汚泥法等の一般的排水処理手段で
は処理できない、各種の有機物や無機物を多量に
含有する有機溶剤系の液状体物質がある。この種
の液状体物質は、そのままでは廃棄することがで
きないため、焼却等何らかの手段で処理されるの
であるが、この処理に際し、有効再利用を前程と
して有機溶剤の如き揮発成分の全量を回収するこ
と、また揮発成分回収後に残存する有機物や無機
物等の不揮発成分を固形状でハンドリングし易い
状態とすること、更に処理全体を通じて出来るだ
け保守管理が容易で且つ経済的であること等が要
請される。
Wastewater generated from manufacturing plants such as chemical factories and pharmaceutical factories contains organic solvent-based liquid substances containing large amounts of various organic and inorganic substances that cannot be treated with general wastewater treatment methods such as the activated sludge method. . This type of liquid substance cannot be disposed of as is, so it is treated by some means such as incineration, but during this treatment, the entire amount of volatile components such as organic solvents is recovered before effective reuse. In addition, it is required that the non-volatile components such as organic and inorganic substances remaining after volatile component recovery be in a solid state that is easy to handle, and that maintenance and management throughout the entire process be as easy and economical as possible. .

従来、この種の液状体物質を処理する装置とし
て、次のようなものがある。最も一般的には、套
管式熱交換器又プレート式熱交換器で液状体物質
を加熱蒸発した後に気液分離器で蒸発した揮発成
分の蒸気を分離して濃縮する蒸発濃度装置であ
る。しかし、この従来装置では、その性質上揮発
成分の一部を残し、ある程度充分な流動性が液状
体物質に得られる範囲内においてのみ使用可能で
あるため、必然に揮発成分の全量回収が不可能で
ある。また液状体物質からの揮発成分の蒸発にと
もなつて、混在する有機物や無機物が次第に高濃
度になると、これらの有機物や無機物が相互固
着、重合、粘着、堆積等の現象を呈するようにな
るのであるが、かかる状態の有機物や無機物等の
不揮発成分が前記したような熱交換器の伝熱面に
付着する結果その伝熱効率が著るしく低下し、更
には付着した不揮発成分の掻き取り除去という煩
わしい面倒な作業を強いられる。他の従来装置に
は、ジヤケツト付本体の内部に機械的掻き取り羽
根を有する伝熱面に液状体物質を流下させる掻き
取り羽根付薄膜流下式蒸発装置がある。この従来
装置によれば、機械的掻き取り羽根によつて伝熱
面の伝熱効率低下をある程度防止できるが、強固
な不揮発成分が一度でも伝熱面に付着すると手の
ほどこし様がなく、また粘性のある不揮発成分の
場合には掻き取り羽根に付着して成長する等の難
点があり、加えてこの従来装置自体の製作に精密
を要し、掻き取り羽根の撹拌動力も必要である。
更に他の従来装置には、内部に固体粒子を充填
し、下部より熱風を送入して該固体粒子を流動化
させ、その中に液状体物質を注入して燃焼する流
動層式乾燥焼却装置がある。しかし、この従来装
置では、もともと全量を燃焼するのであるから揮
発成分の回収はできず、また装置自体を膨大なも
のとなり、極めて非経済的である。そして更に他
の従来装置には、内部に撹拌翼を有する回転炉を
外部からガスバーナで加熱し、該回転炉内へ固体
粒子と共に供給した液状体物質を自重で流下させ
つつ濃縮乾燥する装置がある(特公昭48−4309
号)。この従来装置の場合、固体粒子を介して回
転炉の内壁面から液状体物質へ熱伝導するため、
固体粒子がない通常の間接加熱型ロータリーキル
ン方式のものに比べれば液状体物質の濃縮乾燥効
率はよいが、回転炉の内壁面及び固体粒子並びに
液状体物質の相互接触が撹拌翼によるものである
ため、該相互接触が依然として不充分であつて、
液状体物質の濃縮乾燥効率もそれ程には向上せ
ず、これを補うためか、装置構成上の不利益を我
慢してもガスバーナのような強力な加熱源を必要
とし、しかも前述した機械的掻き取り羽根の場合
と同様、強固な不揮発成分が回転炉の内壁面へ一
度でも付着すると手のほどこし様がなくなつてし
まう。
Conventionally, there are the following devices for processing this type of liquid substance. The most common type of device is an evaporation concentration device that heats and evaporates a liquid material using a sleeve-type heat exchanger or a plate-type heat exchanger, and then separates and concentrates the evaporated volatile component vapor using a gas-liquid separator. However, due to its nature, this conventional device leaves a portion of the volatile components behind and can only be used within the range where a certain degree of fluidity can be obtained in the liquid substance, so it is inevitably impossible to recover all of the volatile components. It is. Furthermore, as the volatile components from the liquid substance evaporate, the concentration of mixed organic and inorganic substances gradually increases, and these organic and inorganic substances begin to exhibit phenomena such as mutual fixation, polymerization, adhesion, and deposition. However, as non-volatile components such as organic and inorganic substances in such a state adhere to the heat transfer surface of the heat exchanger as described above, the heat transfer efficiency is significantly reduced, and furthermore, it is necessary to scrape off the attached non-volatile components. Being forced to do troublesome and troublesome work. Other conventional devices include scraper vane falling film evaporators in which the liquid material flows down a heat transfer surface having mechanical scraper vanes inside a jacketed body. According to this conventional device, the reduction in heat transfer efficiency on the heat transfer surface can be prevented to some extent by using mechanical scraping blades, but once a strong non-volatile component adheres to the heat transfer surface, there is no way to remove it, and the viscosity increases. In the case of certain non-volatile components, there are drawbacks such as adhesion to and growth of the scraping blade, and in addition, precision is required for manufacturing this conventional device itself, and stirring power for the scraping blade is also required.
Furthermore, other conventional devices include a fluidized bed drying incinerator that fills the interior with solid particles, fluidizes the solid particles by blowing hot air from the bottom, and injects a liquid substance into the solid particles for combustion. There is. However, in this conventional device, since the entire amount is combusted, the volatile components cannot be recovered, and the device itself becomes enormous, making it extremely uneconomical. Yet another conventional device is a device that heats a rotary furnace with stirring blades inside with a gas burner from the outside, and concentrates and dries the liquid material supplied into the rotary furnace together with solid particles while flowing down under its own weight. (Tokuko Showa 48-4309
issue). In the case of this conventional device, heat is conducted from the inner wall surface of the rotary furnace to the liquid substance via solid particles.
Although the efficiency of concentrating and drying liquid substances is better than that of the ordinary indirect heating type rotary kiln method, which does not have solid particles, mutual contact between the inner wall surface of the rotary furnace, solid particles, and liquid substances is due to the stirring blades. , the mutual contact is still insufficient,
The efficiency of concentrating and drying liquid substances does not improve that much, and perhaps to compensate for this, even if the disadvantages of the equipment configuration are tolerated, a powerful heating source such as a gas burner is required, and the mechanical scraping mentioned above is necessary. As with the case of the handle blade, once a strong non-volatile component adheres to the inner wall surface of the rotary furnace, it becomes impossible to handle it.

本発明は、叙上の従来装置における欠点を解消
し、前記要請に応える改良された液状体物質の濃
縮乾燥装置を提供するもので、その目的は、各種
の有機物や無機物を含有する有機溶剤系の液状体
物質を外部の振動発生源により激しく撹拌乃至混
合させた加熱固体粒子を利用して有機溶剤の如き
揮発成分を蒸発させつつ不揮発成分を濃縮乾燥処
理することにより、揮発成分の全量を回収し、不
揮発成分をハンドリングし易い固形状となし、併
せて処理全体を通じて保守管理が容易で且つ経済
的とする点にある。
The present invention solves the drawbacks of the conventional devices mentioned above and provides an improved device for concentrating and drying liquid substances that meets the above requirements. The entire amount of volatile components is recovered by concentrating and drying non-volatile components while evaporating volatile components such as organic solvents using heated solid particles that are vigorously stirred or mixed by an external vibration source. In addition, the non-volatile components are in a solid form that is easy to handle, and maintenance throughout the entire process is easy and economical.

以下、図面に基づいて本発明の構成を詳細に説
明する。
Hereinafter, the configuration of the present invention will be explained in detail based on the drawings.

第1図は本発明の一実施例を示す一部断面状態
を含む側面図、第2図はその作用状態を例示する
拡大した断面略視図である。外周に熱媒体の循環
可能なジヤケツト2を有する略円筒形状の密閉系
中空容器1は、強固に固定された1個〜数個の振
動発生源5を具備し、基台3に対してスプリング
14,24,34,44(但し34は図示しな
い)により支持されているので、振動発生源5の
運動によりある種の自由運動が与えられるように
なつている。そして、密閉系中空容器1の内部に
はある範囲内に整粒された多数の固体粒子6が10
〜75容量%充填されていて、その天側に排気口7
及び供給口8が各々穿設され、この供給口8へ供
給管9を介して連結された4個の液分散器19,
29,39,49が前記密閉系中空容器1の内部
に位置決めされている。
FIG. 1 is a side view including a partial cross section showing one embodiment of the present invention, and FIG. 2 is an enlarged schematic cross-sectional view illustrating its operating state. A closed system hollow container 1 having a substantially cylindrical shape and having a jacket 2 on the outer periphery in which a heat medium can be circulated is equipped with one to several vibration generating sources 5 firmly fixed, and a spring 14 is attached to a base 3. , 24, 34, 44 (however, 34 is not shown), the movement of the vibration source 5 provides a certain kind of free movement. Inside the closed hollow container 1, there are a large number of solid particles 6 sized within a certain range.
It is filled to ~75% by volume, and there is an exhaust port 7 on the top side.
and four liquid dispersers 19 each having a supply port 8 and connected to the supply port 8 via a supply pipe 9,
29, 39, and 49 are positioned inside the closed hollow container 1.

本実施例の場合、密閉系中空容器1は横型円筒
形状であるが、堅型円筒形状又はこれらの円錐形
状等であつてもよい。また本実施例の場合、いわ
ゆるシヤワー方式の液分散器19,29,39,
49が4個用いられているが、この種の液分散器
に限定される訳ではなく、処理対象である液状体
物質の性状や量等によつては該液状体物質を連続
的に又は間欠的に供給する例えば噴霧方式やポン
プ圧送方式更には垂れ流し方式からなるものであ
つてもよく、その取付個数は1個〜数個であれば
よい。そして、密閉系中空容器1の内部に充填さ
れている固体粒子は、本実施例において7〜20メ
ツシユ程度に整粒された硅砂を用いたが、この他
にセラミツク粒や熱伝導のよい金属粒等が用いら
れ得る。いずれの場合も、比較的小粒に整粒され
た多数の固体粒子表面へ液状体ができるだけ均一
に分散される構成であることが必要である。
In the case of this embodiment, the closed hollow container 1 has a horizontal cylindrical shape, but it may also have a rigid cylindrical shape or a conical shape thereof. In addition, in the case of this embodiment, the so-called shower type liquid dispersers 19, 29, 39,
49 are used, but this type of liquid dispersing device is not limited to this type, and depending on the properties and amount of the liquid material to be treated, the liquid material may be continuously or intermittently dispersed. For example, it may be supplied by a spraying method, a pump pressure feeding method, or a dripping method, and the number of attached devices may be one to several. In this example, silica sand sized to about 7 to 20 meshes was used as the solid particles filled inside the closed hollow container 1, but ceramic particles and metal particles with good thermal conductivity were also used. etc. may be used. In either case, it is necessary to have a structure in which the liquid material is dispersed as uniformly as possible on the surfaces of a large number of relatively small-sized solid particles.

次に、本発明の詳細な動作を第2図に基づいて
説明する。振動発生源5を駆動させて密閉系中空
容器1に略円状の振動を与えると、内部に充填さ
れている多数の固体粒子6は図中矢印Aに示す如
く同様の略円状に振動回転しながら該粒子間で激
しく衝突を繰り返す撹拌乃至混合状態となる。一
方、ジヤケツト2にスチームや市販の液状の熱媒
体を利用して循環させることにより密閉系中空容
器1の壁面を加熱すると、続いて前記固体粒子6
がこれら熱媒体とほぼ同様の温度まで加熱され
る。この際の加熱の主となる熱伝導は、固体粒子
6が振動回転しながら激しく衝突を繰り返してい
るため極めて効率がよい。かかる状態で、供給口
8を介し液分散器29から液状体物質を分散注入
すると、該液状体物質は固体粒子6の表面に当接
し、ほぼ瞬時に液状体物質中の揮発成分が蒸発し
て排気口7から留去する。この際残存する液状体
物質中の不揮発成分は固体粒子6の表面に付着す
るが、固体粒子6が相互に激しく衝突を繰り返し
ているため、前記不揮発成分は固体粒子6から取
り除かれて、分散且つ粉砕されつつ微粒固形物と
なる。したがつて固体粒子6は、常時、いわば自
己洗浄を繰り返しているのである。本発明に備わ
るかかる作用特性により、例えば、熱媒体として
約150℃のスチームを用い、7〜20メツシユに整
粒した硅砂を充填して、塗装洗浄用に使用した廃
シンナーを処理した場合、密閉系中空容器内にお
ける前記のような微粒固形物の生成量が硅砂と等
量となつた段階でもその処理性能が低下しないの
である。
Next, the detailed operation of the present invention will be explained based on FIG. 2. When the vibration generating source 5 is driven to apply approximately circular vibration to the closed system hollow container 1, the large number of solid particles 6 filled inside vibrates and rotates in a similar approximately circular manner as shown by arrow A in the figure. Meanwhile, a stirring or mixing state occurs in which the particles repeatedly collide violently. On the other hand, when the wall surface of the closed system hollow container 1 is heated by circulating steam or a commercially available liquid heat medium through the jacket 2, the solid particles 6 are heated.
is heated to approximately the same temperature as these heating media. Heat conduction, which is the main source of heating at this time, is extremely efficient because the solid particles 6 repeatedly collide violently while vibrating and rotating. In this state, when the liquid substance is dispersed and injected from the liquid disperser 29 through the supply port 8, the liquid substance comes into contact with the surface of the solid particles 6, and the volatile components in the liquid substance evaporate almost instantly. It is distilled off from the exhaust port 7. At this time, the non-volatile components in the remaining liquid substance adhere to the surface of the solid particles 6, but since the solid particles 6 repeatedly collide violently with each other, the non-volatile components are removed from the solid particles 6 and dispersed. It becomes a fine solid substance while being crushed. Therefore, the solid particles 6 are constantly repeating self-cleaning. Due to the working characteristics of the present invention, for example, when waste thinner used for paint cleaning is treated by using steam at about 150°C as a heat medium and filling it with silica sand sized to 7 to 20 mesh, it is possible to seal it tightly. Even when the amount of fine solid particles produced in the hollow container of the system becomes equal to the amount of silica sand, the processing performance does not deteriorate.

第3図は本発明に係る液状体物質の濃縮乾燥装
置を組み込んだ一連の処理系統を例示する略視図
である。予め熱媒体が循環され、多数の固体粒子
が充填されている密閉系中空容器1へ矢印Bにし
たがつて液状体物質を分散注入すると、該液状体
物質中の揮発成分は蒸発して矢印Cにしたがい凝
縮器10に至り、ここで凝縮された後に回収され
て、適宜有効再利用される。一方、該液状体物質
中の不揮発成分は前記にように微粒固形物となつ
て蓄積されるため、固体粒子とともに間欠的に取
り出されてシフター20に至り、ここで固体粒子
と微粒固形物とが分離された後に、要すれば焼却
手段を介し、固体粒子は再び密閉系中空容器1に
返送されて再利用される。かくして得られる微粒
固形物は、その性質上、ハンドリングが容易で別
用途にも利用することができ、埋立や焼却等で最
終廃棄してもよい。
FIG. 3 is a schematic diagram illustrating a series of processing systems incorporating the liquid substance concentration and drying apparatus according to the present invention. When a liquid substance is dispersed and injected in the direction of arrow B into a closed system hollow container 1 in which a heating medium is circulated in advance and filled with a large number of solid particles, the volatile components in the liquid substance evaporate, and the liquid substance is evaporated as indicated by arrow C. Accordingly, it reaches the condenser 10, where it is condensed, recovered, and effectively reused as appropriate. On the other hand, since the non-volatile components in the liquid substance accumulate as fine solid particles as described above, they are intermittently taken out together with the solid particles and reach the shifter 20, where the solid particles and fine solid substances are combined. After separation, the solid particles are returned to the closed hollow container 1 for reuse, if necessary via incineration means. Due to its nature, the fine solid particles thus obtained are easy to handle and can be used for other purposes, and may be ultimately disposed of by landfilling, incineration, or the like.

尚、第3図に例示した略視図では、本発明に係
る装置をいわゆるバツチ式としたものであるが、
液状体物質を連続的に分散注入する一方で、固体
粒子と生成する微粒固形物とを少量づつ連続的に
取り出し、これをシフターで連続的に分離して、
分離した固体粒子を連続的に返送するという連続
式とすることも可能である。
In the schematic diagram illustrated in FIG. 3, the device according to the present invention is of a so-called batch type.
While continuously dispersing and injecting the liquid substance, solid particles and the generated fine solids are continuously taken out little by little and are continuously separated using a sifter.
It is also possible to adopt a continuous system in which the separated solid particles are continuously returned.

以上説明した通りであるから、本発明は、各種
の有機物や無機物を含有する有機溶剤系の液状体
物質を処理するに際して、揮発成分の全量を回収
しつつ不揮発成分を極めてハンドリングし易い固
形状とし、併せて処理自体を容易な保守管理の下
に経済的に行うことができる効果がある。
As explained above, the present invention recovers the entire amount of volatile components while converting non-volatile components into a solid form that is extremely easy to handle when treating organic solvent-based liquid substances containing various organic and inorganic substances. In addition, there is an effect that the processing itself can be carried out economically with easy maintenance and management.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す一部断面状態
を含む側面図、第2図はその作用状態を例示する
拡大した断面略視図、第3図は本発明に係る装置
を組み込んだ一連の処理系統を例示する略視図で
ある。 1…密閉系中空容器、2…ジヤケツト、3…基
台、14,24,44…スプリング、5…振動発
生源、6…固体粒子、7…排気口、8…供給口、
19,29,39,49…液分散器、10…凝縮
器、20…シフター。
Fig. 1 is a side view including a partially sectional state showing one embodiment of the present invention, Fig. 2 is an enlarged schematic cross-sectional view illustrating its working state, and Fig. 3 is a side view including a partially sectional state showing an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating a series of processing systems. DESCRIPTION OF SYMBOLS 1... Sealed hollow container, 2... Jacket, 3... Base, 14, 24, 44... Spring, 5... Vibration source, 6... Solid particle, 7... Exhaust port, 8... Supply port,
19, 29, 39, 49...liquid disperser, 10...condenser, 20...sifter.

Claims (1)

【特許請求の範囲】[Claims] 1 供給口や排気口等が適宜穿設された密閉系中
空容器の内部に前記供給口から連結された1個〜
多数個の液分散器が位置決めされるとともに、あ
る範囲内に整粒された多数の固体粒子が前記中空
容器内に10〜75容量%充填され、ジヤケツトを有
する前記中空容器がスプリングの如き弾性体で支
持されてなり、外部の振動発生源により前記中空
容器を振動させて、激しい撹拌乃至混合状態とな
る前記固体粒子を前記ジヤケツトに熱媒体を循環
して加熱する一方で該固体粒子に前記供給口を介
し前記液分散器から分散注入した液状体物質を加
熱して揮発成分を前記排気口から蒸発させつつ不
揮発成分を濃縮乾燥するようにした液状体物質の
濃縮乾燥装置。
1. One piece connected from the supply port to the inside of a closed system hollow container in which a supply port, an exhaust port, etc. are appropriately perforated.
A large number of liquid dispersers are positioned, and the hollow container is filled with 10 to 75% by volume of a large number of solid particles sized within a certain range, and the hollow container having a jacket is made of an elastic body such as a spring. The hollow container is vibrated by an external vibration source, and the solid particles are heated by circulating a heating medium through the jacket while being heated by vigorously stirring or mixing the solid particles. A device for concentrating and drying a liquid substance, wherein the liquid substance dispersed and injected from the liquid disperser through the port is heated, volatile components are evaporated from the exhaust port, and non-volatile components are concentrated and dried.
JP18509681A 1981-11-18 1981-11-18 Apparatus for thickening and drying liquid substance Granted JPS5888087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18509681A JPS5888087A (en) 1981-11-18 1981-11-18 Apparatus for thickening and drying liquid substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18509681A JPS5888087A (en) 1981-11-18 1981-11-18 Apparatus for thickening and drying liquid substance

Publications (2)

Publication Number Publication Date
JPS5888087A JPS5888087A (en) 1983-05-26
JPS6345268B2 true JPS6345268B2 (en) 1988-09-08

Family

ID=16164769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18509681A Granted JPS5888087A (en) 1981-11-18 1981-11-18 Apparatus for thickening and drying liquid substance

Country Status (1)

Country Link
JP (1) JPS5888087A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631841B2 (en) * 1983-08-31 1994-04-27 日本碍子株式会社 Method and apparatus for treating radioactive waste
JPS6080795A (en) * 1983-10-12 1985-05-08 株式会社日立製作所 Drying treating method of radioactive waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357176A (en) * 1976-11-04 1978-05-24 Hitachi Ltd Solidifying method for salts in wase liquid
JPS5581701A (en) * 1978-12-18 1980-06-20 Nippon Kansouki Kk Fluidized bed drying apparatus for waste liquid by using sand medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357176A (en) * 1976-11-04 1978-05-24 Hitachi Ltd Solidifying method for salts in wase liquid
JPS5581701A (en) * 1978-12-18 1980-06-20 Nippon Kansouki Kk Fluidized bed drying apparatus for waste liquid by using sand medium

Also Published As

Publication number Publication date
JPS5888087A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
US5069801A (en) Indirect heat drying and simultaneous pelletization of sludge
RU2109545C1 (en) Method of extraction of solid deposits from fluid medium by evaporation and installation for its realization
EP0344946A2 (en) Method and apparatus for treating waste paint sludge
JPH02237700A (en) Sludge drying method
BR0014578B1 (en) process for the recovery of volatile solids compounds present in an aqueous solution.
JP2007330913A (en) Shochu lees treatment method and apparatus
US4658891A (en) Method and apparatus for thermally processing viscous, shear sensitive materials
JP2001324269A (en) Heat transfer type vertical drier
US5724751A (en) Process and apparatus for drying organic or inorganic materials
JPS6345268B2 (en)
EP0373577B1 (en) Process for the treatment of sewage sludges or industrial sludges with organic constituents by means of the conversion process
US5954970A (en) Process for treating sludge using low-level heat
EP0285231A1 (en) Method and apparatus for treating mixed organic and inorganic wastes
US6099741A (en) Method and apparatus for treating liquid-containing material based on organic waste products
JPS6363241B2 (en)
KR100314363B1 (en) Apparatus for decomposing waste plastics
JP2000102781A (en) Treatment of sewage and vacuum concentration dryer used for the same
JP2662687B2 (en) Efficient incineration of organic sludge
US3587704A (en) Thin film processing method
JP3333706B2 (en) Sewerage sludge carbonization method and sewerage sludge carbonization equipment
JP2895754B2 (en) Waste plastic processing equipment
CN215161147U (en) Special evaporative concentrator for treating waste salt solution of chemical plant
JP3215886U (en) Dehydration dryer
JPS585081B2 (en) How to dispose of liquid residue
JP3619931B2 (en) Waste treatment equipment