JPS6344981B2 - - Google Patents

Info

Publication number
JPS6344981B2
JPS6344981B2 JP3686380A JP3686380A JPS6344981B2 JP S6344981 B2 JPS6344981 B2 JP S6344981B2 JP 3686380 A JP3686380 A JP 3686380A JP 3686380 A JP3686380 A JP 3686380A JP S6344981 B2 JPS6344981 B2 JP S6344981B2
Authority
JP
Japan
Prior art keywords
planetary gear
gear
carrier
input shaft
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3686380A
Other languages
Japanese (ja)
Other versions
JPS56134652A (en
Inventor
Daijiro Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3686380A priority Critical patent/JPS56134652A/en
Publication of JPS56134652A publication Critical patent/JPS56134652A/en
Publication of JPS6344981B2 publication Critical patent/JPS6344981B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入力軸と出力軸との間に介在され、
入力軸の回転を出力軸に伝達する際に負荷の大小
に応じて軸系にかかる衝撃力を緩和しつつ円滑、
効率的に回転伝達を行う緩衝装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for providing a
When transmitting the rotation of the input shaft to the output shaft, it smoothly reduces the impact force applied to the shaft system depending on the size of the load.
The present invention relates to a shock absorber that efficiently transmits rotation.

〔従来の技術〕[Conventional technology]

斯かる緩衝装置に属する従来の具体例として
は、摩擦面の接触による摩擦を利用して回転運動
を断続させる摩擦クラツチと、流体を仲介として
回転運動を伝達する流体継手としてのトルクコン
バータがある。
Conventional examples of such shock absorbers include a friction clutch that uses friction caused by contact between friction surfaces to intermittent rotational motion, and a torque converter that is a fluid coupling that transmits rotational motion through fluid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記摩擦クラツチにおいては、摩擦面
の断続による入力軸と出力軸の結合機能と摩擦に
よる緩衝機能により回転伝達を行うものであるか
ら、入力軸の回転速度と出力軸にかかる負荷の大
小に応じた適切なタイミングの両軸の断続操作が
必要であること、摩擦面の接触には滑りがあるの
で回転伝達にエネルギーロスがあるとともに長期
使用時には摩耗により回転伝達の確実性が損われ
るおそれがあるという問題点がある。また、流体
を利用したトルクコンバータはエネルギーロスと
ともに構造が大がかりとなり複雑であるという問
題点がある。
However, in the friction clutch described above, rotation is transmitted by coupling the input shaft and output shaft by intermittent friction surfaces and by a buffering function by friction. It is necessary to intermittent operation of both shafts at the appropriate timing, and since there is slippage in the contact between friction surfaces, there is energy loss in rotation transmission, and there is a risk that the reliability of rotation transmission will be impaired due to wear during long-term use. There is a problem. Additionally, torque converters using fluid have problems in that they have energy loss and are large and complex in structure.

本発明は、斯かる従来技術の有する諸問題点を
解消し、回転伝達の機構の簡潔化を図り回転伝達
の際に両軸の断続操作が不要で、軸系にかかる衝
撃力を緩和する緩衝効果を飛躍的に増大せしめて
入力軸の回転速度と出力軸にかかる負荷の大小に
かかわらず回転伝達を円滑、確実、効率的に行い
得る緩衝装置を提供することを課題とする。
The present invention solves the problems of the prior art, simplifies the rotation transmission mechanism, eliminates the need for intermittent operation of both shafts during rotation transmission, and provides a buffer that alleviates the impact force applied to the shaft system. It is an object of the present invention to provide a shock absorber that dramatically increases the effectiveness and can smoothly, reliably, and efficiently transmit rotation regardless of the rotational speed of the input shaft and the magnitude of the load applied to the output shaft.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決するために、次の手段
をとつている。すなわち、「夫々太陽歯車と遊星
歯車と内歯車とからなる三組の遊星歯車装置A,
B,Cを有し、入力軸に対し遊星歯車装置Aの太
陽歯車Aを固定するとともに遊星歯車装置Cの
太陽歯車Cをクラツチを介して着脱可能に結合
し、遊星歯車装置Aの内歯車Aと入力軸外周面
に遊嵌せる遊星歯車装置Bの太陽歯車Bと遊星
歯車装置Cの内歯車Cとを一体となし、遊星歯
車装置BのキヤリヤBと遊星歯車装置Cのキヤ
リヤCとを一体となし、遊星歯車装置Bの内歯
車Bの円周外面には一対の爪3を180゜の間隔を
配して突出し、遊星歯車装置AのキヤリヤAは
全遊星歯車装置を包囲するように円筒状となして
一端部を出力軸に固定するとともに中間部外周面
に遊星歯車装置Bの内歯車Bに形成した爪とバ
ネを収容するための円筒状の収容室を形成し、遊
星歯車装置Bの内歯車Bに形成した一対の爪に
より左右二室に区画された遊星歯車装置Aのキヤ
リヤAの収容室の各区画室内に複数個に分割接
続されたバネをその両端部を内歯車Bの一対の
爪に対接して収容し、バネの両端部と接続端部に
取り付けられたピンをキヤリヤAの収容室両側
壁に入力軸の軸心を中心として中心角度数十度に
形成された複数個の弧状の溝の両端部より外部に
突出せしめたことを特徴とする」ものである。
In order to solve the above problems, the present invention takes the following measures. That is, "three sets of planetary gear devices A each consisting of a sun gear, a planetary gear, and an internal gear,
The sun gear A of the planetary gear set A is fixed to the input shaft, and the sun gear C of the planetary gear set C is removably connected to the input shaft, and the internal gear A of the planetary gear set A is connected to the input shaft. The sun gear B of the planetary gear device B and the internal gear C of the planetary gear device C, which are loosely fitted on the outer peripheral surface of the input shaft, are integrated, and the carrier B of the planetary gear device B and the carrier C of the planetary gear device C are integrated. A pair of pawls 3 are arranged at an interval of 180° and protrude from the circumferential outer surface of the internal gear B of the planetary gear set B, and the carrier A of the planetary gear set A is cylindrical so as to surround the entire planetary gear set. One end is fixed to the output shaft, and a cylindrical housing chamber is formed on the outer circumferential surface of the intermediate portion to accommodate the pawl and spring formed on the internal gear B of the planetary gear device B. The housing chamber of the carrier A of the planetary gear device A is divided into two chambers, left and right, by a pair of pawls formed on the internal gear B. The springs are divided and connected into a plurality of pieces in each compartment, and both ends of the springs are connected to the internal gear B. A plurality of pins housed in opposition to a pair of claws and attached to both ends of the spring and the connecting end are formed on both side walls of the housing chamber of carrier A at a central angle of several tens of degrees around the axis of the input shaft. It is characterized by having each arcuate groove protrude outward from both ends.

〔作用〕[Effect]

先ずクラツチを介して遊星歯車装置Cの太陽歯
車Cと入力軸を結合しておく。入力軸の回転は
作動当初においては出力軸を介して負荷に接続し
ているキヤリヤAが不動であるため、遊星歯車
装置AとBを介して遊星歯車装置Bの内歯車B
に同方向の回転が減速して加えられる一方、遊星
歯車装置Cを介して内歯車Bに入力軸の回転と
逆方向の回転が減速して加えられる。したがつて
入力軸の回転に伴い内歯車Bは前記両方向から
加えられる回転の差により入力軸と同一方向に所
定に減速されて回転し、内歯車の外周面に対称状
に突出している一対の爪が遊星歯車装置Aのキヤ
リヤAにおける円筒状の収容室内に複数個に分
割接続されているバネを圧縮する。複数個に分割
接続されているバネの接続端部に取り付けられて
いるピンはキヤリヤAの円筒状の収容室両側壁
に負荷の荷重に応じて所定の中心角度にて形成さ
れた弧状の溝の両端部より外部に突出しているの
で、内歯車Bの回転によるその一対の爪を介し
たバネの圧縮時には爪側のピンは弧状の溝内を摺
動し、それに伴いバネが圧縮されて負荷を駆動す
るための回転力がバネに蓄積される。内歯車B
によるバネの圧縮が負荷に応じて所定角度に達す
るとバネに蓄積された回転力によりバネにピンと
弧状の溝との係合を介して接続されているキヤリ
ヤAが入力軸と同方向に回転し、それに伴い出
力軸も入力軸と同方向に回転し始める。キヤリヤ
Aの回転に伴う出力軸の回転につれて次第に遊
星歯車装置による減速作用が減殺されていき、出
力軸は入力軸と同一回転速度により回転するに至
る。
First, the sun gear C of the planetary gear set C and the input shaft are connected via a clutch. Since carrier A, which is connected to the load via the output shaft, is stationary at the beginning of operation, the rotation of the input shaft is caused by internal gear B of planetary gear unit B via planetary gear units A and B.
Rotation in the same direction is applied at a reduced speed, while rotation in the opposite direction to the rotation of the input shaft is applied at a reduced speed to the internal gear B via the planetary gear device C. Therefore, as the input shaft rotates, the internal gear B rotates at a predetermined speed in the same direction as the input shaft due to the difference in rotation applied from both directions, and a pair of symmetrically protruding parts on the outer peripheral surface of the internal gear B rotate in the same direction as the input shaft. The pawl compresses a plurality of springs which are divided and connected in a cylindrical housing chamber in the carrier A of the planetary gear set A. The pins attached to the connecting ends of the springs, which are connected in multiple pieces, are connected to arc-shaped grooves formed at a predetermined center angle on both side walls of the cylindrical storage chamber of carrier A, depending on the load. Since it protrudes outward from both ends, when the spring is compressed through the pair of pawls due to the rotation of internal gear B, the pin on the pawl side slides within the arc-shaped groove, and the spring is compressed accordingly and the load is reduced. The rotational force for driving is stored in the spring. Internal gear B
When the compression of the spring reaches a predetermined angle according to the load, the rotational force accumulated in the spring causes the carrier A, which is connected to the spring through the engagement of the pin and the arcuate groove, to rotate in the same direction as the input shaft. As a result, the output shaft also begins to rotate in the same direction as the input shaft. As the output shaft rotates with the rotation of the carrier A, the deceleration effect by the planetary gear system is gradually reduced, and the output shaft rotates at the same rotational speed as the input shaft.

〔実施例〕〔Example〕

別紙図面について、本発明実施の一例を説明す
る。1は入力軸、2は出力軸で、この両軸の間に
三組の遊星歯車装置A,B,Cが配設されてい
る。各遊星歯車装置A,B,Cは、夫々太陽歯車
、遊星歯車、そのキヤリヤと内歯車とか
らなつている。入力軸1には、遊星歯車装置Aの
太陽歯車Aが固定されているとともに遊星歯車
装置Cの太陽歯車Cがクラツチ5を介して着脱
可能に結合されている。遊星歯車装置Aの遊星歯
車Aに噛合している内歯車Aと、入力軸1に
遊嵌されている遊星歯車装置Bの太陽歯車B
と、遊星歯車装置Cの遊星歯車Cに噛合してい
る内歯車Cとは一体に結合されており、遊星歯
車BのキヤリヤBと遊星歯車Cのキヤリヤ
Cも一体に結合されている。遊星歯車装置Bの
内歯車Bの円周外面には180゜の間隔を配して一
対の爪3,3が突出形成されている。遊星歯車A
のキヤリヤAは全遊星歯車装置を包囲するよ
うに円筒形状に形成されており、その一端部は出
力軸2に固定されているとともに、中間部外周面
には内歯車Bに形成した一対の爪3,3とバネ
4を収容するための円筒状の収容室6が突出形成
されている。このキヤリヤAの収容室6内は内
歯車Bの一対の爪3,3の存在により左右二室
に区画されており、各室内には3個に分割接続さ
れたバネ4がその両端部を内歯車Bの爪3,3
に対接する状態にて収容されている。分割接続さ
れたバネ4の両端部と各接続端部にはピン7を有
する蝶番8が取り付けられており、これらのピン
7は、キヤリヤAの収容室6の両側壁に内部に
収容されている3個に分割接続されたバネ4の端
部が内歯車Bの爪3,3に対接している分割部
分に対応し入力軸1の軸心を中心として中心角約
40゜に形成された左右一対ずつの弧状の溝9内両
端部より外部に突出されている。またピン7には
収容室6の天井内壁面に接して回動するカイドロ
ーラ10が配設されており、これによつてバネ4
が支持されている。遊星歯車装置A,B,Cの各
歯車の歯数は次のように設定されている。
An example of implementing the present invention will be described with reference to the attached drawings. 1 is an input shaft, 2 is an output shaft, and three sets of planetary gear devices A, B, and C are arranged between these two shafts. Each of the planetary gear sets A, B, and C consists of a sun gear, a planet gear, a carrier thereof, and an internal gear. A sun gear A of a planetary gear set A is fixed to the input shaft 1, and a sun gear C of a planetary gear set C is removably coupled to the input shaft 1 via a clutch 5. The internal gear A meshes with the planetary gear A of the planetary gear set A, and the sun gear B of the planetary gear set B is loosely fitted to the input shaft 1.
and the internal gear C meshing with the planetary gear C of the planetary gear device C are integrally connected, and the carrier B of the planetary gear B and the carrier C of the planetary gear C are also integrally connected. A pair of pawls 3, 3 are formed protruding from the circumferential outer surface of the internal gear B of the planetary gear device B with an interval of 180° between them. Planetary gear A
The carrier A is formed into a cylindrical shape so as to surround the entire planetary gear set, and one end of the carrier A is fixed to the output shaft 2, and a pair of pawls formed on the internal gear B are attached to the outer peripheral surface of the intermediate part. A cylindrical housing chamber 6 for accommodating the springs 3 and 4 is formed in a protruding manner. The inside of the accommodation chamber 6 of this carrier A is divided into two left and right chambers by the presence of a pair of claws 3, 3 of an internal gear B, and in each chamber, a spring 4 divided into three pieces is connected inside. Gear B claws 3, 3
It is housed in a state facing the A hinge 8 having pins 7 is attached to both ends of the split-connected spring 4 and each connection end, and these pins 7 are housed inside both side walls of the storage chamber 6 of the carrier A. The end of the spring 4, which is connected in three parts, corresponds to the divided part where it is in contact with the pawls 3, 3 of the internal gear B, and the central angle is approximately 100 cm with respect to the axis of the input shaft 1.
A pair of left and right arc-shaped grooves 9 are formed at an angle of 40 degrees and project outward from both ends thereof. Further, a guide roller 10 that rotates in contact with the inner wall surface of the ceiling of the storage chamber 6 is disposed on the pin 7, and thereby the spring 4
is supported. The number of teeth of each gear of the planetary gear devices A, B, and C is set as follows.

A B C 30 30 20 30 30 32 90 90 84 次に、上記実施例に係る装置の作用について説
明する。入力軸1の回転を出力軸2に伝達するに
際しては先ずクラツチ5を介して太陽歯車Cを
入力軸1に結合する。キヤリヤAは出力軸2に
固定されていて負荷がかかつているため、始動当
初においてはキヤリヤAは静止状態となつてい
る。そのため入力軸1を介して太陽歯車Aが時
計方向へ1回転すると、遊星歯車Aを介して内
歯車Aが反時計方向へ30/90=1/3回転する。太陽 歯車Bと内歯車Cは内歯車Aと一体となつ
ているため、太陽歯車Bと内歯車Cも共に反
時計方向へ1/3回転する。遊星歯車Bのキヤリ
ヤBと入力軸1に結合せる太陽歯車Cに噛合
している遊星歯車CのキヤリヤCとは一体に
結合されているため、内歯車Bは太陽歯車B
の反時計方向の回転により遊星歯車Bを介して
時計方向に回転するが、一方遊星歯車Cのキヤ
リヤCは内歯車Cの反時計方向の影響を受け
て反時計方向に回転しキヤリヤCと一体となつ
ている遊星歯車BのキヤリヤBも反時計方向
に回転するのでこれによつて内歯車Bの時計方
向の回転は縮小される。したがつて内歯車Bの
回転角度は、太陽歯車Bによる回転と内歯車B
の回転方向と逆方向に作用するキヤリヤBの
回転とを総合することによつて求められる。キヤ
リヤCの回転は内歯車Cの回転と太陽歯車C
の回転により決定されるので、キヤリヤCし
たがつてキヤリヤBの回転角度は、 (120゜×84/84+20)−(360゜×20/84+20)≒27.7
゜ となりキヤリヤBは反時計方向に27.7゜回転す
る。
A B C 30 30 20 30 30 32 90 90 84 Next, the operation of the device according to the above embodiment will be explained. In order to transmit the rotation of the input shaft 1 to the output shaft 2, the sun gear C is first coupled to the input shaft 1 via the clutch 5. Since the carrier A is fixed to the output shaft 2 and is loaded with a load, the carrier A is in a stationary state at the beginning of startup. Therefore, when the sun gear A rotates once clockwise via the input shaft 1, the internal gear A rotates counterclockwise via the planetary gear A by 30/90=1/3. Since sun gear B and internal gear C are integrated with internal gear A, both sun gear B and internal gear C also rotate 1/3 in the counterclockwise direction. Since the carrier B of the planetary gear B and the carrier C of the planetary gear C meshing with the sun gear C coupled to the input shaft 1 are integrally coupled, the internal gear B is connected to the sun gear B.
The counterclockwise rotation of the planetary gear C rotates clockwise via the planetary gear B, while the carrier C of the planetary gear C rotates counterclockwise under the influence of the counterclockwise direction of the internal gear C and is integrated with the carrier C. Since the carrier B of the planetary gear B also rotates counterclockwise, the clockwise rotation of the internal gear B is thereby reduced. Therefore, the rotation angle of internal gear B is the rotation angle by sun gear B and internal gear B.
It is determined by integrating the rotation direction of the carrier B and the rotation of the carrier B acting in the opposite direction. The rotation of the carrier C is the rotation of the internal gear C and the sun gear C.
The rotation angle of carrier C and therefore carrier B is determined by the rotation of (120° x 84/84 + 20) - (360° x 20/84 + 20) ≒ 27.7
degree, and carrier B rotates 27.7 degrees counterclockwise.

しかして内歯車Bの回転角度は、 (120゜×30/90)−(27.7゜×30+90/30×30/90)
≒3.07゜ となり、内歯車Bは入力軸1が時計方向に1回
転(360゜)する毎にそれと同方向に3.07゜回転す
る。内歯車Bの回転に伴い一対の爪3,3を介
してバネ4が負荷荷重に応じて圧縮される。キヤ
リヤAの収容室6の両側壁に形成されている弧
状溝9の両端部にはバネ4の端部に取り付けられ
ているピンが摺動可能に係合されているので、一
対の爪3,3によりバネ4が押圧されると爪側の
ピンが弧状溝9内を摺動し、それに伴つてバネ4
が圧縮される。バネ4の最大負荷荷重に対する圧
縮角度(収容室6側壁の弧状溝9の中心角度)は
前記のとおり約40゜に設定しているので、内歯車
Bによりバネ4が最大限圧縮された場合(負荷
が設定最大荷重の場合)入力軸は出力軸に対して
40゜÷3.07゜≒13回転先行し得る余裕(緩衝効果の
範囲)があることとなる。
Therefore, the rotation angle of internal gear B is (120° x 30/90) - (27.7° x 30 + 90/30 x 30/90)
≒3.07°, and the internal gear B rotates 3.07° in the same direction every time the input shaft 1 rotates clockwise (360°). As the internal gear B rotates, the spring 4 is compressed via the pair of claws 3, 3 according to the applied load. Since pins attached to the ends of the springs 4 are slidably engaged with both ends of the arcuate grooves 9 formed on both side walls of the storage chamber 6 of the carrier A, the pair of claws 3, 3 presses the spring 4, the pin on the claw side slides in the arcuate groove 9, and the spring 4 is pressed accordingly.
is compressed. Since the compression angle of the spring 4 with respect to the maximum load (the center angle of the arcuate groove 9 on the side wall of the storage chamber 6) is set to approximately 40° as described above, when the spring 4 is compressed to the maximum by the internal gear B ( (When the load is the maximum set load) The input shaft is relative to the output shaft.
This means that there is a margin of 40° ÷ 3.07° ≒ 13 rotations (range of buffering effect).

しかして入力軸の回転に伴い内歯車Bにより
バネ4が負荷荷重に応じて圧縮されるにしたがつ
てバネ4に負荷を駆動させるための回動力が蓄積
され、バネ4の圧縮角度が負荷荷重に対応した所
定角度に達すると蓄積された回転力によりバネ4
に対しピン7と弧状溝9との係合を介して接続さ
れているキヤリヤAが入力軸1と同方向に回転
し、このキヤリヤAに結合されている出力軸2
も入力軸1と同方向に回転する。そしてバネ圧縮
に伴い遊星歯車Aの自転にも抵抗が現われキヤ
リヤAが回転するにつれて前記緩衝機能を発揮
させるための遊星歯車装置による入力回転の減速
作用が次第に減少されて出力軸2は入力軸1と同
一回転速度にて回転するに至る。
As the input shaft rotates, the spring 4 is compressed by the internal gear B according to the applied load, and as a result, rotational force for driving the load is accumulated in the spring 4, and the compression angle of the spring 4 changes according to the applied load. When a predetermined angle corresponding to the angle is reached, the accumulated rotational force causes the spring 4 to
Meanwhile, a carrier A connected through engagement between a pin 7 and an arcuate groove 9 rotates in the same direction as the input shaft 1, and an output shaft 2 coupled to this carrier A rotates in the same direction as the input shaft 1.
also rotates in the same direction as the input shaft 1. As the spring is compressed, resistance also appears in the rotation of the planetary gear A, and as the carrier A rotates, the deceleration effect of the planetary gear device on the input rotation for exerting the buffering function is gradually reduced, and the output shaft 2 becomes the input shaft 1. It rotates at the same rotational speed.

なお、内歯車Bにより圧縮されるバネ4より
の反力は入力軸1に結合される遊星歯車装置Cの
太陽歯車Cにより受け止められるので、動作中
にバネ4が逆行することはない。そして、クラツ
チ5を介して太陽歯車Cを入力軸1より外すと
太陽歯車Cは所定の角度逆転しバネおよび減速
機構は最初の状態に復帰する。なお、バネの圧縮
角度は60゜程度となす場合もある。図中、11は
クラツチ5を太陽歯車C側に押圧しているスプ
リング、12はクラツチ5の入切用操作部で、ク
ラツチ5に係合している腕とこの腕に接続し外郭
カバーに枢着されている操作杆とからなつてい
る。第4図は、上記入力軸1の回転に伴う各遊星
歯車装置の回転方向と回転角度を矢印にて示した
説明図で、便宜上各歯車を第1図の状態より90゜
前面側へ回転させた状態となしている。
Note that the reaction force from the spring 4 compressed by the internal gear B is received by the sun gear C of the planetary gear device C coupled to the input shaft 1, so that the spring 4 does not move backward during operation. Then, when the sun gear C is removed from the input shaft 1 via the clutch 5, the sun gear C is reversed by a predetermined angle, and the spring and speed reduction mechanism return to their initial states. Note that the compression angle of the spring may be approximately 60°. In the figure, 11 is a spring that presses the clutch 5 toward the sun gear C, and 12 is an on/off operation part for the clutch 5, which is connected to an arm that engages the clutch 5 and is connected to the outer cover. It consists of an operating lever that is attached. FIG. 4 is an explanatory diagram in which arrows indicate the rotation direction and rotation angle of each planetary gear device as the input shaft 1 rotates. For convenience, each gear is rotated 90 degrees to the front side from the state shown in FIG. 1. The situation is as follows.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上のように、入力軸と出力軸との間
に3組の遊星歯車装置による減速機構とこの減速
機構により負荷の荷重に応じて所定角度圧縮され
負荷を駆動させるための回転力を蓄積するバネに
よる回転力蓄積機構とを有機的に結合させて入力
軸の回転を出力軸に円滑、効率的に伝達する緩衝
装置を構成したので、上述の従来技術の有する諸
問題点は解消され、次の効果を有する。
As described above, the present invention includes a reduction mechanism using three sets of planetary gear devices between an input shaft and an output shaft, and a rotational force compressed by a predetermined angle according to the load by this reduction mechanism to drive the load. A shock absorber is constructed that smoothly and efficiently transmits the rotation of the input shaft to the output shaft by organically combining the rotational force accumulation mechanism with a spring that accumulates rotational force, thereby solving the problems of the above-mentioned conventional technology. and has the following effects.

すなわち、第1に、従来の摩擦クラツチのよう
な適切なタイミングを要し煩雑な入出力軸の断続
操作が不要であり、そして摩擦面のような摩耗部
分がなく耐久性に優れるとともに回転伝達を確実
に行うことができる。第2に、遊星歯車装置とバ
ネにより機械的に回転伝達を行うので、従来の摩
擦クラツチにおける摩擦面の滑りやトルクコンバ
ータにおける流体を介することに伴うエネルギー
ロスがなく、回転伝達をこれらに比しより効率的
に行うことができる。第3に、遊星歯車装置によ
り減速機構とバネによる負荷回転力の蓄積機構と
の結合により緩衝効果の範囲(出力軸の回転に至
るまでの入力軸の許容先行回転数)を飛躍的に増
大せしめることができる。たとえば上記実施例で
示したように最大設定荷重に対し入力軸の先行回
転数を約13回となすことができるが、これは毎分
780回転の原動機を直接入力しても出力軸は約1
秒間停止したままでいられるものであり、実際に
はこの間に出力軸も回転しだすので作用時間はさ
らに延長されることとなり、緩衝効果の範囲はき
わめて大なものとなる。したがつて、入力軸の回
転速度と出力軸にかかる負荷の荷重にかかわらず
これらに対応して回転伝達を円滑、確実、効率的
に行うことができ、そのため変速機と組合わせて
自動車等の荷重、速度変化の多いものや、初期に
トルクの低い交流電動機に有効に利用することが
できる。第4に、トルクコンバータ等に比し全体
構造がきわめて簡潔である。
Firstly, there is no need for complicated intermittent operation of input/output shafts, which requires proper timing as with conventional friction clutches, and there is no wear part such as friction surfaces, resulting in excellent durability and rotation transmission. It can be done reliably. Second, since rotation is mechanically transmitted using a planetary gear system and a spring, there is no energy loss associated with slipping on the friction surface of conventional friction clutches or via fluid in torque converters, and rotation transmission is much easier than conventional friction clutches. It can be done more efficiently. Thirdly, the range of the buffering effect (the allowable preceding rotational speed of the input shaft until the rotation of the output shaft) is dramatically increased by combining the speed reduction mechanism with the planetary gear system and the load rotational force accumulation mechanism with the spring. be able to. For example, as shown in the above example, the input shaft can be rotated approximately 13 times per minute in response to the maximum set load.
Even if a 780 rpm prime mover is directly input, the output shaft is approximately 1
It can remain stopped for seconds, and in reality, the output shaft also begins to rotate during this time, so the operating time is further extended, and the range of the buffering effect is extremely large. Therefore, regardless of the rotational speed of the input shaft and the load applied to the output shaft, rotation transmission can be carried out smoothly, reliably, and efficiently. It can be effectively used for AC motors that have many changes in load and speed, and for AC motors that initially have low torque. Fourth, the overall structure is extremely simple compared to torque converters and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案実施の一例に係る緩衝装置を示す
もので、第1図は全体構造を原理的に示した側面
図、第2図は第1図において左半分をキヤリヤA
の部分で断面(内歯車Bとバネとの関係の要
部のみ図示)とした正面図、第3図は上半分を断
面とした側面図、第4図は入力軸と遊星歯車装置
における歯車の回転方向と回転角度の関係を示し
た説明図である。 1……入力軸、2……出力軸、3……爪、4…
…バネ、5……クラツチ、6……収容室、7……
ピン、9……弧状溝、A,B,C……遊星歯車装
置。
The drawings show a shock absorber according to an example of implementing the present invention. Fig. 1 is a side view showing the overall structure in principle, and Fig. 2 shows the left half of Fig. 1 as a carrier A.
3 is a side view with the upper half in section, and FIG. 4 is a cross-sectional view of the input shaft and the gears in the planetary gear device. FIG. 3 is an explanatory diagram showing a relationship between a rotation direction and a rotation angle. 1...Input shaft, 2...Output shaft, 3...Claw, 4...
...Spring, 5...Clutch, 6...Containment chamber, 7...
Pin, 9...Arc-shaped groove, A, B, C...Planetary gear device.

Claims (1)

【特許請求の範囲】[Claims] 1 夫々太陽歯車と遊星歯車と内歯車とからなる
三組の遊星歯車装置A,B,Cを有し、入力軸に
対し遊星歯車装置Aの太陽歯車Aを固定すると
ともに遊星歯車装置Cの太陽歯車Cをクラツチ
を介して着脱可能に結合し、遊星歯車装置Aの内
歯車Aと入力軸外周面に遊嵌せる遊星歯車装置
Bの太陽歯車Bと遊星歯車装置Cの内歯車C
とを一体となし、遊星歯車装置BのキヤリヤB
と遊星歯車装置CのキヤリヤCとを一体とな
し、遊星歯車装置Bの内歯車Bの円周外面には
一対の爪3を180゜の間隔を配して突出し、遊星歯
車装置AのキヤリヤAは全遊星歯車装置を包囲
するように円筒状となして一端部を出力軸に固定
するとともに中間部外周面に遊星歯車装置Bの内
歯車Bに形成した爪とバネを収容するための円
筒状の収容室を形成し、遊星歯車装置Bの内歯車
Bに形成した一対の爪により左右二室に区画さ
れた遊星歯車装置AのキヤリヤAの収容室の各
区画室内に複数個に分割接続されたバネをその両
端部を内歯車Bの一対の爪に対接して収容し、
バネの両端部と接続端部に取り付けられたピンを
キヤリヤAの収容室両側壁に入力軸の軸心を中
心として中心角数十度に形成された複数個の弧状
の溝の両端部より外部に突出せしめたことを特徴
とする遊星歯車装置とバネを用いた緩衝装置。
1 It has three planetary gear sets A, B, and C each consisting of a sun gear, a planet gear, and an internal gear, and fixes the sun gear A of the planetary gear set A to the input shaft, and also fixes the sun gear A of the planetary gear set C to the input shaft. A sun gear B of a planetary gear system B and an internal gear C of a planetary gear system C are connected to each other removably through a clutch, and are loosely fitted to the internal gear A of the planetary gear system A and the outer peripheral surface of the input shaft.
and the carrier B of the planetary gear system B.
A pair of pawls 3 are arranged at an interval of 180° and protrude from the circumferential outer surface of the internal gear B of the planetary gear device B, and the carrier A of the planetary gear device A is integrated with the carrier C of the planetary gear device C. has a cylindrical shape so as to surround the entire planetary gear set, and has one end fixed to the output shaft, and has a cylindrical shape for accommodating the pawl and spring formed on the internal gear B of the planetary gear set B on the outer peripheral surface of the intermediate part. The housing chamber of the carrier A of the planetary gear set A is divided into two chambers on the left and right by a pair of pawls formed on the internal gear B of the planetary gear set B. A spring is housed with its both ends facing a pair of pawls of an internal gear B,
The pins attached to both ends of the spring and the connecting end are connected to the outside from both ends of multiple arc-shaped grooves formed at an angle of several tens of degrees around the axis of the input shaft on both side walls of the accommodation chamber of carrier A. A shock absorbing device using a planetary gear device and a spring, characterized in that it is made to protrude.
JP3686380A 1980-03-25 1980-03-25 Planetary differential buffer Granted JPS56134652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3686380A JPS56134652A (en) 1980-03-25 1980-03-25 Planetary differential buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3686380A JPS56134652A (en) 1980-03-25 1980-03-25 Planetary differential buffer

Publications (2)

Publication Number Publication Date
JPS56134652A JPS56134652A (en) 1981-10-21
JPS6344981B2 true JPS6344981B2 (en) 1988-09-07

Family

ID=12481614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3686380A Granted JPS56134652A (en) 1980-03-25 1980-03-25 Planetary differential buffer

Country Status (1)

Country Link
JP (1) JPS56134652A (en)

Also Published As

Publication number Publication date
JPS56134652A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
US4090416A (en) Gear boxes
RU93005049A (en) TRANSMISSION DEVICE
MXPA06000761A (en) Dog clutch.
US20110132137A1 (en) Damper spring device, flywheel, clutch disk, and clutch disk for lockup mechanism
EP0286213A1 (en) Torsional vibration damper
US2775144A (en) Transmission
JP6182245B1 (en) Clutch using planetary gear mechanism
CA1221323A (en) Torsional vibration absorbing system for vehicle transmission
US4186625A (en) Reversible transmission
JPS6344981B2 (en)
US3263529A (en) Torque converter construction
US1939099A (en) Automatically variable change speed gear device
EP0674126A1 (en) A clutch device for an automatic transmission
US4296854A (en) Flexible clutch with an elastomeric vibration damper
US4889013A (en) Torque converter and assembly utilizing same
JPS62165058A (en) Power transmission gear
US1943324A (en) Automatic torque adjuster
JP3060769B2 (en) Gearbox for automatic transmission
RU2117836C1 (en) Vehicle recuperator
US3037399A (en) Automatic transmission
GB2117461A (en) Torque transmitting unit
SU853246A1 (en) Inertial torque converter
JP3102178B2 (en) Gearbox for automatic transmission
SU1652702A1 (en) Gearings
RU57440U1 (en) RELAY TYPE FREE MOVEMENT MECHANISM