JPS6344873Y2 - - Google Patents

Info

Publication number
JPS6344873Y2
JPS6344873Y2 JP1981131649U JP13164981U JPS6344873Y2 JP S6344873 Y2 JPS6344873 Y2 JP S6344873Y2 JP 1981131649 U JP1981131649 U JP 1981131649U JP 13164981 U JP13164981 U JP 13164981U JP S6344873 Y2 JPS6344873 Y2 JP S6344873Y2
Authority
JP
Japan
Prior art keywords
coil
resistor
circuit
drive signal
switching transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981131649U
Other languages
Japanese (ja)
Other versions
JPS5837790U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981131649U priority Critical patent/JPS5837790U/en
Priority to CH519382A priority patent/CH651178GA3/en
Publication of JPS5837790U publication Critical patent/JPS5837790U/en
Application granted granted Critical
Publication of JPS6344873Y2 publication Critical patent/JPS6344873Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/55Piezoelectric transducer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Small-sized control circuit using a switching transistor (12) and a positive-booster coil unit (13), with a view to producing a back-electromotive force so as to control a piezoelectric vibrator (14) by means of a voltage greater than the supply voltage, a resistor (R2) of predetermined value being mounted in series with the positive- booster coil unit and attached to the piezoelectric vibrator (14), the said positive-booster coil unit (13) using a wire of higher resistance so as also to serve as a resistor, thus making it possible to miniaturise the whole of the control circuit. <IMAGE>

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案はスイツチングトランジスタと昇圧コ
イルを用い逆起電圧を発生させて電源よりも大き
な電圧で作動器を駆動させる昇圧回路に関するも
のである。 電源よりも大きな電圧を必要とする作動器を駆
動したり、ケース内に収納された作動器の音圧が
ケースによつて減衰されるような場合、昇圧回路
を用いてこれを補うのが一般的な方法であり、昇
圧回路を用いる機器としては、例えば電子腕時計
における圧電ブザーを例示することができる。 電子腕時計の圧電ブザー発音に用いられている
昇圧回路は図示するように、駆動信号発生回路1
の出力側をスイツチングトランジスタ2ベースに
接続し、前記発生回路1の電源入力側とトランジ
スタ2の間に昇圧コイル3と圧電ブザー4を並列
に接続して形成されており、外部からの信号によ
り駆動される駆動信号発生回路1の出力信号によ
つてスイツチングトランジスタ2がオン、オフ
し、これによつてコイル3の両端に大きな逆起電
圧が生じ、電池5よりも数倍以上の逆起電圧によ
つて圧電ブザー4を発音させるようになつてい
る。なお圧電ブザー4は、トランジスタ2のコレ
クタ−エミツタ間に接続しても同等の作用をす
る。 ところで、上記のような昇圧回路は電池5がブ
ザー4と駆動信号発生回路1の両方の電源として
用いられる。 この場合、IC化された駆動信号発生回路1を
安定駆動するためにはDC1.0V〜1.3Vが必要であ
り、これに対し電池5はDC1.5V〜3.0Vが一般的
である。 図示でも明らかなように、電池5は内部インピ
ーダンスR1を有し、コイル3も比較的小さな直
流抵抗を有している。 電池の起電圧は、このR1とコイルの直流抵抗
に分圧される。R1に比べコイルの直流抵抗が小
さい場合、電池内部での電圧降下が大きくなり、
駆動信号発生回路電圧が不足する場合がある。こ
の場合、図示のように、コイル3と直列に所要の
抵抗値をもつた抵抗体R2を入れる必要がある。 すなわち、駆動信号発生回路1の入力電圧(A
点)はE−R1.i(ここでEおよびR1はそれぞれ電
池5の起動力および内部インピーダンス、iはコ
イルに流れる電流を表わす)であり、これが
1.0V〜1.3Vになるようiを小さくする。 また電流iを小さくして電池5の寿命を永くす
るため、さらにはコイル3に使用されているフエ
ライトコアの磁気飽和によるインダクタンス低下
を抑止するため抵抗体R2に大きな抵抗値のもの
を使用する必要がある。 従来の昇圧回路においては、コイル3自身の抵
抗値が低いため、コイル3とは別の抵抗体R2
回路中に組込むようにしていた。 しかしながら腕時計の様に小さく内部空間が極
めて狭くかぎられているようなものでは、部品数
の削減が必要であり、別体の抵抗体を使用する従
来の昇圧回路では組込みにスペース的な制約が生
じるという不都合があり、しかも別体の抵抗体を
使用することによつてコスト的に高くなる欠点が
ある。 この考案は、上記のような不都合や欠点を解消
するためになされたものであり、部品数の削減を
はかり小さな部分への組込みが円滑に行なえ、コ
ストダウンを可能にすることができる昇圧回路を
提供することを目的とする。 この考案の構成は、普通はコイルに使わないよ
うな線材を用いてコイルを形成し、コイル自身が
所望の抵抗値をもつた抵抗体となつて、大きな抵
抗値を得るようにしたものである。 以下、この考案を添付図面の実施例に基づいて
説明する。 この考案の昇圧回路はトランジスタ2と駆動信
号発信回路1の電池5間に接続される昇圧コイル
3を、比抵抗の大きな線材を用いて形成すること
によつて構成されている。 昇圧コイル3は比抵抗の大きな線材を用いるこ
とによつて自身が抵抗体R2を形成することにな
る。 なお回路的には図示のように、コイル3と抵抗
体R2が表示されているが、実際にはコイル3が
抵抗体R2を兼ね、別体の抵抗を使用する必要が
なくなる。 上記コイル3の形状に用いる比抵抗の大きな線
材としては種々の合金が使用でき、例えば銅と亜
鉛の合金、銅とニツケルの合金、銅と錫の合金な
どをあげることができ、これらの合金とその線
径、巻数を選択することにより、所望する抵抗値
を得ることができる。 尚図面にて、抵抗R2は電池5から流れる電流
iの大きさを制御するためのものである。仮に
R2が無ければ、電流lが大きくなり電池交換を
頻繁におこなわなければならなくなる。これを防
ぐために、コイル3と直列に抵抗R2を接続して
いるのである。 本願は、従来別部品として使用していたコイル
3と抵抗R2とを、コイル用電線に比抵抗の高い
素材を使用することによつて、ひとつにしたもの
である。 ちなみに、銅線を用いた従来のコイルと、銅と
亜鉛の合金製線材を用いたこの考案のコイルの抵
抗値の差異をコイルに流れる電流値を用いて表1
に示す。
This invention relates to a booster circuit that uses a switching transistor and a booster coil to generate a back electromotive force and drive an actuator with a voltage higher than the power supply. When driving an actuator that requires a higher voltage than the power supply, or when the sound pressure of an actuator housed in a case is attenuated by the case, it is common to use a booster circuit to compensate for this. An example of a device using a booster circuit is a piezoelectric buzzer in an electronic wristwatch. The booster circuit used to generate the piezoelectric buzzer of an electronic wristwatch is a drive signal generation circuit 1 as shown in the figure.
The output side of the generator circuit 1 is connected to the base of the switching transistor 2, and a booster coil 3 and a piezoelectric buzzer 4 are connected in parallel between the power input side of the generator circuit 1 and the transistor 2. The switching transistor 2 is turned on and off by the output signal of the drive signal generation circuit 1, which generates a large back electromotive voltage across the coil 3, which is several times higher than that of the battery 5. The piezoelectric buzzer 4 is made to sound depending on the voltage. Note that the piezoelectric buzzer 4 has the same effect even if it is connected between the collector and emitter of the transistor 2. Incidentally, in the booster circuit as described above, the battery 5 is used as a power source for both the buzzer 4 and the drive signal generation circuit 1. In this case, DC 1.0V to 1.3V is required to stably drive the IC-based drive signal generation circuit 1, whereas DC 1.5V to 3.0V is generally required for the battery 5. As is clear from the illustration, the battery 5 has an internal impedance R1 , and the coil 3 also has a relatively small DC resistance. The electromotive voltage of the battery is divided between this R 1 and the DC resistance of the coil. If the DC resistance of the coil is smaller than R 1 , the voltage drop inside the battery will increase,
The drive signal generation circuit voltage may be insufficient. In this case, as shown in the figure, it is necessary to insert a resistor R2 having a required resistance value in series with the coil 3. That is, the input voltage (A
point) is E-R 1.i (where E and R 1 are the starting force and internal impedance of the battery 5, respectively, and i represents the current flowing through the coil), which is
Reduce i to 1.0V to 1.3V. In addition, in order to reduce the current i and extend the life of the battery 5, and to prevent the inductance from decreasing due to magnetic saturation of the ferrite core used in the coil 3, a resistor R2 with a large resistance value is used. There is a need. In the conventional booster circuit, since the resistance value of the coil 3 itself is low, a resistor R2 separate from the coil 3 has been incorporated into the circuit. However, in small devices such as wristwatches, where internal space is extremely limited, it is necessary to reduce the number of components, and conventional booster circuits that use a separate resistor have space constraints for integration. In addition, the use of a separate resistor has the disadvantage of increasing costs. This idea was made to eliminate the above-mentioned inconveniences and shortcomings, and was designed to create a booster circuit that can reduce the number of parts, can be smoothly integrated into small parts, and can reduce costs. The purpose is to provide. The structure of this device is to form a coil using a wire that is not normally used for coils, and the coil itself becomes a resistor with a desired resistance value, thus obtaining a large resistance value. . This invention will be explained below based on the embodiments shown in the accompanying drawings. The booster circuit of this invention is constructed by forming the booster coil 3, which is connected between the transistor 2 and the battery 5 of the drive signal generating circuit 1, using a wire having a large specific resistance. By using a wire having a large specific resistance, the boost coil 3 itself forms a resistor R2 . Note that although the coil 3 and the resistor R2 are shown in the circuit as shown in the figure, in reality the coil 3 also serves as the resistor R2 , eliminating the need to use a separate resistor. Various alloys can be used as the wire material with high resistivity used in the shape of the coil 3, such as copper and zinc alloys, copper and nickel alloys, copper and tin alloys, etc. By selecting the wire diameter and number of turns, a desired resistance value can be obtained. In the drawing, the resistor R 2 is for controlling the magnitude of the current i flowing from the battery 5. what if
Without R 2 , the current l would increase and the battery would have to be replaced frequently. To prevent this, a resistor R2 is connected in series with the coil 3. In the present application, the coil 3 and the resistor R2 , which were conventionally used as separate parts, are integrated into one by using a material with high specific resistance for the coil wire. By the way, Table 1 shows the difference in resistance between a conventional coil using copper wire and this invented coil using copper and zinc alloy wire, using the current flowing through the coil.
Shown below.

【表】 以上のように、この考案によると、昇圧回路に
組込む昇圧コイルを比抵抗の大きな線材を用いて
形成したので、コイル自身が抵抗体を兼ねること
になり、別体の抵抗をはぶけるので、部品数の削
減が行なえ、小さなものに組込む場合のスペース
的な制約が解消できる。 またコイルが抵抗体を兼ねるので別に必要とし
た抵抗体がはぶけ、昇圧回路のコスト低減をはか
ることができるという効果がある。
[Table] As described above, according to this invention, the boost coil to be incorporated into the boost circuit is formed using a wire material with a high specific resistance, so the coil itself also serves as a resistor, and a separate resistor can be removed. Therefore, the number of parts can be reduced, and space constraints when incorporating into small items can be resolved. Furthermore, since the coil also serves as a resistor, a separately required resistor is eliminated, and the cost of the booster circuit can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は昇圧回路の回路図である。 1……駆動信号発生回路、2……スイツチング
トランジスタ、3……昇圧コイル、4……圧電ブ
ザー、5……電池、R2……抵抗体。
The drawing is a circuit diagram of a booster circuit. DESCRIPTION OF SYMBOLS 1... Drive signal generation circuit, 2... Switching transistor, 3... Boost coil, 4... Piezoelectric buzzer, 5... Battery, R2 ... Resistor.

Claims (1)

【実用新案登録請求の範囲】 (1) 駆動信号発生回路と、この駆動信号発生回路
の出力信号により駆動されるスイツチングトラ
ンジスタと、このスイツチングトランジスタと
直列に接続された昇圧コイルと、この昇圧コイ
ルに発生する逆起電圧により駆動される作動器
と、この作動器と前記駆動信号発生回路に接続
される電池とからなり、前記昇圧コイルを比抵
抗の大きな線材を用いて形成することにより抵
抗体をもかねるようにしたことを特徴とする昇
圧回路。 (2) 昇圧コイルが銅と亜鉛の合金線で形成されて
いることを特徴とする実用新案登録請求の範囲
第1項記載の昇圧回路。 (3) 昇圧コイルが銅とニツケルの合金線で形成さ
れていることを特徴とする実用新案登録請求の
範囲第1項記載の昇圧回路。 (4) 昇圧コイルが銅と錫の合金線で形成されてい
ることを特徴とする実用新案登録請求の範囲第
1項記載の昇圧回路。
[Claims for Utility Model Registration] (1) A drive signal generation circuit, a switching transistor driven by an output signal of the drive signal generation circuit, a boost coil connected in series with the switching transistor, and a boost coil connected in series with the switching transistor. It consists of an actuator driven by a back electromotive force generated in the coil, and a battery connected to the actuator and the drive signal generation circuit. A booster circuit that is characterized by being designed to support the body. (2) The step-up circuit according to claim 1, wherein the step-up coil is formed of an alloy wire of copper and zinc. (3) The step-up circuit according to claim 1, wherein the step-up coil is made of an alloy wire of copper and nickel. (4) The step-up circuit according to claim 1, wherein the step-up coil is formed of an alloy wire of copper and tin.
JP1981131649U 1981-09-02 1981-09-02 boost circuit Granted JPS5837790U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1981131649U JPS5837790U (en) 1981-09-02 1981-09-02 boost circuit
CH519382A CH651178GA3 (en) 1981-09-02 1982-09-01 Circuit for controlling a piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981131649U JPS5837790U (en) 1981-09-02 1981-09-02 boost circuit

Publications (2)

Publication Number Publication Date
JPS5837790U JPS5837790U (en) 1983-03-11
JPS6344873Y2 true JPS6344873Y2 (en) 1988-11-21

Family

ID=15062990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981131649U Granted JPS5837790U (en) 1981-09-02 1981-09-02 boost circuit

Country Status (2)

Country Link
JP (1) JPS5837790U (en)
CH (1) CH651178GA3 (en)

Also Published As

Publication number Publication date
JPS5837790U (en) 1983-03-11
CH651178GA3 (en) 1985-09-13

Similar Documents

Publication Publication Date Title
JPS6344873Y2 (en)
JP2582749Y2 (en) Switching booster circuit
JPH06501557A (en) Proximity sensing device and method
JP2013205427A (en) Liquid crystal lens device and control method of the same
JPH09266666A (en) Step-up circuit and control circuit thereof
US4139842A (en) Audible alarm unit
US4356438A (en) Motor speed control system
US4320308A (en) Pulse duty control system
JPH0228478Y2 (en)
JPS5852655Y2 (en) Plunger drive circuit
JPS5928473Y2 (en) sound device
JPS6243513B2 (en)
JPS647424B2 (en)
JPH0420195B2 (en)
JPS58164007U (en) Constant current drive circuit for dot print magnets
JPH0128558Y2 (en)
JPH0116153Y2 (en)
JPS5841093U (en) Inductive load drive circuit
JPS58162749U (en) Vehicle charging generator
JPH0199093U (en)
JP2810006B2 (en) DC / DC converter circuit inductor
JPS631588Y2 (en)
JPS5870627A (en) Self-oscillating circuit
JPS58138639U (en) Printing hammer drive circuit
JPS6397387U (en)