JPS634444A - Magnetic memory device - Google Patents

Magnetic memory device

Info

Publication number
JPS634444A
JPS634444A JP14485986A JP14485986A JPS634444A JP S634444 A JPS634444 A JP S634444A JP 14485986 A JP14485986 A JP 14485986A JP 14485986 A JP14485986 A JP 14485986A JP S634444 A JPS634444 A JP S634444A
Authority
JP
Japan
Prior art keywords
magnetic domain
medium
spin
crescent
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14485986A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikeda
池田 整
Norio Oota
憲雄 太田
Makoto Suzuki
良 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14485986A priority Critical patent/JPS634444A/en
Publication of JPS634444A publication Critical patent/JPS634444A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/115Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam,e.g. of electrons or X-rays other than a beam of light for reproducing

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To identify the presence of the magnetic domain in a submicron size and to make a magneto optical recording in a high density compared to the conventional method by projecting to a medium the electron beam having higher space resolving power than that of a light as a reading means. CONSTITUTION:The spin of a secondary electron 6 jumping out of the medium by the projection of a primary electron is polarized by the magnetization of the medium, but the polarization degrees differ by the direction of the magnetization and the presence of a crescent magnetic domain, namely the presence of a record pit can be detected if a spin detector is arranged at the prescribed position. The crescent magnetic domain means 0.4mum bit period and 0.2mum magnetic domain width, a polarized spin is 0.2mum space resolving power at its space resolving power and the presence of the magnetic domain is discriminated thereby. The inner part of a vacuum chamber 8 is exhausted upto 5X10<-9>Torr for a reading, for example, and a field emission type electron gun 5 is used at acceleration voltage 4kV and 3nA current value. The discrimination time as to whether a crescent record is made or not actually depends upon the sensibility and weight of the detector 7 detecting the polarization of the polarized spin 6 at high density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気メモリに係シ、特に高密度大容量な磁気メ
モリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic memory, and particularly to a high-density, large-capacity magnetic memory device.

〔従来の技術〕[Conventional technology]

現在、大容量記録装置として光磁気記録が注目されてい
るが主流の書込み方式である光変調方式では光の回折現
象のため、記憶ビットの大きさの限度が1μmである、
情報の重ね書き(オーバライド)が出来にくいためアク
セス時間が遅い、などの問題がある。最近、早天の小林
らは、第8回日本応用磁気学会学術講演概要集p234
 (1984)において上記問題を解決すべく磁界変調
方式による書込み方式を検討している。この原理を第2
図に示す。いま、集光したレーザ光を回転している記録
媒体に連続照射した場合のことを考える。ビームの照射
を受けた媒体の、ビーム後方での温度分布は第2図のよ
うになる。すなわち、ビーム端での媒体温度Toはキュ
リー温度Tc (またはネール温度TN)より高くスポ
ットから離れるにつれて媒体温度T1.T2 、Tsと
Tc以下まで低くなっている。温度T+  (i=o、
  1. 2. 3゜・・・)における媒体の保磁力H
c fr、 He tとおくと、Hc 1< Hc 2
 < Hc s である。今、ビームスポット近傍にH
vという書込み磁界が存在し、Hcz<Hw < Hc
 sとすると、HcがHWの磁性領域すなわち図のTw
からTcの範囲の磁化が反転する。
Currently, magneto-optical recording is attracting attention as a large-capacity recording device, but in the optical modulation method, which is the mainstream writing method, the limit on the size of the storage bit is 1 μm due to the phenomenon of light diffraction.
There are problems such as slow access times because it is difficult to overwrite information. Recently, early morning Kobayashi et al.
(1984), a writing method using a magnetic field modulation method was studied in order to solve the above problem. This principle is the second
As shown in the figure. Now, consider the case where a rotating recording medium is continuously irradiated with focused laser light. The temperature distribution of the medium irradiated with the beam at the rear of the beam is as shown in FIG. That is, the medium temperature To at the beam end is higher than the Curie temperature Tc (or Neel temperature TN) and as it moves away from the spot, the medium temperature T1. T2 has become lower than Ts and Tc. Temperature T+ (i=o,
1. 2. Coercive force H of the medium at 3°...)
c fr, He t, Hc 1 < Hc 2
<Hcs. Now, H is near the beam spot.
There is a write magnetic field v, and Hcz<Hw<Hc
s, Hc is the magnetic region of HW, that is, Tw in the figure.
The magnetization in the range from Tc to Tc is reversed.

この反転磁化領域は、図のようにビームスポットの数分
の1の三日月状となるため、三日月記録と呼ばれている
。この三日月記録は、レーザ光を連続照射しながらパル
ス状磁界で書込む方式のため、従来の磁気ヘッドと同様
にオーバライドが極めて容易に実現できる特長がある。
This reversed magnetization region is called crescent recording because it has a crescent shape that is a fraction of the beam spot as shown in the figure. This crescent recording uses a method of writing using a pulsed magnetic field while continuously irradiating a laser beam, so it has the advantage that overrides can be achieved extremely easily, similar to conventional magnetic heads.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の三日月記録の最大の課題は、読出し方式が未開発
のことである。すなわち、光磁気記録で記録ビットをス
ポットサイズの数分の1にしただけに、カー効果などの
光読出しではCNがとれないわけである。本発明の目的
は、この致命的な問題を解決し、新しい高密度殊性メモ
リ装置として実用に供することにある。
The biggest problem with the above-mentioned crescent moon recording is that the readout method has not yet been developed. In other words, since the recorded bits are reduced to a fraction of the spot size in magneto-optical recording, CN cannot be obtained by optical readout such as the Kerr effect. The purpose of the present invention is to solve this fatal problem and to put it into practical use as a new high-density special memory device.

〔問題点を解決するための手段〕[Means for solving problems]

上記爾的は、読出し手段として光よシも空間分解能が高
い電子ビームを媒体に照射することによシ、達成される
。電界放射型電子銃を用いて照射電子ビームの直径金的
0.1μmiで絞シ込むことができる。この1次電子の
照射によシ媒体からとび出す2次電子のスピンは媒体の
磁化によって偏極されるがその磁化の方向によって偏極
度が異なる。したがって所定の位置にスピン検出器を配
置しておけば三日月状磁区の有無すなわち記録ビットの
有無を検出することができる。なおこの技術の応用例と
しては第9回応用磁気学会学術講演概要集(1985)
55頁にスピン偏極走査電子顕微鏡としての記載がある
The above object is achieved by irradiating the medium with an electron beam, which has a higher spatial resolution than light, as a reading means. Using a field emission type electron gun, it is possible to narrow down the irradiation electron beam to a diameter of approximately 0.1 μm. The spins of secondary electrons ejected from the medium by this primary electron irradiation are polarized by the magnetization of the medium, and the degree of polarization differs depending on the direction of the magnetization. Therefore, by placing a spin detector at a predetermined position, it is possible to detect the presence or absence of crescent-shaped magnetic domains, that is, the presence or absence of recorded bits. An example of the application of this technology is the 9th Japan Society of Applied Magnetics Academic Lecture Abstracts (1985).
On page 55, there is a description as a spin-polarized scanning electron microscope.

また、1次磁子の反射軌道が媒体の磁化の電磁力によっ
て曲げられる(ローレンツ力)を利用しても記録ビット
の有無の検出が可能である。
Furthermore, the presence or absence of recorded bits can also be detected using the fact that the reflected trajectory of the primary magneton is bent by the electromagnetic force of the magnetization of the medium (Lorentz force).

〔作用〕[Effect]

三日月状磁区はビット周期0.4μm(磁区中0.2μ
m)であシ、レーザビームでは容易に分解できなかった
が、偏極スピンは空間分解能が0.2μmである。それ
によって磁区の存在を分別することができるので、誤動
作することがない。また、電子ビームは読出し専用であ
るので、微弱な電流でよく、電界放射型電子線源の寿命
が長い、読出しヘッドedffiに出来るためアクセス
タイムを短くすることができるなどの利点をもっている
The crescent-shaped magnetic domain has a bit period of 0.4 μm (0.2 μm in the magnetic domain).
m) Although it could not be easily resolved with a laser beam, polarized spins have a spatial resolution of 0.2 μm. This allows the presence of magnetic domains to be determined, thereby preventing malfunctions. Further, since the electron beam is used for reading only, it requires only a weak current, which has the advantage that the field emission type electron beam source has a long life and that the access time can be shortened because it can be used as a read head edffi.

〔実施例〕〔Example〕

以下、本発明の一実月例を第1図により説明する。光磁
気ディスクlはエポキシ樹脂基板上にTbFeCo を
被着して作製した。半導体レーザ2(λ=780 nm
、  10mW)によシ、媒体速度が50α/Sのとき
にビット幅、0.4μmの書込み?実現できた。このと
きのビームスポットハ約3μm1 ピットの記録ビット
の線幅はL6μmであった。ここで書込み用のパルス発
生コイル3は約1μH1パルス蹴流2Aのとき、ディス
ク表面には500eの磁界が’QLIわる構造である。
Hereinafter, a practical example of the present invention will be explained with reference to FIG. The magneto-optical disk 1 was fabricated by depositing TbFeCo on an epoxy resin substrate. Semiconductor laser 2 (λ=780 nm
, 10mW), write with a bit width of 0.4μm when the media speed is 50α/S? I was able to make it happen. At this time, the beam spot was approximately 3 μm, and the line width of the recording bit of the pit was 6 μm. Here, the writing pulse generating coil 3 has a structure in which a magnetic field of 500e is applied to the disk surface at a QLI when the current of about 1 μH1 pulse is 2A.

書込みを容易にするためここではバイアスマグネット4
によ、6 i o 00eのバイアス磁界を印加してい
る。
Bias magnet 4 is used here to facilitate writing.
A bias magnetic field of 6 i o 00e is applied.

以上のように、本装置によってピット密度0.4×1.
6μm2の高密度書込みが実現できた。また、重ね書き
も全く同様な手順で問題なく実行できた。
As described above, this device has a pit density of 0.4×1.
High-density writing of 6 μm2 was achieved. I was also able to perform overwriting using the same procedure without any problems.

次に読出しのため、真空チャンバー8の内部を5 X 
10−”l’orrまで排気した。電界放射型電子銃5
は加速屈圧4kV−電流値約31’lAで使用した。
Next, for reading, the inside of the vacuum chamber 8 was
Exhausted to 10-"l'orr. Field emission type electron gun 5
was used at an accelerated flexural pressure of 4 kV and a current value of about 31'lA.

実際に、三日月記録がなされているかどうかの判定には
、3X10”ケの電子が必要であり、その判別には約I
Qmsを要した。この時間は、偏極スピン6の偏甑度を
高感度に検出する検出器7(ここではMOtt演出器)
の感度や重量に憤存しており、さらに高感度で軽量な鬼
子検出、5′fJ:用いれば、よシ短時間で検出可能な
ことはいうまでもない。
In fact, it takes 3 x 10" electrons to determine whether or not a crescent moon record is being made, and approximately I
It took Qms. During this time, the detector 7 (MOtt director here) detects the polarization degree of the polarized spin 6 with high sensitivity.
However, it goes without saying that if a highly sensitive and lightweight demon detection device, 5'fJ, is used, detection will be possible in a much shorter time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、サブミクロンサイズのミスの有無を識
別することができるので、光磁気記録の従来法に比べて
高密度な磁気記録媒体からの読出しに効果がある。
According to the present invention, since it is possible to identify the presence or absence of a submicron-sized error, it is more effective in reading from a high-density magnetic recording medium than the conventional method of magneto-optical recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気メモリ装置の概念構成
図、第2図は書込み原理を示す図である。 1・・・磁気記録媒体、2・・・半導体レーザ、3・・
・パルス磁界印加用コイル、4・・・バイアス磁界用コ
イル、5・・・電界放射を電子銃、6・・・偏極電子、
7・・・′框子検出器、8・・・真空チャンバー。
FIG. 1 is a conceptual block diagram of a magnetic memory device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the writing principle. 1... Magnetic recording medium, 2... Semiconductor laser, 3...
- Coil for applying pulsed magnetic field, 4... Coil for bias magnetic field, 5... Electron gun for emitting electric field, 6... Polarized electron,
7...' Frame detector, 8... Vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] 1、情報を記憶するための磁性薄膜と、少なくとも該磁
性薄膜へ情報を書込むための手段と読出すための手段を
有する装置において、該磁性薄膜中情報の担体である微
小磁区を、磁界変調方式によつて集光ビームのスポット
径以下の大きさに書込む手段と、該磁区を読出す手段と
して所定の位置へ電子ビームを照射する手段と所定位置
からの反射電子または2次電子の強度を検知するための
手段を少なくとも有することを特徴とした磁気メモリ装
置。
1. In an apparatus having a magnetic thin film for storing information, and at least means for writing information into the magnetic thin film and means for reading information, micro magnetic domains that are carriers of information in the magnetic thin film are modulated by a magnetic field. means for writing in a size smaller than the spot diameter of the focused beam depending on the method, means for irradiating an electron beam to a predetermined position as a means for reading out the magnetic domain, and intensity of reflected electrons or secondary electrons from the predetermined position. A magnetic memory device comprising at least means for detecting.
JP14485986A 1986-06-23 1986-06-23 Magnetic memory device Pending JPS634444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14485986A JPS634444A (en) 1986-06-23 1986-06-23 Magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14485986A JPS634444A (en) 1986-06-23 1986-06-23 Magnetic memory device

Publications (1)

Publication Number Publication Date
JPS634444A true JPS634444A (en) 1988-01-09

Family

ID=15372060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14485986A Pending JPS634444A (en) 1986-06-23 1986-06-23 Magnetic memory device

Country Status (1)

Country Link
JP (1) JPS634444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020814A1 (en) * 1994-01-31 1995-08-03 Terastore, Inc. Ultra thin film magnetic recording medium and related method and apparatus for recording and reproducing using spin-polarized electrons
US5546337A (en) * 1994-01-31 1996-08-13 Terastore, Inc. Method and apparatus for storing data using spin-polarized electrons
US6304481B1 (en) 1994-01-31 2001-10-16 Terastore, Inc. Method and apparatus for storing data using spin-polarized electrons

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020814A1 (en) * 1994-01-31 1995-08-03 Terastore, Inc. Ultra thin film magnetic recording medium and related method and apparatus for recording and reproducing using spin-polarized electrons
US5546337A (en) * 1994-01-31 1996-08-13 Terastore, Inc. Method and apparatus for storing data using spin-polarized electrons
US5838020A (en) * 1994-01-31 1998-11-17 Terastore, Inc. Method and apparatus for storing data using spin-polarized electrons
US6304481B1 (en) 1994-01-31 2001-10-16 Terastore, Inc. Method and apparatus for storing data using spin-polarized electrons

Similar Documents

Publication Publication Date Title
EP0217096B1 (en) Eraseable self biasing thermal magneto-optic medium
KR950008670B1 (en) Overwriting system for magneto-optical recording
KR100239812B1 (en) Magneto-optic recording method and magneto-optic recording/reproducing apparatus
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
US4694358A (en) Magneto-optic recording structure and method
Awano et al. Magnetooptical recording technology toward 100 Gb/in/sup 2
US6122229A (en) Magneto-optically recorded data readout system
JPS59113506A (en) System and device for photomagnetic recording, reproducing, and erasing
KR100236004B1 (en) Method for reproducing information from magneto-optical record medium and its apparatus
US3696346A (en) Beam addressed optical memory
JPS634444A (en) Magnetic memory device
JPH0573981A (en) Magneto-optical recording method enabling overwrite with power margin enlarged and magneto-optical recorder used for the same
JPH0551975B2 (en)
US4363052A (en) Thermomagnetic recording device
JPS6217282B2 (en)
JP3070887B2 (en) Optical disk high-density storage device
JPS5877047A (en) Magnetooptic head
KR100565187B1 (en) Magneto-optical Recording Medium and Method of Recording/Reproducing Data on the Same
JPH0729231A (en) Magneto-optical recording medium capable of overwriting and exceeding 53db
JP2788518B2 (en) Magneto-optical recording method
JPS62219202A (en) Magnetic memory device
JP2680014B2 (en) Magnetic memory device
JPS59231704A (en) Bias magnetic field impressing device of opto-magnetic disk
KR100447159B1 (en) magneto-optical recording medium
JP3245190B2 (en) Information storage device