JPS6344433Y2 - - Google Patents

Info

Publication number
JPS6344433Y2
JPS6344433Y2 JP17317283U JP17317283U JPS6344433Y2 JP S6344433 Y2 JPS6344433 Y2 JP S6344433Y2 JP 17317283 U JP17317283 U JP 17317283U JP 17317283 U JP17317283 U JP 17317283U JP S6344433 Y2 JPS6344433 Y2 JP S6344433Y2
Authority
JP
Japan
Prior art keywords
water
gas
humidifier
reaction
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17317283U
Other languages
Japanese (ja)
Other versions
JPS6082432U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17317283U priority Critical patent/JPS6082432U/en
Publication of JPS6082432U publication Critical patent/JPS6082432U/en
Application granted granted Critical
Publication of JPS6344433Y2 publication Critical patent/JPS6344433Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は水素の同位体を含む水と水素ガスとを
接触、反応させる同位体交換反応装置に関する。
[Detailed Description of the Invention] The present invention relates to an isotope exchange reaction device for bringing water containing hydrogen isotopes into contact with hydrogen gas to react.

重水を製造する場合や原子炉冷却水からトリチ
ウム(水素の同位体、記号T)を除去する場合の
ように、水と水素ガスとを接触させて同位体交換
反応を行ない、水中の水素同位体濃度を増加する
場合がある。
When producing heavy water or removing tritium (hydrogen isotope, symbol T) from nuclear reactor cooling water, water and hydrogen gas are brought into contact and an isotope exchange reaction is carried out to remove hydrogen isotopes in water. Concentration may be increased.

該同位体交換反応を行なうには、充填塔、棚段
塔等が使用されるが、いずれも疎水性担体に白金
を添着させた高価な触媒が使用される。
In order to carry out the isotope exchange reaction, a packed column, a tray column, etc. are used, and in either case, an expensive catalyst in which platinum is impregnated on a hydrophobic carrier is used.

このような触媒を大量に使用することは、製造
費用や処理費用が大となつて経済的に不利であ
り、触媒の使用量の低減が求められている。この
ためには同位体交換反応速度定数(以下、反応速
度定数と略す)を大きくする必要があるが、反応
速度定数が温度に依存する場合は、触媒の耐久温
度により必然的に制約を受ける。例えば、重水素
(水素の同位体、記号D)と軽水との交換反応式
は次の通りである。
Using a large amount of such a catalyst is economically disadvantageous because it increases manufacturing costs and processing costs, and there is a need to reduce the amount of catalyst used. For this purpose, it is necessary to increase the isotope exchange reaction rate constant (hereinafter abbreviated as reaction rate constant), but when the reaction rate constant depends on temperature, it is inevitably limited by the durability temperature of the catalyst. For example, the exchange reaction formula between deuterium (hydrogen isotope, symbol D) and light water is as follows.

H2O(液)H2O(気) …(a) H2O(気)+HD(気) HDO(気)+H2(気) …(b) HDO(気)HDO(液) …(c) この場合において、律速反応は式(a)及び(c)であ
るが、これらの反応速度は温度の関数であり、前
記したように触媒の耐久温度の制約を受けて反応
速度を十分高めることができなかつた。
H 2 O (liquid) H 2 O (air) …(a) H 2 O (air) + HD (air) HDO (air) + H 2 (air) …(b) HDO (air) HDO (liquid) …(c ) In this case, the rate-limiting reactions are formulas (a) and (c), but these reaction rates are a function of temperature, and as mentioned above, the reaction rate cannot be sufficiently increased due to the restriction of the catalyst's durability temperature. I couldn't do it.

本考案は、前記した事情に鑑みなされたもの
で、ガスに同伴する水蒸気を水による水蒸気と交
換する反応(以下、蒸気交換反応と略す)を迅速
に行なう装置を付加して反応速度定数を増加する
ことにより使用触媒の量を低減した装置を提供す
ることを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and increases the reaction rate constant by adding a device that quickly performs a reaction (hereinafter abbreviated as vapor exchange reaction) in which water vapor accompanying a gas is exchanged with water vapor. The object of the present invention is to provide an apparatus in which the amount of catalyst used is reduced.

以下、本考案を図示の実施例に基づいて説明す
る。
Hereinafter, the present invention will be explained based on the illustrated embodiments.

第1図において、反応塔1の頂部には、水の入
口2及びガスの出口3が設けられ、一方底部には
ガスの入口4と水の出口5が図示のように設けら
れている。
In FIG. 1, the top of the reaction column 1 is provided with a water inlet 2 and a gas outlet 3, while the bottom is provided with a gas inlet 4 and a water outlet 5 as shown.

反応塔1には、保温用熱交換器6が設けられ、
これには温水の入口7及び出口8が設けられてい
る。反応塔1の中には、所定の位置に仕切板9が
設けられ、触媒層10が夫々上下方向に隔てて形
成されている。隣接した触媒層10の間には夫々
蒸気交換装置11が設けられている。
The reaction tower 1 is provided with a heat exchanger 6 for heat retention,
It is provided with an inlet 7 and an outlet 8 for hot water. A partition plate 9 is provided at a predetermined position in the reaction tower 1, and catalyst layers 10 are formed vertically apart from each other. A vapor exchange device 11 is provided between adjacent catalyst layers 10, respectively.

第2図は蒸気交換装置11の詳細の系統を示し
たもので、上段の触媒層10の下部に連絡したガ
ス出口導管12及び水入口導管13は、加湿器1
4に連絡している。加湿器14の中には温水が流
通するヒーター15と枝管16とが設けられてい
る。下段の触媒層10の上方に開口したガス入口
導管17及び水の出口導管18は、冷水が流通
(図示省略)する水分凝縮器19の下部に連絡し
ている。凝縮器19の上部から延びたガス導管2
0は、加湿器14の中へ至つて開口し、水の出口
導管18にはヒーター21が付設され、更に水出
口導管18からは、前記枝管16が分かれ、加湿
器14の内部で開口している。
FIG. 2 shows a detailed system of the steam exchange device 11, in which a gas outlet conduit 12 and a water inlet conduit 13 connected to the lower part of the upper catalyst layer 10 are connected to the humidifier 1.
I am contacting 4. The humidifier 14 is provided with a heater 15 and a branch pipe 16 through which hot water flows. A gas inlet conduit 17 and a water outlet conduit 18 that open above the lower catalyst layer 10 communicate with the lower part of a moisture condenser 19 through which cold water flows (not shown). A gas conduit 2 extending from the top of the condenser 19
0 opens into the humidifier 14, a heater 21 is attached to the water outlet conduit 18, and the branch pipe 16 branches off from the water outlet conduit 18 and opens inside the humidifier 14. ing.

前記した構成の実施例において、反応塔1の内
部は、熱交換器6によつて所定の温度範囲に保持
される。水は頂部の入口2より反応塔1内に導入
され、下降し、その際触媒層10において、後述
する水素ガスと反応を繰返す。底部の入口4より
反応塔1の中に導入された水素ガスは上昇し、そ
の際下降する水と所定の反応が行われる。
In the embodiment with the above configuration, the inside of the reaction tower 1 is maintained within a predetermined temperature range by the heat exchanger 6. Water is introduced into the reaction tower 1 from the inlet 2 at the top, descends, and then repeatedly reacts with hydrogen gas, which will be described later, in the catalyst layer 10. Hydrogen gas introduced into the reaction tower 1 through the bottom inlet 4 rises and undergoes a predetermined reaction with the descending water.

ガスの動きに注目して更に説明すると、入口4
から導入された水素ガス(同位体を含む)は、4
段目(上方から数えて)の触媒層10に入り、上
方から下降してくる水と接触し、触媒の作用によ
り同位体交換反応が行われる。水蒸気〔HDO
(気)、HTO(気)を比較的多量含む〕を含んだ水
素ガスは、3段目の蒸気交換装置11のガス入口
導管17から凝縮器19に入り、ここで水蒸気は
凝縮水となり、水出口導管18を通つて反応塔1
内に戻され、4段目の触媒層10の上に滴下され
る。この際凝縮水は、反応塔1の温度より低いの
で、ヒーター21によつて所定温度まで上げられ
る。
To further explain the movement of gas, inlet 4
Hydrogen gas (including isotopes) introduced from 4
It enters the catalyst layer 10 of the stage (counting from the top), comes into contact with water descending from above, and an isotope exchange reaction is carried out by the action of the catalyst. Water vapor [HDO
Hydrogen gas containing relatively large amounts of (gas) and HTO (gas) enters the condenser 19 from the gas inlet conduit 17 of the third-stage steam exchanger 11, where the water vapor becomes condensed water and becomes water vapor. Reaction column 1 through outlet conduit 18
The liquid is returned to the inside and dripped onto the fourth stage catalyst layer 10. At this time, since the temperature of the condensed water is lower than that of the reaction tower 1, the temperature of the condensed water is raised to a predetermined temperature by the heater 21.

3段目の触媒層10の下部からの水〔HDO
(液)、HTO(液)を比較的少量含む〕は、3段目
の蒸気交換装置11の水入口導管13から加湿器
14に入つて溜る。
Water [HDO
(liquid), containing a relatively small amount of HTO (liquid)] enters the humidifier 14 from the water inlet conduit 13 of the third stage steam exchanger 11 and accumulates therein.

凝縮器19において水蒸気〔HDO(気)、HTO
(気)を比較的多量含む〕が除去され、かつ低温
になつた水素ガスは、ガス導管20を通つて加湿
器14に入り、ここでヒーター15により所定温
度まで昇温されると共に水蒸気〔HDO(気)、
HTO(気)を比較的少量含む〕飽和の状態になつ
てガス出口導管12から、3段目の触媒層10に
入り、ここで下降する水〔HDO(液)、HTO(液)
を比較的少量含む〕と接触して同位体交換反応が
行われる。
In the condenser 19, water vapor [HDO (gas), HTO
The hydrogen gas, which contains a relatively large amount of (air)] has been removed and has become low temperature, enters the humidifier 14 through the gas pipe 20, where it is heated to a predetermined temperature by the heater 15, and the hydrogen gas is heated to a predetermined temperature by the heater 15. (air),
Contains a relatively small amount of HTO (gas)] becomes saturated and enters the third stage catalyst layer 10 from the gas outlet conduit 12, where it descends (water [HDO (liquid), HTO (liquid)]
containing a relatively small amount], an isotope exchange reaction takes place.

結局4段目の触媒層10より出た水素ガスは、
蒸気交換装置11中の水分凝縮器19にて同伴水
蒸気〔HDO(気)、HTO(気)を比較的多量含む〕
が凝縮除去され、加湿器14にて上段からの水に
よる水蒸気〔HDO(気)、HTO(気)を比較的少
量含む〕が付与されることにより、その蒸気成分
が交換されて上段(3段目)の触媒層10に入
る。
In the end, the hydrogen gas released from the fourth stage catalyst layer 10 is
Steam entrained in the moisture condenser 19 in the steam exchanger 11 [contains relatively large amounts of HDO (air) and HTO (air)]
is condensed and removed, and the humidifier 14 applies water vapor [containing comparatively small amounts of HDO (air) and HTO (air)] from the upper stage, thereby exchanging the vapor components to the upper stage (3 stages). 2) enters the catalyst layer 10 of the second layer.

前述した作用が1段目及び2段目の蒸気交換装
置11及び触媒層10についても行われ、頂部の
出口3より出る水素ガスの同位体濃度は、入ると
きよりも低くなり、底部の出口5より出る水の同
位体濃度は入るときよりも高くなつている。
The above-mentioned action is also performed on the first and second stage steam exchangers 11 and catalyst beds 10, and the isotope concentration of the hydrogen gas exiting from the top outlet 3 is lower than when it enters, and the isotope concentration of the hydrogen gas exiting from the bottom exit 5 The isotopic concentration of the water leaving the tank is higher than that of the water going in.

一般に、同位体交換反応よりも蒸気交換反応が
遅いため、第3図中、曲線3で示す蒸気交換装置
なしの従来の場合の水蒸気中の同位体濃度
〔HDO(気)濃度又はHTO(気)濃度〕と、曲線
1で示す水中のそれとの間には、反応塔1頂部に
おいて同図に示すように、大きな差が生ずる。し
かし、前記した本考案の実施例によれば、触媒層
10の間で蒸気交換装置11により強制的に蒸気
交換が行われるので、第3図中、曲線2で示す蒸
気交換装置ありの本考案の場合の水蒸気中の同位
体濃度は、反応塔1頂部において、曲線1で示す
水中のそれに近づき(すなわち、反応塔1底部か
ら導入される水蒸気中の同位体を多量に水中に移
行する)、結果的に、第3図中、曲線2で示す水
蒸気中の同位体濃度と、曲線4で示す水素ガス中
の同位体濃度〔HD(気)濃度又はHT(気)濃度〕
との差が大きくなり、同位体交換反応のドライビ
ングフオースが大となつて〔例えば、前記した式
(b)が右側に進み〕、水蒸気とガスとの間の同位体
交換反応が促進される。そして全体としてみれ
ば、見掛上、反応速度定数が大きくなり、触媒使
用量を低減することができる。
In general, the vapor exchange reaction is slower than the isotope exchange reaction, so the isotope concentration in water vapor [HDO (gas) concentration or HTO (gas) As shown in the figure, there is a large difference between the concentration] and that in water shown by curve 1 at the top of the reaction column 1. However, according to the embodiment of the present invention described above, vapor exchange is forcibly performed between the catalyst layers 10 by the vapor exchange device 11. In this case, the isotope concentration in the water vapor at the top of the reaction tower 1 approaches that in water shown by curve 1 (that is, a large amount of isotope in the water vapor introduced from the bottom of the reaction tower 1 is transferred into water), As a result, in Figure 3, the isotope concentration in water vapor shown by curve 2 and the isotope concentration in hydrogen gas [HD (gas) concentration or HT (gas) concentration] shown by curve 4
and the driving force of the isotope exchange reaction becomes large [for example, the equation
(b) moves to the right], and the isotope exchange reaction between water vapor and gas is promoted. Overall, the reaction rate constant appears to be larger, and the amount of catalyst used can be reduced.

なお、触媒層の厚さを0.2mとして単層とした
ものと触媒層を2層とし、その厚さを夫々0.1m
とし前述の蒸気交換を行なうものとを比較試験し
た。前記以外の反応条件を同一にしたところ、第
4図に示すように温度40℃において後者の反応速
度定数が前者のそれに対し、約1.5倍であること
が判明した。第4図は、温度〔1/T(〓1)〕と
反応速度定数〔mol/m3・hr〕との関係をアレニ
ウスプロツトしたもので、曲線5は蒸気交換を行
う本考案の場合の総合を示し、曲線51は本考案
の場合の下段の触媒層におけるもの、曲線52は
上段の触媒層におけるもの、曲線6は触媒層が単
層で蒸気交換を行わない従来の場合を示してい
る。
In addition, the catalyst layer was made into a single layer with a thickness of 0.2 m, and the catalyst layer was made into two layers, each with a thickness of 0.1 m.
A comparative test was conducted between this and the steam exchange method described above. When the reaction conditions other than those mentioned above were kept the same, it was found that the reaction rate constant of the latter was about 1.5 times that of the former at a temperature of 40°C, as shown in FIG. Figure 4 shows an Arrhenius plot of the relationship between temperature [1/T (〓 1 )] and reaction rate constant [mol/m 3 hr], and curve 5 shows the relationship between temperature [1/T (〓 1 )] and reaction rate constant [mol/m 3 hr]. Curve 51 shows the case of the lower catalyst layer of the present invention, curve 52 shows the case of the upper catalyst layer, and curve 6 shows the conventional case where the catalyst layer is a single layer and no vapor exchange is performed. .

前記したように本実施例によれば、蒸気交換を
行なうことにより、高価な触媒の使用量を低減す
ることができ、反面、触媒使用量を変えない場合
は、同位体交換反応の効率を向上でき、或いは反
応温度を低くして触媒の寿命を増大することがで
きる。
As described above, according to this example, by performing steam exchange, the amount of expensive catalyst used can be reduced, while on the other hand, if the amount of catalyst used is not changed, the efficiency of the isotope exchange reaction can be improved. Alternatively, the reaction temperature can be lowered to increase the lifetime of the catalyst.

以上、実施例について述べたが、本考案は前記
実施例に限定されるものではなく、第5図Aに示
すように、反応塔1の中の触媒層10の相互間
に、直接、液加温部(凝縮水を反応塔1の温度ま
で加温する部分で、親水性物質等を充填してお
く)、低温部(水分凝縮部で、親水性物質等を充
填しておく)及び蒸発部(乾燥ガスに上部からの
水による水蒸気を付与する部分で、親水性物質等
を充填しておく)を形成して、これらに蒸気交換
作用を行わせるように構成してもよく、或いは第
5図Bに示すように、蒸発部乾燥ガスに上部から
の水による水蒸気を付与する部分で、親水性物質
等を充填しておく)を反応塔1内に、水分凝縮器
19を反応塔1外に設けこれらに同様の作用を行
わせるように構成してもよいことは勿論であり、
本考案の思想に基づいて幾多の改変が当業者によ
つてなされうるものである。なお、第5図A,B
中、第1,2図と同一符号は第1,2図と同一部
を示し、6′は保冷用熱交換器、9′は目皿を示
す。
Although the embodiments have been described above, the present invention is not limited to the embodiments described above, and as shown in FIG. Warm section (a section that heats condensed water to the temperature of reaction tower 1, filled with a hydrophilic substance, etc.), low temperature section (a water condensation section, filled with a hydrophilic substance, etc.), and evaporation section (A part that imparts water vapor from the water from above to the drying gas and is filled with a hydrophilic substance, etc.) may be formed and configured to perform a vapor exchange action. As shown in Figure B, the evaporator section (which is a section that adds water vapor from the water from above to the dry gas and is filled with a hydrophilic substance, etc.) is placed inside the reaction column 1, and the moisture condenser 19 is placed outside the reaction column 1. Of course, it is also possible to configure them so that they perform the same function.
Many modifications can be made by those skilled in the art based on the idea of the present invention. In addition, Fig. 5 A, B
Inside, the same reference numerals as in FIGS. 1 and 2 indicate the same parts as in FIGS. 1 and 2, 6' is a heat exchanger for cold storage, and 9' is a perforated plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の実施例を示す概略全体図、
第2図は、本考案の実施例の蒸気交換装置の詳細
を示す図、第3図及び第4図は本考案の効果を示
すグラフであり、第3図が触媒層高と水素ガス、
水蒸気、水中の同位体濃度との関係を示すグラ
フ、第4図が温度〔1/T(〓-1)〕と反応速度定
数〔mol/m3・hr〕との関係を示すグラフ、第5
図A,Bは本考案の他の実施例の蒸気交換装置の
部分を示す図である。 1……反応塔、2……水の入口、3……ガスの
出口、4……ガスの入口、5……水の出口、6…
…熱交換器、10……触媒層、11……蒸気交換
装置、12……ガス出口導管、13……水入口導
管、14……加湿器、15……ヒーター、16…
…枝管、17……ガス入口導管、18……水出口
導管、19……凝縮器、20……ガス導管、21
……ヒーター。
FIG. 1 is a schematic overall diagram showing an embodiment of the present invention;
FIG. 2 is a diagram showing the details of the steam exchange device according to the embodiment of the present invention, and FIGS. 3 and 4 are graphs showing the effects of the present invention.
Graph showing the relationship between water vapor and isotope concentration in water, Figure 4 is a graph showing the relationship between temperature [1/T (〓 -1 )] and reaction rate constant [mol/m 3 · hr], Figure 5
Figures A and B are views showing parts of a steam exchanger according to another embodiment of the present invention. 1...Reaction tower, 2...Water inlet, 3...Gas outlet, 4...Gas inlet, 5...Water outlet, 6...
... Heat exchanger, 10 ... Catalyst layer, 11 ... Steam exchange device, 12 ... Gas outlet conduit, 13 ... Water inlet conduit, 14 ... Humidifier, 15 ... Heater, 16 ...
...Branch pipe, 17...Gas inlet pipe, 18...Water outlet pipe, 19...Condenser, 20...Gas pipe, 21
……heater.

Claims (1)

【実用新案登録請求の範囲】 (1) 頂部に水の導入孔及びガスの導出孔を具備
し、底部に水の導出孔及びガスの導入孔を具備
した応塔内に上下方向に隔てて少くとも2段の
触媒層を形成し、同触媒層間に、上昇ガスに同
伴する水蒸気を凝縮させ同凝縮水を下方に流下
させると共に乾燥ガスに上方から流下する水を
接触させて水蒸気を付与する機能を有する蒸気
交換装置を設けてなることを特徴とする水素同
位体交換反応装置。 (2) 蒸気交換装置が、上部触媒層の下部に連絡し
たガス出口導管及び水入口導管と、枝管及びヒ
ーターとを有する加湿器、該加湿器とガス導管
で連通し下部触媒層の上方に連絡したガス入口
導管及び水出口導管を有する水分凝縮器よりな
り、前記加湿器の枝管と前記凝縮器の水出口導
管とを連通してなるものである実用新案登録請
求の範囲(1)の水素同位体交換反応装置。
[Scope of Claim for Utility Model Registration] (1) A reaction tower having a water inlet hole and a gas outlet hole at the top, and a water outlet hole and a gas inlet hole at the bottom, separated vertically. In both cases, two stages of catalyst layers are formed, and between the catalyst layers, the water vapor accompanying the rising gas is condensed and the condensed water flows downward, and the dry gas is brought into contact with the water flowing down from above to impart water vapor. 1. A hydrogen isotope exchange reaction device comprising a vapor exchange device having: (2) The steam exchange device includes a humidifier having a gas outlet conduit and a water inlet conduit connected to the lower part of the upper catalyst layer, a branch pipe, and a heater, and a humidifier connected to the humidifier by the gas conduit above the lower catalyst layer. The utility model registration claim (1) comprises a moisture condenser having a gas inlet conduit and a water outlet conduit connected to each other, and a branch pipe of the humidifier and a water outlet conduit of the condenser are connected. Hydrogen isotope exchange reactor.
JP17317283U 1983-11-10 1983-11-10 Hydrogen isotope exchange reactor Granted JPS6082432U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17317283U JPS6082432U (en) 1983-11-10 1983-11-10 Hydrogen isotope exchange reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17317283U JPS6082432U (en) 1983-11-10 1983-11-10 Hydrogen isotope exchange reactor

Publications (2)

Publication Number Publication Date
JPS6082432U JPS6082432U (en) 1985-06-07
JPS6344433Y2 true JPS6344433Y2 (en) 1988-11-18

Family

ID=30377310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17317283U Granted JPS6082432U (en) 1983-11-10 1983-11-10 Hydrogen isotope exchange reactor

Country Status (1)

Country Link
JP (1) JPS6082432U (en)

Also Published As

Publication number Publication date
JPS6082432U (en) 1985-06-07

Similar Documents

Publication Publication Date Title
US6138470A (en) Portable liquid desiccant dehumidifier
US5925291A (en) Method and apparatus for high-efficiency direct contact condensation
EP0184540A1 (en) Process for removing electrolyte vapor from fuel cell exhaust gas
Lo¨ f et al. Coefficients of heat and mass transfer in a packed bed suitable for solar regeneration of aqueous lithium chloride solutions
US4374116A (en) Method of combining gaseous hydrogen and oxygen and apparatus therefor
GB803274A (en) Process for the production of water or hydrogen having an increased deuterium content
JPS6344433Y2 (en)
US4877080A (en) Process and apparatus for cooling a fluid
JPS6320564B2 (en)
Izawa et al. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum
US2320349A (en) Refrigeration
Gandhidasan Reconcentration of aqueous solutions in a packed bed
CA1308237C (en) Catalyst bed for exothermal reactions between gases or fluids
JPS5844012B2 (en) Isotope exchange reactor
EP1089796B1 (en) A method for desorption of one or more compounds from an absorbent solution and use thereof
JPS61205758A (en) Chemical heat accumulator
Gandhidasan Closed-type solar regenerator: analysis and simulation
SU1606138A1 (en) Rectifying tower
Iwai et al. Hydrophobic Platinum Honeycomb Catalyst to Be Used for Tritium Oxidation Reactors
Haefner Adiabatic Adsorption of Water Vapor on Zeolite 13X: Application for a Desiccant Heat Pump
JPS584564B2 (en) Multistage exchange reaction tower
SU1285987A1 (en) Nuclear power plant
Asakura et al. Stability of catalytic activity in platinum impregnated porous teflon
Cho et al. A Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyl Iodide under Humid Conditions
JPH0525703Y2 (en)