JPS634421B2 - - Google Patents

Info

Publication number
JPS634421B2
JPS634421B2 JP11881581A JP11881581A JPS634421B2 JP S634421 B2 JPS634421 B2 JP S634421B2 JP 11881581 A JP11881581 A JP 11881581A JP 11881581 A JP11881581 A JP 11881581A JP S634421 B2 JPS634421 B2 JP S634421B2
Authority
JP
Japan
Prior art keywords
output
eio
power supply
switching
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11881581A
Other languages
Japanese (ja)
Other versions
JPS5819921A (en
Inventor
Motoyoshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11881581A priority Critical patent/JPS5819921A/en
Publication of JPS5819921A publication Critical patent/JPS5819921A/en
Publication of JPS634421B2 publication Critical patent/JPS634421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は、過電流保護機能を有する多出力スイ
ツチング電源に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-output switching power supply having an overcurrent protection function.

従来のこの種の多出力スイツチング電源の一例
を第1図に示す。この図において、出力トランス
1の一次巻線1Aにはスイツチング回路2より矩
形波電圧が供給され、出力トランス1の二次側の
出力巻線1B,1Cに夫々ダイオードD1,D2
びコンデンサC1,C2から成る整流平滑回路が設
けられている。そして、所定の直流出力が出力端
子P1,N間及び出力端子P2,N間に出力される
ようになつている。この場合、スイツチング回路
2内のスイツチング素子に過電流が流れて破損に
到らないように、出力端子Nに接続された共通帰
線3に直列に抵抗器Rを挿入し、この両端の電圧
Eより負荷電流の総和を知り、これによつてスイ
ツチング回路2内のスイツチング素子のオン期間
又はオフ期間あるいは動作周波数を制御してスイ
ツチング素子に流れる電流を制限するようにして
いる。
An example of a conventional multi-output switching power supply of this type is shown in FIG. In this figure, the primary winding 1A of the output transformer 1 is supplied with a rectangular wave voltage from the switching circuit 2, and the secondary output windings 1B and 1C of the output transformer 1 are supplied with diodes D 1 and D 2 and a capacitor C, respectively. A rectifying and smoothing circuit consisting of C1 and C2 is provided. A predetermined DC output is output between the output terminals P 1 and N and between the output terminals P 2 and N. In this case, a resistor R is inserted in series with the common return wire 3 connected to the output terminal N to prevent overcurrent from flowing into the switching elements in the switching circuit 2 and causing damage. The sum of the load currents is thus known, and the on-period or off-period or operating frequency of the switching elements in the switching circuit 2 is controlled based on this information to limit the current flowing through the switching elements.

しかし、単純に負荷電流の総和を検出していた
のでは、出力端子P1,N間の電圧値と出力端子
P2,N間の電圧値との差異が大きい場合には、
スイツチング素子に過電流が流れる恐れがある。
すなわち、電圧値の大きい方の負荷が重くなつた
ときは、同一負荷電流であつても出力電力は大き
くなり、スイツチング素子の電流も増加するから
である。
However, simply detecting the sum of the load currents would result in the voltage value between the output terminals P 1 and N
If the difference between the voltage value between P 2 and N is large,
There is a risk of overcurrent flowing to the switching element.
That is, when the load with a larger voltage value becomes heavier, the output power becomes larger even if the load current is the same, and the current of the switching element also increases.

本発明は、上記の点に鑑み、出力トランスの二
次側出力電力の総和に比例した合成検出電圧を利
用してスイツチング素子のオン期間又はオフ期間
あるいは動作周波数を可変制御することにより、
スイツチング素子の過電流を確実に防止し、しか
も過負荷とならない範囲の限界まで効果的に作動
させることが可能な多出力スイツチング電源を提
供しようとするものである。
In view of the above points, the present invention variably controls the on period or off period or operating frequency of the switching element using a composite detection voltage proportional to the sum of the secondary side output power of the output transformer.
It is an object of the present invention to provide a multi-output switching power supply that can reliably prevent overcurrent of a switching element and can operate effectively to the limit of the range that does not result in overload.

以下、本発明に係る多出力スイツチング電源の
実施例を図面に従つて説明する。
Embodiments of the multi-output switching power supply according to the present invention will be described below with reference to the drawings.

第2図は本発明の第1実施例を示す。この図に
おいて、出力トランス10はタツプ付の一次巻線
10Aと、二次側に複数の出力巻線10B,10
Cとを有しており、スイツチングトランジスタQ
のコレクタは一次巻線10Aの一端に接続されて
いる。また、一次巻線10Aの他端とトランジス
タQのエミツタとの間にダイオードD3が接続さ
れる。入力端子X,Y間には交流入力電圧が供給
され、これは全波整流器11で整流され、コンデ
ンサC3で平滑された後、一次巻線10Aのタツ
プとトランジスタQのエミツタとの間に給電さ
れ、トランジスタQのスイツチング動作により断
続される。この結果、出力トランス10の一次巻
線10Aは矩形波パルス電圧により励磁され、二
次側の出力巻線10B,10Cには所定の巻線比
に応じて矩形波パルス電圧が誘起される。出力巻
線10BにはダイオードD4,D5、チヨークコイ
ルCH1及びコンデンサC4からなる整流平滑回路が
接続され、出力巻線10CにはダイオードD6
D7、チヨークコイルCH2及びコンデンサC5から
なる整流平滑回路が同様に設けられている。ここ
で、チヨークコイルCH1,CH2は相互に磁気的に
密結合されている。これは、一方の出力の負荷が
重く、他方が無負荷のような場合にも同じ割合で
電圧降下が生じるようにして、一方の出力の安定
化制御を行えば、他方もこれに準じて安定化され
るようにするためである。前記各整流平滑回路の
直流出力は夫々出力端子P1,N1間及びP2,N2
に導出される。ただし、出力端子N1,N2に接続
される負側線路12,13には夫々抵抗器R1
R2が挿入されている。この抵抗器R1,R2の一端
(非接地側)と誤差増幅器14の一方の入力端と
の間に夫々抵抗器R1S,R2Sが接続される。誤差増
幅器14の他方の入力端には基準電圧源15が接
続されており、誤差増幅器14の出力に応じて、
スイツチングトランジスタQのオン期間又はオフ
期間あるいは動作周波数が可変制御されるように
なつている。なお、図示していないが、別の誤差
増幅器が直流出力の安定化のために設けられてお
り、例えば出力端子P1,N1間の定格出力電圧E1
が一定で、出力端子P2,N2間の定格出力電圧E2
もほぼ安定した状態に制御されるものとする。
FIG. 2 shows a first embodiment of the invention. In this figure, an output transformer 10 has a primary winding 10A with a tap, and a plurality of output windings 10B, 10 on the secondary side.
C, and a switching transistor Q
The collector of is connected to one end of the primary winding 10A. Further, a diode D3 is connected between the other end of the primary winding 10A and the emitter of the transistor Q. An AC input voltage is supplied between input terminals X and Y, and after being rectified by a full-wave rectifier 11 and smoothed by a capacitor C3 , power is supplied between the tap of the primary winding 10A and the emitter of the transistor Q. and is turned on and off by the switching operation of transistor Q. As a result, the primary winding 10A of the output transformer 10 is excited by the rectangular wave pulse voltage, and a rectangular pulse voltage is induced in the secondary output windings 10B and 10C according to a predetermined winding ratio. A rectifying and smoothing circuit consisting of diodes D 4 and D 5 , a choke coil CH 1 and a capacitor C 4 is connected to the output winding 10B, and a diode D 6 and a capacitor C 4 are connected to the output winding 10C.
A rectifying and smoothing circuit consisting of D 7 , a chiyoke coil CH 2 and a capacitor C 5 is similarly provided. Here, the chiyoke coils CH 1 and CH 2 are closely magnetically coupled to each other. This means that even if one output is heavily loaded and the other is unloaded, the voltage drop will occur at the same rate, and if one output is stabilized, the other will be stabilized accordingly. This is to ensure that the The DC output of each of the rectifying and smoothing circuits is led out between output terminals P 1 and N 1 and between output terminals P 2 and N 2 , respectively. However, the negative side lines 12 and 13 connected to the output terminals N 1 and N 2 have resistors R 1 and 13 , respectively.
R 2 is inserted. Resistors R 1S and R 2S are connected between one end (non-grounded side) of the resistors R 1 and R 2 and one input end of the error amplifier 14, respectively. A reference voltage source 15 is connected to the other input terminal of the error amplifier 14, and depending on the output of the error amplifier 14,
The on period, off period, or operating frequency of the switching transistor Q is variably controlled. Although not shown, another error amplifier is provided to stabilize the DC output, for example, the rated output voltage E 1 between the output terminals P 1 and N 1
is constant, and the rated output voltage E 2 between output terminals P 2 and N 2
is assumed to be controlled to a nearly stable state.

以上の構成において、出力トランス10の二次
側の出力電力の総和P0は、抵抗器R1,R2に流れ
る電流をI1,I2としたとき次式で示される。
In the above configuration, the sum P 0 of output power on the secondary side of the output transformer 10 is expressed by the following equation, where the currents flowing through the resistors R 1 and R 2 are I 1 and I 2 .

E1I1+E2I2=P0 …(1) また、アース電位を零としたとき、誤差増幅器
14の一方の入力端の電位を−Eioとすると、
R1,R2≫R1S、R2Sなる条件下では Eio=R2SR1I1+R1SR2I2/R1S+R2S …(2) が成立する。ここで、R1,R2,R1S,R2Sの抵抗
値をうまく設定すると、 P0∝Eio …(3) なる関係を得ることができる。この(3)式の成立す
るための条件は次式で示される通りであり、 R2SR1/E1≒R1SR2/E2 …(4) この(4)式を満足させれば、EioはP0に正比例した
合成検出電圧となる。この場合、E1,E2は設計
段階で既知であるから、R1,R2,R1S,R2Sの値
を(4)式が成立するように設定することは容易であ
る。
E 1 I 1 +E 2 I 2 =P 0 (1) Also, when the ground potential is zero, and the potential of one input terminal of the error amplifier 14 is -Eio,
Under the condition that R 1 , R 2 ≫ R 1S , R 2S , Eio=R 2S R 1 I 1 + R 1S R 2 I 2 /R 1 S+R 2S (2) holds true. Here, if the resistance values of R 1 , R 2 , R 1S , and R 2S are appropriately set, the following relationship can be obtained: P 0 ∝Eio (3). The conditions for formula (3) to hold are as shown in the following formula: R 2S R 1 /E 1 ≒R 1S R 2 /E 2 ...(4) If formula (4) is satisfied, , Eio becomes a composite detection voltage directly proportional to P 0 . In this case, since E 1 and E 2 are known at the design stage, it is easy to set the values of R 1 , R 2 , R 1S , and R 2S so that equation (4) holds true.

従つて、誤差増幅器14の他方の入力端へ印加
される基準電圧源15よりの基準電圧−EREFを、
取出し得る最大電力Pomaxのときの−Eioに一致
させれば、誤差増幅器14は二次側出力電力の総
和P0が最大電力Pomaxを超えた時点で作動し、
トランジスタQのオン期間を短く、又はオフ期間
を長く、又は動作周波数を高くする方向に制御
し、トランジスタQの過電流を防止する。
Therefore, the reference voltage -E REF from the reference voltage source 15 applied to the other input terminal of the error amplifier 14 is
If it matches -Eio when the maximum extractable power Pomax is reached, the error amplifier 14 is activated when the sum P0 of the secondary side output power exceeds the maximum power Pomax,
Overcurrent of the transistor Q is prevented by controlling the on period of the transistor Q to be shortened, the off period to be lengthened, or the operating frequency to be increased.

前記(4)式において、さらにR1S≒R2Sに設定した
場合には E1/R1≒E2/R2 …(5) が得られる。この(5)式の条件によれば、各抵抗器
の値の設定を極めて容易に実行できる利点があ
る。
In the above equation (4), when R 1S ≈R 2S is further set, E 1 /R 1 ≈E 2 /R 2 (5) is obtained. According to the condition of equation (5), there is an advantage that the value of each resistor can be set extremely easily.

さらに、(4)式を満足させると共に、次式 R1I2 10R2I2 20 …(6) (但し、I10はI1の最大定格電流、I20はI2の最大定
格電流)を満足させれば、最大定格動作時におけ
る抵抗器R1,R2の消費電力を同一にでき、抵抗
器R1,R2の電力容量を同じにできる。また、こ
の場合には各出力の効率を均一化できる利点もあ
る。
Furthermore, while satisfying formula (4), the following formula R 1 I 2 10 R 2 I 2 20 ...(6) (However, I 10 is the maximum rated current of I 1 , I 20 is the maximum rated current of I 2 ) If these are satisfied, the power consumption of the resistors R 1 and R 2 during maximum rated operation can be made the same, and the power capacities of the resistors R 1 and R 2 can be made the same. Further, in this case, there is an advantage that the efficiency of each output can be made uniform.

以上説明したように、上記第1実施例によれ
ば、誤差増幅器14は、出力トランス10の二次
側出力電力の総和P0が最大電力Pomaxを超えた
とき動作し、各出力に接続された負荷の軽、重に
は影響されないから、いかなる場合にも確実にス
イツチングトランジスタQの過電流を防止し、こ
れの保護ができる。また、過負荷とならない範囲
の限界までトランジスタQを効果的に動作させ得
る利点もある。
As explained above, according to the first embodiment, the error amplifier 14 operates when the sum P 0 of the secondary output power of the output transformer 10 exceeds the maximum power Pomax, and Since it is not affected by light or heavy loads, overcurrent of the switching transistor Q can be reliably prevented and protected in any case. Another advantage is that the transistor Q can be effectively operated to the limit without overloading.

第3図は本発明の第2実施例を示す。この図に
おいて、出力トランス10の二次側の出力巻線1
0BにはダイオードD8及びコンデンサC6の整流
平滑回路が、出力巻線10CにはダイオードD9
及びコンデンサC7の整流平滑回路が夫々接続さ
れている。出力巻線10B側の整流出力は出力端
子P3,N間に導出されて負荷RL1に供給される。
ただし、出力端子P3に接続された正側線路20
には抵抗器R3が挿入されている。出力巻線10
C側の整流出力は出力端子P4,P3間に導出され、
この結果、負荷RL2には両方の整流出力の和が供
給される。ただし、出力巻線10Cと出力端子
P3との間の負側線路21には抵抗器R4が挿入さ
れている。そして、抵抗器R3の一端は誤差増幅
器14の一方の入力端に直結され、抵抗器R4
一端は基準電圧源15を介して誤差増幅器14の
他方の入力端に接続される。なお、出力トランス
10の一次側の回路は第2図の場合と同様であ
る。
FIG. 3 shows a second embodiment of the invention. In this figure, the output winding 1 on the secondary side of the output transformer 10
0B has a rectifying and smoothing circuit consisting of diode D 8 and capacitor C 6 , and output winding 10C has a diode D 9.
and a rectifying and smoothing circuit of capacitor C7 are connected respectively. The rectified output on the output winding 10B side is led out between the output terminals P 3 and N and supplied to the load R L1 .
However, the positive side line 20 connected to the output terminal P3
A resistor R3 is inserted in. Output winding 10
The rectified output on the C side is derived between output terminals P 4 and P 3 ,
As a result, the sum of both rectified outputs is supplied to the load R L2 . However, output winding 10C and output terminal
A resistor R 4 is inserted in the negative line 21 between it and P 3 . One end of the resistor R 3 is directly connected to one input end of the error amplifier 14 , and one end of the resistor R 4 is connected to the other input end of the error amplifier 14 via the reference voltage source 15 . The circuit on the primary side of the output transformer 10 is the same as that shown in FIG.

以上の構成において、出力トランス10の二次
側の出力電力の総和P0は、抵抗器R3、負荷RL1
RL2に夫々流れる電流をI3,LL1,LL2、負荷RL1
RL2の両端の電圧をE3,EL2としたとき、次式で
示される。
In the above configuration, the sum P 0 of the output power on the secondary side of the output transformer 10 is determined by the resistor R 3 , the load R L1 ,
The current flowing through R L2 is I 3 , L L1 , L L2 , load R L1 ,
When the voltages across R L2 are E 3 and E L2 , it is expressed by the following equation.

P0=E3IL1+EL2IL2=E3I3+E4IL2 …(7) (但し、E4はP4,P3間の電圧) また、基準電圧源15の負側端と誤差増幅器1
4の一方の入力端との間の電位差−Eioは Eio=R3I3+F4IL2 …(8) となる。従つて、前述の(3)式のように合成検出電
圧としてのEioがP0に正比例する条件は R3/E3≒R4/E4 …(9) となる。従つて、基準電圧源15の基準電圧−
EREFを、取出し得る最大電力Pomaxのときの−
Eioに一致させれば、誤差増幅器14は二次側出
力電力の総和P0が最大電力Pomaxを越えた時点
で動作し、トランジスタQに過電流が流れないよ
うに制御する。
P 0 = E 3 I L1 + E L2 I L2 = E 3 I 3 + E 4 I L2 …(7) (However, E 4 is the voltage between P 4 and P 3 ) Also, the negative side end of the reference voltage source 15 and error amplifier 1
The potential difference −Eio between the input terminal and one of the input terminals of 4 is Eio=R 3 I 3 +F 4 I L2 (8). Therefore, the condition that Eio as the composite detection voltage is directly proportional to P 0 as in the above-mentioned equation (3) is R 3 /E 3 ≈R 4 /E 4 (9). Therefore, the reference voltage of the reference voltage source 15 -
- When E REF is the maximum power Pomax that can be extracted
If Eio is made to match Eio, the error amplifier 14 operates when the sum P 0 of the secondary side output power exceeds the maximum power Pomax, and controls the transistor Q so that no overcurrent flows.

以上説明したように、出力トランスの二次側の
各出力における出力電流を直列抵抗により検出
し、抵抗回路によつて前記出力電流に対応する検
出電圧を合成した合成検出電流Eioが、各出力電
圧におおよそ比例した係数と、各出力電流との積
の総和、すなわちEioΣKi・Ii(ただし、Ki
A・Eiで、Kiは抵抗回路の伝達抵抗、Aは定数、
Eiは各定格出力電圧、Iiは各出力電流)であるよ
うになし、この合成検出電圧Eioを用いてスイツ
チング素子を制御しているので、スイツチング素
子を過電流から確実に保護し、しかも過負荷とな
らない範囲の限界まで効果的に作動させることが
可能な多出力スイツチング電源を得ることができ
る。
As explained above, the output current at each output on the secondary side of the output transformer is detected by a series resistor, and the composite detection current Eio, which is obtained by synthesizing the detection voltages corresponding to the output currents using a resistor circuit, is calculated at each output voltage. The sum of the products of the coefficient roughly proportional to each output current, that is, EioΣKi・Ii (however, Ki
In A・Ei, Ki is the transmission resistance of the resistance circuit, A is a constant,
Ei is each rated output voltage, Ii is each output current), and this composite detection voltage Eio is used to control the switching elements, so the switching elements are reliably protected from overcurrents and are also protected against overloads. It is possible to obtain a multi-output switching power supply that can be effectively operated to the limit of the range in which it does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多出力スイツチング電源の一例
を示す回路図、第2図は本発明に係る多出力スイ
ツチング電源の第1実施例を示す回路図、第3図
は第2実施例を示す回路図である。 10…出力トランス、10A…一次巻線、10
B,10C…出力巻線、14…誤差増幅器、15
…基準電圧源、C1乃至C7…コンデンサ、D1乃至
D9…ダイオード、CH1,CH2…チヨークコイル、
Q…トランジスタ、R1乃至R4,R1S,R2S…抵抗
器。
Fig. 1 is a circuit diagram showing an example of a conventional multi-output switching power supply, Fig. 2 is a circuit diagram showing a first embodiment of the multi-output switching power supply according to the present invention, and Fig. 3 is a circuit diagram showing a second embodiment. It is a diagram. 10...Output transformer, 10A...Primary winding, 10
B, 10C...Output winding, 14...Error amplifier, 15
…Reference voltage source, C 1 to C 7 … Capacitor, D 1 to
D 9 ...diode, CH 1 , CH 2 ...chiyoke coil,
Q...Transistor, R1 to R4 , R1S , R2S ...Resistor.

Claims (1)

【特許請求の範囲】 1 出力トランスの一次巻線にスイツチング回路
を設けて該出力トランスをパルス電圧で励磁し、
該出力トランスの二次側の複数の出力巻線に誘起
された交流電圧を夫々整流、平滑して複数の安定
化出力を得る多出力スイツチング電源において、
前記複数の出力の各出力電流を直列抵抗により検
出して抵抗回路によつて前記各出力電流に対応す
る検出電圧を合成した合成検出電圧(Eio)が、
各出力電圧におおよそ比例した係数と、各出力電
流との積の総和であるようになし、前記合成検出
電圧(Eio)を検出して、前記スイツチング回路
のスイツチング素子の過電流保護をなすように、
当該スイツチング素子のオン期間又はオフ期間あ
るいは動作周波数を可変制御することを特徴とす
る多出力スイツチング電源。 2 前記複数の出力の各出力電力に略比例した抵
抗損失となる如く前記直列抵抗の値を設定した特
許請求の範囲第1項記載の多出力スイツチング電
源。 3 前記複数の出力の最大定格電流出力時に、前
記各直列抵抗の抵抗損失が、夫々略等しくなる如
く当該直列抵抗の値を設定した特許請求の範囲第
1項記載の多出力スイツチング電源。
[Claims] 1. A switching circuit is provided in the primary winding of the output transformer to excite the output transformer with a pulse voltage,
In a multi-output switching power supply that obtains a plurality of stabilized outputs by rectifying and smoothing alternating current voltages induced in a plurality of output windings on the secondary side of the output transformer,
A composite detection voltage (Eio) is obtained by detecting each output current of the plurality of outputs using a series resistor and synthesizing the detection voltages corresponding to each of the output currents using a resistor circuit.
The combined detection voltage (Eio) is set to be the sum of the products of a coefficient roughly proportional to each output voltage and each output current, and the combined detection voltage (Eio) is detected to provide overcurrent protection for the switching element of the switching circuit. ,
A multi-output switching power supply characterized in that the on period or off period or operating frequency of the switching element is variably controlled. 2. The multi-output switching power supply according to claim 1, wherein the value of the series resistor is set so that the resistance loss is approximately proportional to the output power of each of the plurality of outputs. 3. The multi-output switching power supply according to claim 1, wherein the values of the series resistors are set so that the resistance losses of the series resistors are approximately equal when the plurality of outputs output maximum rated currents.
JP11881581A 1981-07-29 1981-07-29 Multioutput switching power source Granted JPS5819921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11881581A JPS5819921A (en) 1981-07-29 1981-07-29 Multioutput switching power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11881581A JPS5819921A (en) 1981-07-29 1981-07-29 Multioutput switching power source

Publications (2)

Publication Number Publication Date
JPS5819921A JPS5819921A (en) 1983-02-05
JPS634421B2 true JPS634421B2 (en) 1988-01-28

Family

ID=14745816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11881581A Granted JPS5819921A (en) 1981-07-29 1981-07-29 Multioutput switching power source

Country Status (1)

Country Link
JP (1) JPS5819921A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157615A (en) * 1984-01-27 1985-08-17 Fujitsu Ltd Neutral point direct grounding type constant current circuit
US4586119A (en) * 1984-04-16 1986-04-29 Itt Corporation Off-line switching mode power supply
JPH0326283U (en) * 1989-07-21 1991-03-18
JP5195603B2 (en) * 2009-04-15 2013-05-08 株式会社デンソー DCDC converter control device and control system
US8814327B2 (en) 2011-07-01 2014-08-26 Canon Kabushiki Kaisha Power supply apparatus and printing apparatus

Also Published As

Publication number Publication date
JPS5819921A (en) 1983-02-05

Similar Documents

Publication Publication Date Title
JP2002199718A (en) Resonance-type switching power supply device
JPH08182311A (en) Voltage converter and electric current control method in voltage converter
US5363323A (en) Power supply with plural outputs supplying dynamic and steady loads
US6208530B1 (en) Switching power supply device having main switching element period control circuit
JPS634421B2 (en)
JP2005261112A (en) Dc-dc converter
EP0665632B1 (en) Switching power source apparatus
JPH0662568A (en) Switching power device
US6449176B1 (en) Switching power supply having an operational amplifier control circuit
JP3096229B2 (en) Switching power supply
JPH0255574A (en) Switching converter
JPH08126313A (en) Switching power source
JPH0261232B2 (en)
JP3447975B2 (en) Switching power supply circuit
JP7083093B2 (en) Transformer power circuit
JP3027284B2 (en) Switching power supply
JP3387022B2 (en) Switching power supply
JP3129036B2 (en) Switching power supply
JPH08266044A (en) Rcc type switching power supply
JP2672333B2 (en) Constant current input type DC / DC converter
KR200194964Y1 (en) Switching mode power supply
JP2000116130A (en) Mean value rectifier circuit and switching power circuit
JPH07264847A (en) Dc-dc converter
JP2577315Y2 (en) Switching regulator
JPH0549245A (en) Overcurrent protective circuit for power supply circuit