JPS63441A - Cold pulling-off re-sulfurizing and re-phosphorizing cuttingrod steel having adjusted mechanical property and cutting property - Google Patents
Cold pulling-off re-sulfurizing and re-phosphorizing cuttingrod steel having adjusted mechanical property and cutting propertyInfo
- Publication number
- JPS63441A JPS63441A JP62143441A JP14344187A JPS63441A JP S63441 A JPS63441 A JP S63441A JP 62143441 A JP62143441 A JP 62143441A JP 14344187 A JP14344187 A JP 14344187A JP S63441 A JPS63441 A JP S63441A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- sulfur
- manganese
- niobium
- steel bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 58
- 239000010959 steel Substances 0.000 title claims description 58
- 238000005520 cutting process Methods 0.000 title description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 52
- 239000011593 sulfur Substances 0.000 claims description 52
- 229910052717 sulfur Inorganic materials 0.000 claims description 52
- 239000010955 niobium Substances 0.000 claims description 47
- 239000011572 manganese Substances 0.000 claims description 40
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 39
- 229910052758 niobium Inorganic materials 0.000 claims description 38
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 35
- 229910052748 manganese Inorganic materials 0.000 claims description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 239000011651 chromium Substances 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910000915 Free machining steel Inorganic materials 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052797 bismuth Inorganic materials 0.000 claims description 10
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000010622 cold drawing Methods 0.000 claims description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052714 tellurium Inorganic materials 0.000 claims description 7
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052845 zircon Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 12
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000742 Microalloyed steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- QFGIVKNKFPCKAW-UHFFFAOYSA-N [Mn].[C] Chemical compound [Mn].[C] QFGIVKNKFPCKAW-UHFFFAOYSA-N 0.000 description 1
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- FEXCMMPRRBSCRG-UHFFFAOYSA-N hexasulfur Chemical compound S1SSSSS1 FEXCMMPRRBSCRG-UHFFFAOYSA-N 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 244000145841 kine Species 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Extraction Processes (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Luminescent Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は快削性の再浸硫(resulfurized)
および再漫Pi (rephosphorized)さ
れた冷間引抜き棒鋼に関するものであり、さらに詳しく
は、調整された化学的性質を有し、かつその降伏強さが
調整された化学組成によるのみでなく熱間圧延後の棒鋼
の寸法ならびに棒鋼の絞りに用いる圧下量によっても決
定される棒鋼に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a free-cutting resulfurized
and rephosphorized cold-drawn steel bars, more particularly having controlled chemical properties and whose yield strength is not only due to controlled chemical composition but also due to hot rolling. This relates to a steel bar that is determined by the subsequent dimensions of the bar and the amount of reduction used in drawing the bar.
本発明の主な目的は、冷間引抜き快削性棒鋼において、
棒鋼の機械的性質、とくに降伏強さが、棒鋼の化学組成
と、棒鋼の寸法、断面および適用される圧下率にもとづ
いて決定されろような棒鋼を提供するにある。The main object of the present invention is to provide cold-drawn free-cutting steel bars,
The object of the present invention is to provide a steel bar whose mechanical properties, in particular its yield strength, are determined on the basis of its chemical composition, its dimensions, cross section and applied reduction.
本発明の他の目的は、冷間引抜き棒鋼において、化学組
成中の構成成分比を捧泪の寸法に応じて最適にするに際
して棒鋼の降伏強さを希望する加工に適合させる手段を
提供する、ニオブの量を調整するのに応じて炭素量が減
少される快削性冷間引抜き棒鋼を提供するにある。Another object of the present invention is to provide a means for adapting the yield strength of a cold-drawn steel bar to desired processing when optimizing the ratio of constituent components in the chemical composition according to the dimensions of the steel bar. An object of the present invention is to provide a free-cutting cold-drawn steel bar in which the amount of carbon is reduced by adjusting the amount of niobium.
本発明の別の目的は、冷間引抜き快削性棒鋼において、
被削性を向上させるのに必要な性質が、化学組成と棒鋼
の物理的形状とによって最適にされている冷間引抜き快
削性棒鋼を提供するにある。Another object of the present invention is to provide a cold-drawn free-cutting steel bar,
The objective is to provide a cold-drawn free-cutting steel bar in which the properties necessary to improve machinability are optimized by the chemical composition and the physical shape of the bar.
本発明のさらに別の目的は、鋼化学条件、製鋼条件、冷
間引抜き条件、及び切削条件の間の関係を最適にするこ
とによって提供される優れた被削性を有する再浸硫およ
び再浸燐された快削性鋼棒を提供することである。Yet another object of the present invention is to provide re-sulfurization and re-soaking with superior machinability provided by optimizing the relationship between steel chemistry, steelmaking conditions, cold drawing conditions, and cutting conditions. An object of the present invention is to provide a phosphorized free-cutting steel bar.
本発明のもう一つの目的は、炭素鋼、マンガン鋼、再浸
硫および再浸燐鋼、ミクロ合金鋼(micr。Another object of the invention is carbon steel, manganese steel, re-sulfurized and re-phosphorized steel, micro-alloy steel (MICR).
allayed 5teel)および高張力鋼に適用さ
れ、かつ棒鋼の化学的特性および棒鋼寸法ならびに棒鋼
の製鋼法を利用する冷間引抜き快削性棒鋼製作法を提供
するにある。The object of the present invention is to provide a cold-drawn free-cutting steel bar production method that is applied to allied 5teel) and high-strength steel, and utilizes the chemical properties of the steel bar, the bar dimensions, and the steel bar manufacturing method.
本発明のさらにもう一つの目的は、マンガン、硫黄およ
びニオブ(Columbium)の量と比、および冷間
引抜き時の変形量と変形形状とが最適な被削性を与える
ように調整された冷間引抜き快削性棒鋼を提供するにあ
る。Still another object of the present invention is to provide a cold drawing material in which the amounts and ratios of manganese, sulfur and niobium (Columbium), and the deformation amount and deformed shape during cold drawing are adjusted so as to give optimum machinability. The purpose is to provide free-cutting steel bars that can be drawn.
本発明のその他の目的は下記の明細書ならびに特許請求
の範囲により明確にされるものである。Other objects of the invention will become apparent from the following specification and claims.
硫黄、鉛、ビスマス、テルルおよびセレンのようなある
種の元素がスチールの被削性改善に有用があることは公
知である。被削性は複雑であり、十分に理解された性質
ではない。合金を、シングルポイントターニング、フォ
ーミング、ドリリング、リーミング、ポーリング、シェ
ービング、およびねじ切りのような作業において、切削
工具を用いて切削する時の挙動から、合金組成の影響、
金属加工片の塑性変形および切削力学が容易に制別でき
ないことにも問題がある。また通常の非定常状態の引張
り実験から得られる試験結果と生産工程での切削から導
かれる切断力データから得られる結果との間に、材料の
挙動に対する現在の知識からではギャップがある。It is known that certain elements such as sulfur, lead, bismuth, tellurium and selenium are useful in improving the machinability of steel. Machinability is a complex and not well understood property. The influence of alloy composition, from the behavior of alloys when they are cut with cutting tools in operations such as single point turning, forming, drilling, reaming, poling, shaving, and thread cutting.
Another problem is that the plastic deformation and cutting mechanics of metal workpieces cannot be easily controlled. There is also a gap in current knowledge of material behavior between test results obtained from normal unsteady state tensile experiments and results obtained from cutting force data derived from cutting during production processes.
化学組成を改変し、介在物の大きさ、形状、分布および
化学的組成を最適にすることにより、切粉の脆性を増大
し、且つ工具/切粉界面における潤滑性を増加して、快
削性棒鋼の被削性を改良する試みが長期間金属学者によ
って行われて来た。By modifying the chemical composition and optimizing the size, shape, distribution, and chemical composition of inclusions, we can increase the brittleness of chips and increase the lubricity at the tool/chip interface to improve free cutting. Attempts have been made by metallurgists for a long time to improve the machinability of steel bars.
さらに、棒鋼内における摩耗性粒子及びミクロ構造の生
成を防止することが望まれている。例えば、被削性改善
の目的のために、再漫硫および再漫燐快削性棒鋼におい
て、ビスマスとテルル(米国特許第4,230,939
号)、鉛、ビスマス、およびテルルおよび/または硫黄
(米国特許第4,244,737号)、テルルおよび硫
黄(米国特許第4,279.646号)のような1個以
上の元素の量を変化することが行われている。しかしな
がら、かかる製品では、快削性棒鋼の被削性を向上させ
るニーズを完全に満足していない。被削性向上のために
、従来は、化学組成、冷間加工における圧下または寸法
収縮率、棒鋼の寸法及び断面を最適にするというよりは
、むしろ化学組成に対してとくに努力が払われて来た。Additionally, it is desirable to prevent the formation of abrasive particles and microstructures within the steel bar. For example, bismuth and tellurium (U.S. Pat. No. 4,230,939
), lead, bismuth, and tellurium and/or sulfur (U.S. Pat. No. 4,244,737), tellurium and sulfur (U.S. Pat. No. 4,279,646). Change is being done. However, such products do not completely satisfy the need for improving the machinability of free-cutting steel bars. In order to improve machinability, special efforts have traditionally been made on the chemical composition, rather than optimizing the reduction or dimensional shrinkage rate during cold working, the dimensions and cross-section of the steel bar. Ta.
本発明は、化学成分とくにマンガン、硫黄およびニオブ
の最適比と、冷間加工量並びに棒鋼の最適寸法と及び最
適断面と組合せることにより、被削性を向上させること
をとくに指向したものである。従って、本発明において
は、棒鋼の化学組成、圧下、寸法および断面が、切削加
工にとくに適合するように調整されたものである。The present invention is particularly directed to improving machinability by combining the optimum ratio of chemical components, particularly manganese, sulfur and niobium, the amount of cold work and the optimum dimensions and cross section of the steel bar. . Therefore, in the present invention, the chemical composition, rolling reduction, dimensions, and cross section of the steel bar are adjusted to be particularly suitable for cutting.
本発明の冷間引抜き快削性再漫硫および再浸燐棒鋼は、
0.08重量%までの炭素:0.6重量%ないし1.4
重量%のマンガン;0.1重量%までのケイ素;少なく
とも0.3重量%のリン; 0.25重量%ないし0.
50重量%の硫黄;0.01重量%ないし0.10重量
%のニオブ;0.1重量%までのバナジウム;ニッケル
、クロム、モリブデンおよび銅の合計量が0.15重量
%までで残部が鉄からなる化学に、fl成を有するもの
である。マンガン、硫黄およびニオブの比は、適切な化
学的特性を有する棒鋼を得、かつかかる棒鋼の降伏強さ
を予測する上でとくに重要である。従って、(マンガン
の重量%)/(硫黄の重量%)の比は1.6ないし4.
0であり、〔(マンガンの重量%)−1,62X(硫黄
の重量%)〕/(ニオブの重量%)の比は2ないし50
である。The cold-drawn free-cutting re-sulfurized and re-phosphorized steel bar of the present invention is
Carbon up to 0.08% by weight: 0.6% to 1.4% by weight
% by weight of manganese; up to 0.1% by weight of silicon; at least 0.3% by weight of phosphorus; 0.25% by weight to 0.5% by weight;
50% by weight sulfur; 0.01% to 0.10% niobium; up to 0.1% vanadium; total amount of nickel, chromium, molybdenum and copper up to 0.15% by weight, balance iron. The chemistry consists of fl composition. The ratio of manganese, sulfur and niobium is particularly important in obtaining steel bars with appropriate chemical properties and predicting the yield strength of such bars. Therefore, the ratio of (wt% manganese)/(wt% sulfur) is between 1.6 and 4.
0, and the ratio of [(wt% manganese) - 1,62X (wt% sulfur)]/(wt% niobium) is 2 to 50.
It is.
棒鋼の降伏強さ、従ってその被削性は原材料、寸法およ
び圧下によって決定される。原)オ料は、圧延機から得
られる製品の種類を考慮して、熱間圧延コイル、直径が
約5cm(2インチ)までの熱間圧延棒、および直径が
少なくとも約5cm(2インチ)の熱間圧延棒であるこ
とができる。特定の寸法に熱間圧延され、そして適当な
長さに切断された原材料は、ついで冷間引抜きされる。The yield strength of a steel bar, and therefore its machinability, is determined by the raw material, dimensions and reduction. The raw materials are hot rolled coils, hot rolled bars up to about 5 cm (2 inches) in diameter, and hot rolled bars at least about 5 cm (2 inches) in diameter, taking into account the types of products obtained from the rolling mill. It can be a hot rolled bar. The raw material, hot rolled to specific dimensions and cut to the appropriate length, is then cold drawn.
冷間引抜きにおける圧下または寸法収縮率も、最終製品
である棒鋼の降伏強さを決定する上において臣めて重要
である。The reduction or dimensional shrinkage rate during cold drawing is also important in determining the yield strength of the final product, the steel bar.
0.08重−%までの岸、
棒鋼の化学組成中の各種化学元素の役割と、棒鋼の被削
性と挙動とに対するこれら元素の影ひを考慮して、冷間
引抜きと切削とが行われる棒鋼の加工硬化とひずみ硬化
とを低く抑えるためには、低炭素量が必須条件である。Cold drawing and cutting are carried out taking into account the role of various chemical elements in the chemical composition of the steel bar and the influence of these elements on the machinability and behavior of the steel bar. In order to keep the work hardening and strain hardening of steel bars to a low level, a low carbon content is an essential condition.
低炭素量は再及鋸旦圭チ再慢虜捧鋼の強度を低くし、ニ
ッケル、クロム、モリブデンおよび銅のような残余の元
素の合計量が0.15重量%を超えないようにすること
と組合わせることにより、工具−加工片界面に生成する
切粉の延性が相対的に低く、かつ脆性が高い製品が得ら
れる。残余の元素が前記の特定した量より増え、炭素が
前記の特定した量より減すると、快削性製品にとって不
利となり、切粉の延性が上昇し、脆性が低下する。さら
に炭素量が0.08重重量を超えて増えると、磨耗性粒
子が増加し、破面応力が増加する可能性が増え、そして
とくに六辺形の冷間引抜き棒鋼の表面硬度を上昇させる
。The low carbon content reduces the strength of the steel and ensures that the total amount of residual elements such as nickel, chromium, molybdenum and copper does not exceed 0.15% by weight. By combining this, a product with relatively low ductility of chips generated at the tool-workpiece interface and high brittleness can be obtained. If the remaining elements increase above the specified amount and carbon decreases below the specified amount, this will be detrimental to the free-cutting product, increasing the ductility and decreasing the brittleness of the chips. Furthermore, increasing the carbon content above 0.08 wt.w.w. increases the abrasive particles, increases the possibility of increasing fracture stress, and increases the surface hardness, especially of hexagonal cold drawn steel bars.
0.6重−%ないし1.4重−0%のマンガン特定され
たマンガン量は、工具の寿命に影響を与える硫化マンガ
ン(MnS)を主成分とする介在物を生成するうえで重
要である。マンガンは、冷間引抜き棒鋼の硬化性を促進
し且つ強度を高める。The identified manganese content of 0.6 wt-% to 1.4 wt-0% manganese is important for the formation of manganese sulfide (MnS)-based inclusions that affect tool life. . Manganese promotes the hardenability and increases the strength of cold drawn steel bars.
特定の棒鋼における実際のマンガンの仕様は、熱間圧延
棒鋼の径、棒鋼に要求される機械的性質および指示され
た切削法に依存する。マンガン含量は棒鋼の寸法が大き
くなるにつれて増加し、降伏強さの目標値の上昇につれ
て増加する。The actual manganese specification in a particular bar will depend on the diameter of the hot rolled bar, the required mechanical properties of the bar and the cutting method prescribed. The manganese content increases as the steel bar size increases and as the target value of yield strength increases.
0、1重 %までのケイ 、
ケイ素含量が増加するに従い最終製品中の磨耗性ケイ酸
塩の量が実質的に増加するので、ケイ素量は0.1重量
%までに制限する必要がある。Silicon up to 0.1% by weight The amount of silicon should be limited to 0.1% by weight since as the silicon content increases the amount of abrasive silicate in the final product increases substantially.
0.25 %ないし0.50重 %の6雀硫黄はMn
S介在物の生成にも必要であり、この理由で硫黄含量は
少なくとも0.25重量%にする必要がある。特定の棒
鋼に対する硫黄の特別な仕様は、棒鋼の寸法とマンガン
含量とに依存する。0.25% to 0.50% by weight of hexasulfur is Mn
It is also necessary for the formation of S inclusions, and for this reason the sulfur content should be at least 0.25% by weight. The specific specification of sulfur for a particular bar will depend on the bar dimensions and manganese content.
最低の硫黄含量は原材料として熱間圧延コイルを用いた
ときに適用されるが、しかし約5600kg/aa(約
80ksi)までの高い降伏強さを有する径の大きい冷
間引抜き棒鋼に対しては最高の硫黄含量が必要である。The lowest sulfur content applies when hot rolled coil is used as the raw material, but the highest sulfur content applies for large diameter cold drawn steel bars with high yield strengths up to approximately 5600 kg/aa (approximately 80 ksi). sulfur content is required.
過剰の硫黄は熱間脆性を増し、延性を低めるので、本発
明の製品の硫黄量の上限は0.5重量%である。Since excess sulfur increases hot brittleness and reduces ductility, the upper limit for the amount of sulfur in the products of this invention is 0.5% by weight.
小なくとも0.03重 %のリン リンは仕上面の平滑度を向上させるために必要である。At least 0.03% phosphorus by weight Phosphorus is necessary to improve the smoothness of the finished surface.
しかしながら、リンは加工硬化を増加し、切削時に生ず
る切粉の硬度を高める。従って、強度の高い冷間引抜き
棒鋼においては、高速切削作業用においてこの種の棒鋼
に習慣的に添加されているリン量(通常0.09重量%
まで)よりも減少させる必要がある。However, phosphorus increases work hardening and increases the hardness of chips produced during cutting. Therefore, in high-strength cold-drawn steel bars, the amount of phosphorus (usually 0.09% by weight) customarily added to these types of bars for high-speed cutting operations is
up to).
0.01重9%ないし0.10 %のニオブ本発明の
棒鋼においては、強度を高め、棒鋼の肉厚によって機械
的性質を調整し、かつ切粉のじん性を低めるためにニオ
ブは必須の要素である。0.01wt 9% to 0.10% niobium In the steel bar of the present invention, niobium is essential in order to increase the strength, adjust the mechanical properties by adjusting the wall thickness of the steel bar, and reduce the toughness of chips. is an element.
ニオブの仕様は、降伏強さと棒鋼の寸法とにより異なる
。ニオブは、大きい径の冷間引抜き棒鋼の芯の硬化性を
促進し、加工硬化性を増大する。ニオブ含有棒鋼は、表
面強化を最低にし、芯を実質的に強化するために小さい
圧下で冷間引抜きを行なうことができる。しかし、含量
が特定された量より高くなると、ニオブの効果は強度を
過剰に増大させるので工具の寿命を減する。Niobium specifications vary depending on yield strength and bar dimensions. Niobium promotes core hardenability of large diameter cold drawn steel bars and increases work hardenability. Niobium-containing steel bars can be cold drawn at low reductions to minimize surface reinforcement and substantially strengthen the core. However, when the content is higher than the specified amount, the effect of niobium increases the strength too much and thus reduces the life of the tool.
0.1重−%までのバナジウム
バナジウムは棒鋼、とくに大きい径の冷間引抜き棒鋼の
表面から芯を通しての機械的性質を向上させる。バナジ
ウム含量が仕様量を超えると棒鋼の被削特性が低下する
。Vanadium Up to 0.1% by weight Vanadium improves the mechanical properties of steel bars, especially large diameter cold drawn steel bars, from the surface through the core. If the vanadium content exceeds the specified amount, the machining characteristics of the steel bar will deteriorate.
0.15重 %までのr7、−、
ニッケル、クロム、モリブデンおよび銅の残余の元素は
、これらが強度や延性を上昇させ、に純性粒子の生成を
促進し、これら全てが棒鋼の被削特性を劣化させるので
、一般的に前記元素は被削性に対し有害である。従って
、残余元素は、規定された範囲内に保つ必要がある。The residual elements of up to 0.15% by weight of nickel, chromium, molybdenum and copper increase strength and ductility, and promote the formation of fine grains, all of which contribute to the cutting of steel bars. Said elements are generally detrimental to machinability, as they degrade properties. Therefore, the residual elements must be kept within a specified range.
(マンガンの重量%)/(硫黄の重量%)の比は1.6
ないし4.0にする必要があり、この比が固溶体中のマ
ンガン量とFeS介在物量とを規定する。The ratio of (weight% of manganese)/(weight% of sulfur) is 1.6
4.0, and this ratio defines the amount of manganese and the amount of FeS inclusions in the solid solution.
マンガン、硫黄およ・、びニオブ間の関係を、〔(マン
ガンの重量%)−1,62x
(硫黄の重量%)〕/(ニオブの重量%)として規定し
たが、これは製品を強化する際のマンガンとニオブとの
相対寄与を規定するためである。マンガンはオーステナ
イト分解の熱力学的変化(changing kine
tics of austenite decompo
riticn)を介して強度に影響を及ぼし、ニオブは
粒径を滅じて析出硬化を促進する。熱間圧延製品の寸法
、冷間引抜き製品に絞る際の圧下量、および棒鋼の最終
用途における所要引張強さに応じて、前記の比の仕様が
変化する。The relationship between manganese, sulfur and niobium was defined as [(wt% manganese) - 1,62x (wt% sulfur)]/(wt% niobium), which strengthens the product. This is to define the relative contribution of manganese and niobium at the time. Manganese is a changing kine of austenite decomposition.
tics of austenite decompo
niobium reduces grain size and promotes precipitation hardening. Depending on the dimensions of the hot-rolled product, the amount of reduction in reduction to the cold-drawn product, and the required tensile strength of the bar for its final use, the specification of the ratios described above will vary.
記載した元素に加えて、下記の元素を1種以上添加する
ことにより被削性が改善される。Machinability is improved by adding one or more of the following elements in addition to the elements listed above.
0.03重量%ないし0.35重量%の鉛;0.005
重量%ないし0.05重量%のジルコン;0.05重量
%ないし0.25重量%のビスマス;0.03重量%な
いし0.15重量%の鉛と、0.05の鉛と、0.05
重量%ないし0.15重量%のビスマス;
0.006重量%ないし0.012重量%の窒素;0.
05重量%ないし0.25重量%のビスマスと、0.0
05重量%ないし0.05重量%のテルル。0.03% to 0.35% lead by weight; 0.005
0.05% to 0.25% bismuth; 0.03% to 0.15% lead; 0.05% lead; 0.05% by weight lead;
Bismuth from 0.15% by weight; 0.006% to 0.012% nitrogen; 0.
0.05% to 0.25% by weight bismuth and 0.0% to 0.25% by weight bismuth
05% to 0.05% by weight tellurium.
ジルコンは球状MS介在物生成を促進することにより被
削性を最高にするが、窒素はドリリング作業を容易する
切粉の脆性を促進する。Zircon maximizes machinability by promoting the formation of spherical MS inclusions, while nitrogen promotes chip brittleness that facilitates drilling operations.
以下の表は、マンガン、硫黄およびニオブの量と熱間圧
延原材料、すなわち熱間圧延コイル、径が約5国(2イ
ンチ)までの熱間圧延棒鋼、または径が少なくとも約5
(Jll(2インチ)の熱間圧延棒鋼との関係を説明す
るものである9表には、元素の特定の組合わせによって
得られる特定の製品に対する降伏強さを表わしている。The table below shows the amounts of manganese, sulfur and niobium in hot rolled raw materials, i.e. hot rolled coils, hot rolled steel bars up to about 5mm (2 inches) in diameter, or at least about 5mm in diameter.
Table 9, which explains the relationship of Jll (2 inch) to hot rolled steel bars, shows the yield strength for specific products obtained by specific combinations of elements.
約4200kg/ crl (60ksi)ないし約5
60 Qkg/crJ (80ks i)の範囲の降伏
強さを有する冷間引抜き棒鋼に加工されようとしている
熱間圧延コイルに適用できるように、第1表には、降伏
強さと、マンガン、ニオブ、硫黄の各重量%、ならびに
これら3元素の比についての関係が示しである。第2表
は、約5cm(2インチ)までの熱間圧延棒鋼に対する
マンガン、硫黄、ニオブの仕様に関し、且つ冷間引抜き
における棒鋼断面収縮率の降伏強さに及ぼす影否を示し
ている。第3表は径が少なくとも約5cm(2インチ)
の熱間圧延棒鋼に対しての、第2表と同類の内容を表わ
したものである。Approximately 4200kg/crl (60ksi) or approximately 5
As applicable to hot rolled coils that are to be processed into cold drawn steel bars with yield strengths in the range of 60 Q kg/crJ (80 ks i), Table 1 lists the yield strengths and values of manganese, niobium, The relationship for each weight percent of sulfur as well as the ratio of these three elements is shown. Table 2 shows manganese, sulfur, and niobium specifications for hot rolled steel bars up to about 5 cm (2 inches) and the effect of cross-sectional shrinkage of the bar during cold drawing on yield strength. Table 3 has a diameter of at least approximately 5 cm (2 inches)
This table shows the same contents as Table 2 for hot rolled steel bars.
≦ 4 ≦ ≦本発明に従っ
てつくられた製品の特定の例を以下に掲げる。≦ 4 ≦ ≦Specific examples of products made in accordance with the present invention are listed below.
大庭■上
炭素 0.06重量%まで
マンガン 0.6重量%ないし1.5重量%ケイ素
0.1重量%まで
リン 0.03重量%ないし0.06重量%
硫黄 0.25重量%ないし0.40重量%
ニオブ 0.01重量%ないし0.07重量%
を含む熱間圧延コイル鋼。ニッケル、クロム、モリブデ
ンおよび銅の合計量は0.15重量%までで、残余は鉄
である。Oba ■ Upper carbon Up to 0.06% by weight Manganese 0.6% to 1.5% by weight Silicon
Hot rolled coil steel containing up to 0.1% by weight phosphorus 0.03% to 0.06% by weight sulfur 0.25% to 0.40% by weight niobium 0.01% to 0.07% by weight. The total amount of nickel, chromium, molybdenum and copper is up to 0.15% by weight, the balance being iron.
〔(マンガン重量%)−1,62X(硫黄重量%)〕/
にオブ重量%)の比は2.0ないし22.5であり、(
マンガン重量%)/(硫黄重量%)の比は2.0ないし
3.5である。硫黄の重量%はさらに、希望する降伏強
さ(ksi)に(0,0042〜0.0054)を掛け
て決定される。[(manganese weight %) - 1,62X (sulfur weight %)] /
The ratio of (% by weight) is between 2.0 and 22.5;
The ratio of % manganese (wt%)/(wt% sulfur) is between 2.0 and 3.5. The weight percent sulfur is further determined by multiplying the desired yield strength (ksi) by (0,0042-0.0054).
尖隻尉主
炭素 0.OS重量%まで
マンガン 0.7重量%ないし1.30重量%ケイ素
0.1重量%まで
リン 0.03重量%ないし0.09重量%
硫黄 0.28重量%ないし0.50重重量
ニオブ 0.02重量%ないし0.08重量%
バナジウム 0.1重量%まで
を含む径が約5cm(2インチ)までの熱間圧延棒鋼。Senbune Yoshu Carbon 0. Manganese up to OS wt% 0.7 wt% to 1.30 wt% Silicon Phosphorus up to 0.1 wt% 0.03 wt% to 0.09 wt% Sulfur 0.28 wt% to 0.50 wt% Niobium 0. Hot rolled steel bars up to about 5 cm (2 inches) in diameter containing up to 0.1 wt% vanadium.
ニッケル、クロム、モリフ゛デンおよび1同の合計量は
0.15重量%までで、残余は鉄である。The total amount of nickel, chromium, molybdenum and the like is up to 0.15% by weight, the balance being iron.
〔(マンガン重量%)−1,62X(硫黄重量%)〕/
にオブ重量%)の比は4ないし51であり、(マンガン
重量%)/(硫黄重量%)の比は2.2ないし3.2で
ある。硫黄の重量%は、希望する降伏強さ(ksi)に
(0,0045〜0.0058)を掛けて決定される。[(manganese weight %) - 1,62X (sulfur weight %)] /
The ratio of (wt% manganese)/(wt% sulfur) is between 4 and 51, and the ratio (wt% manganese)/(wt% sulfur) is between 2.2 and 3.2. The weight percent sulfur is determined by multiplying the desired yield strength (ksi) by (0,0045-0.0058).
実財I津走
炭素 0.08重量%まで
マンガン 0.8重量%ないし1.4重量%ケイ素
0.1重量%まで
IJ 7 0.03重量%ないし0.9重量%硫
黄 0.3重量%ないし0.5重量%ニオブ
0.02重量%ないし0.10重量%
バナジウム 0.1重量%まで
を含む径が少なくとも約5cm(2インチ)の熱間圧延
棒鋼。Jitsai I Tsuhashi Carbon Manganese up to 0.08% by weight Silicon 0.8% to 1.4% by weight
up to 0.1% by weight IJ 7 0.03% to 0.9% by weight Sulfur 0.3% to 0.5% by weight Niobium
A hot rolled steel bar having a diameter of at least about 5 cm (2 inches) containing from 0.02% to 0.10% by weight up to 0.1% vanadium.
ニッケル、クロム、モリブデンおよび銅の合計量は0.
15重重量までであり、残余は鉄である。The total amount of nickel, chromium, molybdenum and copper is 0.
Up to 15 weight, the balance being iron.
〔(マンガン重量%)−1,62X(硫黄重量%)〕/
(ニオブ重量%)の比は5ないし25であり、(マンガ
ン重量%)/(硫黄重量%)の比は2.0ないし3.5
である。硫黄の重量%はさらに、希望する降伏強さ(k
si)に(0,0045〜0.0063)を掛けて決定
される。[(manganese weight %) - 1,62X (sulfur weight %)] /
The ratio of (wt% niobium) is 5 to 25, and the ratio of (wt% manganese)/(wt% sulfur) is 2.0 to 3.5.
It is. The weight percent of sulfur is further determined by the desired yield strength (k
si) by (0,0045 to 0.0063).
マンガン、硫黄およびニオブの重量%は、製品の希望す
る降伏強さが上昇するにつれて増加する。The weight percentages of manganese, sulfur and niobium increase as the desired yield strength of the product increases.
棒鋼の強化に対するニオブの寄与部分もまた、製品の降
伏強さ目標が増加するにつれて増加する。The contribution of niobium to the strengthening of steel bars also increases as the yield strength target of the product increases.
高速ドリリングやフォーミングにおいて優れた被削性は
、降伏強さが約4200 kg/cIIl (60ks
i)ないし約4550 kg/an! (65ksi)
の冷間引抜き棒鋼を使用することにより達成される。加
工仕上面を良くすることは、降伏強さが約4550kg
/ci (65ksi)ないし約4900 kg/cA
(70ksi)の冷間引抜き棒鋼を使用することによ
り達成される。Excellent machinability in high-speed drilling and forming is due to the yield strength of approximately 4200 kg/cIIl (60ks
i) or about 4550 kg/an! (65ksi)
This is achieved by using cold drawn steel bars. Improving the processed surface will result in a yield strength of approximately 4550 kg.
/ci (65ksi) or about 4900 kg/cA
(70 ksi) cold drawn steel bar.
本発明の重要な特徴は、各種の機l戊加工指定、種々の
機械加工性能、各種の機械加工適合性を有する棒鋼が、
本発明によってここに開示された機械的ならびに化学的
性質の組合せの範囲から選択できることである。冷間引
抜きにおける収縮率もまた降伏強さに実質的に影響を及
ぼす。降伏強さは、冷間引抜きにおける収縮率、棒24
をつくるのに用いられる熱間圧延材料の種類、ならびに
マンガン、ニオブ、硫黄の含有率と直接に関係する。An important feature of the present invention is that steel bars with various machining specifications, various machining performances, and various machining compatibility can be used.
The present invention allows one to choose from the range of mechanical and chemical property combinations disclosed herein. The shrinkage rate during cold drawing also substantially affects yield strength. Yield strength is the shrinkage rate in cold drawing, bar 24
It is directly related to the type of hot-rolled material used to make it, as well as the manganese, niobium, and sulfur content.
本発明の好ましい実施態様を記載したが、これらに対し
多くの改良、改変、代替がなされ得ることを十分に理解
されるべきである。Although preferred embodiments of the invention have been described, it should be appreciated that many improvements, modifications, and substitutions may be made thereto.
Claims (1)
、 バナジウム(V)が0.1重量%まで、 ニッケル(Ni)、クロム(Cr)、モリブデン(Mo
)および銅(Cu)の合計が0.15重量%まで、 残余が鉄(Fe)であり、 (マンガンの重量%)/(硫黄の重量%) の比が1.6ないし4.0であって、かつ 〔(マンガンの重量%)−1.62×(硫黄の重量%)
〕/(ニオブの重量%)の比が2ないし50である 組成を有する冷間引抜き再浸硫および再浸燐快削性棒鋼
。 2、鉛(Pb)をさらに0.03重量%ないし0.35
重量%含有している特許請求の範囲第1項記載の冷間引
抜き棒鋼。 3、ジルコン(Zr)をさらに0.005重量%ないし
0.05重量%含有している特許請求の範囲第1項記載
の冷間引抜き棒鋼。 4、ビスマス(Bi)をさらに0.05重量%ないし0
.25重量%含有している特許請求の範囲第1項記載の
冷間引抜き棒鋼。 5、鉛(Pb)をさらに0.03重量%ないし0.15
重量%、ビスマス(Bi)をさらに0.05重量%ない
し0.15重量%含有している特許請求の範囲第1項記
載の冷間引抜き棒鋼。 6、窒素(N)をさらに0.006重量%ないし0.0
12重量%含有している特許請求の範囲第1項記載の冷
間引抜き棒鋼。 7、ビスマス(Bi)をさらに0.05重量%ないし0
.25重量%とテルル(Te)をさらに0.005重量
%ないし0.05重量%含有している特許請求の範囲第
1項記載の冷間引抜き棒鋼。 8、ニオブ(Cb)量が0.01重量%ないし0.04
重量%であり、降伏強さが約4200kg/cm^2で
あることを特徴とする特許請求の範囲第1項記載の冷間
引抜き棒鋼。 9、ニオブ(Cb)量が0.02重量%ないし0.06
重量%であり、降伏強さが約4550kg/cm^2で
あることを特徴とする特許請求の範囲第1項記載の冷間
引抜き棒鋼。 10、ニオブ(Cb)量が0.02重量%ないし0.0
7重量%であり、降伏強さが約4900kg/cm^2
であることを特徴とする特許請求の範囲第1項記載の冷
間引抜き棒鋼。 11、ニオブ(Cb)量が0.06重量%ないし0.1
重量%であり、降伏強さが約5600kg/cm^2で
あることを特徴とする特許請求の範囲第1項記載の冷間
引抜き棒鋼。 12、炭素(C)が0.06重量%まで、 マンガン(Mn)が0.6重量%ないし1.15重量%
、 ケイ素(Si)が0.1重量%まで、 リン(P)が0.03重量%ないし0.06重量%、 硫黄(S)が0.25重量%ないし0.40重量%、 ニオブ(Cb)が0.01重量%ないし0.07重量%
、 ニッケル(Ni)、クロム(Cr)、モリブデン(Mo
)および銅(Cu)の合計が0.15重量%まで、 残余が鉄(Fe)であり、 (マンガンの重量%)/(硫黄の重量%) の比が2.0ないし3.5であり、 〔(マンガンの重量%)−1.62×(硫黄の重量%)
〕/(ニオブの重量%)の比が2ないし50であって、
かつ (硫黄の重量%)=(0.0042〜0.0054)×
(希望する降伏強さ(ksi)) である組成を有する、熱間圧延コイル銅から成形される
冷間引抜き再浸硫および再浸燐快削性棒鋼。 13、冷間引抜きの断面収縮率が熱間圧延棒の15%な
いし30%であり、降伏強さが約4200kg/cm^
2ないし約5600kg/cm^2であることを特徴と
する特許請求の範囲第1項記載の冷間引抜き棒鋼。 14、断面が約5cmまでの熱間圧延棒によってつくら
れていて、かつ 炭素(C)が0.08重量%まで、 マンガン(Mn)が0.7重量%ないし1.30重量%
、 ケイ素(Si)が0.1重量%まで、 リン(P)が0.03重量%ないし0.09重量%、 硫黄(S)が0.28重量%ないし0.50重量%、 ニオブ(Cb)が0.02重量%ないし0.08重量%
、 バナジウム(V)が0.1重量%まで、 ニッケル(Ni)、クロム(Cr)、モリブデン(Mo
)および銅(Cu)の合計が0.15重量%まで、 残余が鉄(Fe)であり、 (マンガンの重量%)/(硫黄の重量%) の比が2.0ないし3.2であり、 〔(マンガンの重量%)−1.62×(硫黄の重量%)
〕/(ニオブの重量%)の比が4ないし51であり、か
つ (硫黄の重量%)=(0.0045〜0.0058)×
(希望する降伏強さ(ksi)) である組成を有する冷間引抜き再浸硫および再浸燐快削
性棒鋼。 15、断面が少なくとも約5cmの熱間圧延棒からつく
られ、かつ 炭素(C)が0.08重量%まで、 マンガン(Mn)が0.8重量%ないし1.4重量%、 ケイ素(Si)が0.1重量%まで、 リン(P)が0.03重量%ないし0.9重量%、 硫黄(S)が0.30重量%ないし0.50重量%、 ニオブ(Cb)が0.02重量%ないし0.10重量%
、 バナジウム(V)が0.1重量%まで、 ニッケル(Ni)、クロム(Cr)、モリブデン(Mo
)および銅(Cu)の合計が0.15重量%まで、 残余が鉄(Fe)であって、 (マンガンの重量%)/(硫黄の重量%) の比が2.0ないし3.5であり、 〔(マンガンの重量%)−1.62×(硫黄の重量%)
〕/(ニオブの重量%)の比が5ないし25であり、か
つ (硫黄の重量%)=(0.0045〜0.0063)×
(希望する降伏強さ(ksi)) である組成を有する冷間引抜き再浸硫および再浸燐快削
性棒鋼。[Claims] 1. Carbon (C) up to 0.08% by weight, manganese (Mn) 0.6% to 1.4% by weight, silicon (Si) up to 0.1% by weight, phosphorus at least 0.03% by weight of (P), 0.25% to 0.50% by weight of sulfur (S), and 0.01% to 0.10% by weight of niobium (Cb).
, vanadium (V) up to 0.1% by weight, nickel (Ni), chromium (Cr), molybdenum (Mo
) and copper (Cu) up to 0.15% by weight, the balance is iron (Fe), and the ratio (weight% of manganese)/(weight% of sulfur) is between 1.6 and 4.0. and [(wt% of manganese) - 1.62 x (wt% of sulfur)
]/(wt % of niobium) is from 2 to 50. 2.Additionally 0.03% to 0.35% by weight of lead (Pb)
% by weight of the cold drawn steel bar according to claim 1. 3. The cold drawn steel bar according to claim 1, further containing 0.005% to 0.05% by weight of zircon (Zr). 4. Bismuth (Bi) is further added from 0.05% by weight to 0.
.. The cold drawn steel bar according to claim 1, containing 25% by weight. 5.Additionally 0.03% to 0.15% by weight of lead (Pb)
The cold drawn steel bar according to claim 1, further containing 0.05% to 0.15% by weight of bismuth (Bi). 6. Further nitrogen (N) from 0.006% by weight to 0.0% by weight
The cold drawn steel bar according to claim 1, containing 12% by weight. 7. Bismuth (Bi) is further added from 0.05% by weight to 0.
.. The cold drawn steel bar according to claim 1, further comprising 25% by weight of tellurium (Te) and 0.005% to 0.05% by weight of tellurium (Te). 8. The amount of niobium (Cb) is 0.01% by weight to 0.04% by weight
% by weight and a yield strength of about 4200 kg/cm^2. 9. The amount of niobium (Cb) is 0.02% by weight to 0.06%
% by weight and a yield strength of approximately 4550 kg/cm^2. 10. The amount of niobium (Cb) is 0.02% by weight to 0.0%
7% by weight, yield strength is approximately 4900kg/cm^2
The cold drawn steel bar according to claim 1, characterized in that: 11. The amount of niobium (Cb) is 0.06% by weight to 0.1
% by weight and a yield strength of about 5600 kg/cm^2. 12. Carbon (C) up to 0.06% by weight, Manganese (Mn) 0.6% to 1.15% by weight
, silicon (Si) up to 0.1% by weight, phosphorus (P) from 0.03% to 0.06% by weight, sulfur (S) from 0.25% to 0.40% by weight, niobium (Cb) ) is 0.01% to 0.07% by weight
, nickel (Ni), chromium (Cr), molybdenum (Mo
) and copper (Cu) up to 0.15% by weight, the remainder is iron (Fe), and the ratio (weight% of manganese)/(weight% of sulfur) is 2.0 to 3.5. , [(wt% of manganese) - 1.62 x (wt% of sulfur)
]/(wt% of niobium) is 2 to 50,
and (wt% of sulfur) = (0.0042 to 0.0054) x
A cold drawn resulfurized and rephosphorized free machining steel bar formed from hot rolled coiled copper having a composition of (desired yield strength (ksi)). 13. The cross-sectional shrinkage rate during cold drawing is 15% to 30% of that of the hot rolled bar, and the yield strength is approximately 4200 kg/cm^
2 to about 5,600 kg/cm^2. 14. Made of hot-rolled bar with a cross section of up to about 5 cm, and contains up to 0.08% by weight of carbon (C) and 0.7% to 1.30% by weight of manganese (Mn).
, silicon (Si) up to 0.1% by weight, phosphorus (P) from 0.03% to 0.09% by weight, sulfur (S) from 0.28% to 0.50% by weight, niobium (Cb) ) is 0.02% to 0.08% by weight
, vanadium (V) up to 0.1% by weight, nickel (Ni), chromium (Cr), molybdenum (Mo
) and copper (Cu) up to 0.15% by weight, the remainder being iron (Fe), and the ratio of (weight% of manganese)/(weight% of sulfur) is 2.0 to 3.2. , [(wt% of manganese) - 1.62 x (wt% of sulfur)
]/(wt% of niobium) is 4 to 51, and (wt% of sulfur)=(0.0045 to 0.0058)×
A cold-drawn re-sulfurized and re-phosphorized free-machining steel bar having a composition of (desired yield strength (ksi)). 15. made from a hot-rolled bar with a cross section of at least about 5 cm, and containing up to 0.08% by weight of carbon (C), 0.8% to 1.4% by weight of manganese (Mn), and silicon (Si). up to 0.1% by weight, phosphorus (P) from 0.03% to 0.9% by weight, sulfur (S) from 0.30% to 0.50% by weight, and niobium (Cb) from 0.02% by weight. Weight% to 0.10% by weight
, vanadium (V) up to 0.1% by weight, nickel (Ni), chromium (Cr), molybdenum (Mo
) and copper (Cu) up to 0.15% by weight, the balance being iron (Fe), and the ratio of (weight% of manganese)/(weight% of sulfur) is 2.0 to 3.5. Yes, [(wt% of manganese) - 1.62 x (wt% of sulfur)
]/(wt% of niobium) is 5 to 25, and (wt% of sulfur)=(0.0045 to 0.0063)×
A cold-drawn re-sulfurized and re-phosphorized free-machining steel bar having a composition of (desired yield strength (ksi)).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87254486A | 1986-06-10 | 1986-06-10 | |
US872544 | 1986-06-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63441A true JPS63441A (en) | 1988-01-05 |
JPH062928B2 JPH062928B2 (en) | 1994-01-12 |
Family
ID=25359800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62143441A Expired - Lifetime JPH062928B2 (en) | 1986-06-10 | 1987-06-10 | Cold drawn free-machining steel bar with sulfur and phosphorus additions with tailored mechanical properties and machinability |
Country Status (9)
Country | Link |
---|---|
JP (1) | JPH062928B2 (en) |
KR (1) | KR880000615A (en) |
BR (1) | BR8702911A (en) |
CA (1) | CA1301489C (en) |
DE (1) | DE3718772C2 (en) |
FR (1) | FR2601697B1 (en) |
GB (1) | GB2191506B (en) |
IT (1) | IT1206025B (en) |
MX (1) | MX168196B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6395109B1 (en) | 2000-02-15 | 2002-05-28 | Cargill, Incorporated | Bar product, cylinder rods, hydraulic cylinders, and method for manufacturing |
JP3929029B2 (en) * | 2002-03-12 | 2007-06-13 | 三菱製鋼株式会社 | Sulfur-containing free-cutting steel |
WO2004050932A1 (en) | 2002-11-15 | 2004-06-17 | Nippon Steel Corporation | Steel excellent in machinability and method for production thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270752A (en) * | 1986-05-19 | 1987-11-25 | Daido Steel Co Ltd | Free-cutting steel excellent in property of nitriding |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3424576A (en) * | 1968-04-23 | 1969-01-28 | Lukens Steel Co | Free machining steels |
US3634073A (en) * | 1969-07-09 | 1972-01-11 | United States Steel Corp | Free-machining steel, articles thereof and method of making |
ZA75241B (en) * | 1974-08-14 | 1976-01-28 | Inland Steel Co | Leaded steel bar |
JPS55138064A (en) * | 1979-04-10 | 1980-10-28 | Daido Steel Co Ltd | Free-cutting steel having excellent rolling fatigue strength |
DE3009491A1 (en) * | 1979-03-14 | 1980-09-25 | Daido Steel Co Ltd | STEEL FOR COLD FORGING AND METHOD FOR THE PRODUCTION THEREOF |
DE3018537A1 (en) * | 1979-05-17 | 1980-11-27 | Daido Steel Co Ltd | CONTROLLED INCLUDING AUTOMATIC STEEL AND METHOD FOR THE PRODUCTION THEREOF |
DE2967319D1 (en) * | 1979-06-08 | 1985-01-17 | Henrik Giflo | High-strength freely machinable steel capable of sustaining dynamic forces |
-
1987
- 1987-06-03 CA CA000538742A patent/CA1301489C/en not_active Expired - Fee Related
- 1987-06-04 DE DE3718772A patent/DE3718772C2/en not_active Expired - Fee Related
- 1987-06-05 GB GB8713199A patent/GB2191506B/en not_active Expired - Fee Related
- 1987-06-09 KR KR870005837A patent/KR880000615A/en not_active Application Discontinuation
- 1987-06-09 FR FR878707998A patent/FR2601697B1/en not_active Expired
- 1987-06-09 BR BR8702911A patent/BR8702911A/en unknown
- 1987-06-09 IT IT8748036A patent/IT1206025B/en active
- 1987-06-10 MX MX006853A patent/MX168196B/en unknown
- 1987-06-10 JP JP62143441A patent/JPH062928B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270752A (en) * | 1986-05-19 | 1987-11-25 | Daido Steel Co Ltd | Free-cutting steel excellent in property of nitriding |
Also Published As
Publication number | Publication date |
---|---|
DE3718772C2 (en) | 1994-02-17 |
IT8748036A0 (en) | 1987-06-09 |
FR2601697B1 (en) | 1989-08-11 |
JPH062928B2 (en) | 1994-01-12 |
IT1206025B (en) | 1989-04-05 |
BR8702911A (en) | 1988-03-08 |
KR880000615A (en) | 1988-03-28 |
MX168196B (en) | 1993-05-11 |
GB2191506B (en) | 1990-01-04 |
DE3718772A1 (en) | 1987-12-17 |
CA1301489C (en) | 1992-05-26 |
FR2601697A1 (en) | 1988-01-22 |
GB2191506A (en) | 1987-12-16 |
GB8713199D0 (en) | 1987-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW420721B (en) | Low-alloy steel for the manufacture of moulds for plastics and for rubber | |
US7534314B2 (en) | High carbon steel with superplasticity | |
CN101298649B (en) | High-strength nonmagnetic stainless steel, component containing the same and manufacturing method thereof | |
JP2007289979A (en) | Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot | |
WO2021124511A1 (en) | High-hardness and high–corrosion resistance martensitic steel having excellent cold workability and production method for same | |
JP2021116454A (en) | Martensitic stainless steel excellent in cold workability for high hardness and high corrosion resistance use, and manufacturing method thereof | |
JP5323679B2 (en) | Cold work steel | |
JP4797673B2 (en) | Hot forging method for non-tempered parts | |
JP6642237B2 (en) | Cold forging steel and method for producing the same | |
JP3141735B2 (en) | Steel for plastic molding dies | |
JPS63441A (en) | Cold pulling-off re-sulfurizing and re-phosphorizing cuttingrod steel having adjusted mechanical property and cutting property | |
JP2004002951A (en) | Free cutting tool steel | |
US4880479A (en) | Cold drawn free-machining resulfurized and rephosphorized steel bars having controlled mechanical properties and controlled machinability | |
JP2760013B2 (en) | Method for producing high permeability magnetic material | |
JPH0353384B2 (en) | ||
JP6687047B2 (en) | Hot rolled steel | |
CN113166895A (en) | Method for producing high speed steel alloy | |
JPH07188859A (en) | Powder high speed steel | |
JP2003034842A (en) | Steel for cold forging superior in swarf treatment property | |
JP4949100B2 (en) | Austenitic stainless free-cutting steel with excellent cold forgeability and machinability | |
JPS63442A (en) | Bismuth-containing cold pulling-off cutting rod steel | |
JPH0353383B2 (en) | ||
JP2560760B2 (en) | High speed tool steel | |
JPS63219527A (en) | Manufacture of ferritic stainless steel excellent in cold workability | |
JP2001115234A (en) | Preharden hot tool steel |