JPS6344171B2 - - Google Patents
Info
- Publication number
- JPS6344171B2 JPS6344171B2 JP57078964A JP7896482A JPS6344171B2 JP S6344171 B2 JPS6344171 B2 JP S6344171B2 JP 57078964 A JP57078964 A JP 57078964A JP 7896482 A JP7896482 A JP 7896482A JP S6344171 B2 JPS6344171 B2 JP S6344171B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical fiber
- polarization
- beam splitter
- polarized light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013307 optical fiber Substances 0.000 claims description 28
- 230000010287 polarization Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- 101100028791 Caenorhabditis elegans pbs-5 gene Proteins 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/72—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバレーザジヤイロ、特に回転
角速度の微小検出を可能にする処の光フアイバレ
ーザジヤイロに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber laser gyroscope, and more particularly to an optical fiber laser gyroscope that enables minute detection of rotational angular velocity.
従来、リング干渉計を利用した光フアイバレー
ザジヤイロの干渉状態の変化を検出する方法とし
ては大別すると次の2つである。 Conventionally, methods for detecting changes in the interference state of an optical fiber laser gyroscope using a ring interferometer can be broadly classified into the following two methods.
(1) 干渉縞変化検出法
(2) 干渉光強度変化検出法
(1)の方法は縞を作るために片方の回転の光の入
射条件の焦点を最適結合点からはずすため結合損
が大きく、また干渉光の1部のみ利用するため雑
音の影響を受けやすく、光学系の波長オーダの位
置ズレで誤差が発生するという欠点がある。(1) Method for detecting changes in interference fringes (2) Method for detecting changes in interference light intensity In method (1), in order to create fringes, the focus of the light incident condition for one rotation is shifted from the optimal coupling point, resulting in large coupling losses. Furthermore, since only a portion of the interference light is used, it is easily affected by noise, and has the disadvantage that errors occur due to positional deviations on the order of wavelengths in the optical system.
(2)の方法では回転による両方向回転光の位相差
をθとするとcosθに比例した干渉光出力が得られ
るためθが微小量の時に感度が悪く、θが正負に
変化しても回転の向きが不明であるという欠点が
ある。 In method (2), if θ is the phase difference of the bidirectionally rotated light due to rotation, an interference light output proportional to cosθ is obtained, so the sensitivity is poor when θ is a minute amount, and even if θ changes to positive or negative, the direction of rotation is The disadvantage is that it is unknown.
更に、伝送路として使用する光フアイバーは単
一モードフアイバであるが、従来の単一モードフ
アイバは偏波保存性が悪く、偏波の不安定性が干
渉光のゆらぎの原因になつていた。 Furthermore, the optical fiber used as a transmission line is a single mode fiber, but conventional single mode fibers have poor polarization preservation properties, and instability of polarization causes fluctuations in interference light.
本発明は斯かる状況に鑑み、従来技術の上記欠
点を解消し、回転方向の検出ができ、回転角度が
小さい場合にも感度が優れており、かつ光フアイ
バ中の偏波不安定性をも解消した。新規な光フア
イバレーザジヤイロを提供することを目的とす
る。 In view of this situation, the present invention eliminates the above-mentioned drawbacks of the conventional technology, allows detection of the rotation direction, has excellent sensitivity even when the rotation angle is small, and also eliminates polarization instability in the optical fiber. did. The purpose is to provide a new optical fiber laser gyroscope.
本発明の構成の一実施例を図面を参照して以下
具体的に説明する。 An embodiment of the configuration of the present invention will be specifically described below with reference to the drawings.
まず始めに両方向伝搬光の取り出し方について
第1図を用いて説明する。光源1はレーザであ
り、アイソレータを付加すれば反射光のレーザ照
射がないので更によいがここでは、He―Neレー
ザを直接用いた。尚、半導体レーザを用いる場合
にはコリメート用レンズを用いるとよい。さて、
光源1から出射したレーザ光はBS(ビームスプリ
ツター)3でその半分が通過する。BS3の前に
は、レーザ光が後においたPBS(偏光ビームスプ
リツタ)5の方位に対し45゜方位の直線偏光で入
射するようにλ/2板2を置いてある。 First, a method for extracting bidirectionally propagating light will be explained using FIG. 1. The light source 1 is a laser, and although it would be better if an isolator was added since there would be no laser irradiation with reflected light, here a He--Ne laser was used directly. Note that when using a semiconductor laser, it is preferable to use a collimating lens. Now,
Half of the laser light emitted from the light source 1 passes through a BS (beam splitter) 3. A λ/2 plate 2 is placed in front of the BS 3 so that the laser beam enters as linearly polarized light at an angle of 45° to the direction of the PBS (polarizing beam splitter) 5 placed later.
PBS5では45゜方位の直線偏光のS偏光、P偏
光成分がそれぞれ反射、透過する。それらの光は
それぞれマイクロレンズ6で偏波面保存光フアイ
バコイル9の両端より相互に逆向きに入射される
が、偏波面保存光フアイバコイル9はその両端で
PBS5に対し固有偏光軸を空間的に直交させる
ように90゜ねじつて配置されており、従つていず
れの偏光成分も例えば偏波面保存光フアイバコイ
ル9の長軸方位に入射されるよう構成してある。
尚、長軸方位ではなく短軸方位に入れても勿論か
まわない。 このようにすると時計方向の伝搬光
(CW)はP偏光で伝搬し再びPBS5に入射する
ときにはS偏光で入射するのでBS3に向かつて
反射される。このとき短軸方位のモードに変換さ
れた成分PBS5を透過してしまい、検出器側に
はいかない。そのため消光比劣化によるノイズの
原因にはならない。同様に反時計方向の伝搬光
(CCW)はS偏光で伝搬しP偏光としてPBS5に
入射するため、BS3に向かつて透過される。 In PBS5, S-polarized light and P-polarized light components of linearly polarized light in the 45° direction are reflected and transmitted, respectively. These lights enter the polarization-maintaining optical fiber coil 9 in opposite directions through the microlens 6, respectively, but the polarization-maintaining optical fiber coil 9
It is arranged with a 90° twist so that its intrinsic polarization axis is spatially perpendicular to the PBS 5, and is configured so that any polarized light component is incident, for example, in the long axis direction of the polarization preserving optical fiber coil 9. be.
Note that, of course, it may be placed in the short axis direction instead of the long axis direction. In this way, the clockwise propagating light (CW) propagates as P-polarized light, and when it enters PBS5 again, it enters as S-polarized light, so it is reflected toward BS3. At this time, the component PBS5 converted to the short-axis azimuth mode is transmitted, and does not reach the detector side. Therefore, it does not cause noise due to extinction ratio deterioration. Similarly, counterclockwise propagating light (CCW) propagates as S-polarized light and enters PBS5 as P-polarized light, so it is transmitted toward BS3.
従つてBS3ではCW、CCWの方向の光の偏波
が空間的に直交するような向きで取り出せること
になる。 Therefore, in BS3, the polarized waves of light in the CW and CCW directions can be extracted in directions such that they are spatially orthogonal.
このようにすると偏波面保存光フアイバコイル
9が回転しないときにはCCW、CWの光の位相
差は等しいから、BS3でとり出された光は直線
偏光である。この状態で1/4波長板10をその直
線偏光に対して45゜の方位に置けばつまりその直
線偏光の直交偏光軸に合致させた方位に置けば1/
4波長板10の出力光は円偏光となる。 In this way, when the polarization preserving optical fiber coil 9 does not rotate, the phase difference between CCW and CW light is equal, so the light extracted by BS3 is linearly polarized light. In this state, if the 1/4 wavelength plate 10 is placed at an orientation of 45 degrees with respect to the linearly polarized light, that is, if it is placed at an orientation that matches the orthogonal polarization axis of the linearly polarized light, the 1/4 wavelength plate 10
The output light of the four-wavelength plate 10 becomes circularly polarized light.
今、偏波面保存光フアイバコイル9が回転角速
度Ωで回転したとすると、P偏光とS偏光との間
にはサグナツクの位相差θが発生する。このθは
Ωと次の関係にあることが知られている。 Now, if the polarization-maintaining optical fiber coil 9 is rotated at a rotational angular velocity Ω, a sagnac phase difference θ occurs between the P-polarized light and the S-polarized light. It is known that this θ has the following relationship with Ω.
θΩ=4πRl/λc …(1)
但し、Rはコイルのループ半径、lはフアイバ
長、λは波長、Cは光速である。 θΩ=4πRl/λc (1) where R is the loop radius of the coil, l is the fiber length, λ is the wavelength, and C is the speed of light.
従つて1/4波長板10への入射光(P偏光とS
偏光)の電界ベクトルは上記θを用いて次式で表
せる。 Therefore, the incident light to the quarter-wave plate 10 (P polarized light and S
The electric field vector of polarized light can be expressed by the following equation using the above θ.
ep=Acos(wt−θ)
es=Acos wt …(2)
但し、Aは定数、wは光角周波数である。つま
り光は一般に楕円偏光となる。この状態で1/4波
長板10を透過させると、P偏光とS偏光との間
には90゜の位相差が付加される。従つて1/4波長板
10を透過後の光は次式となる。 ep=Acos(wt-θ) es=Acos wt...(2) However, A is a constant and w is the optical angular frequency. In other words, light is generally elliptically polarized. When the light is transmitted through the quarter-wave plate 10 in this state, a phase difference of 90° is added between the P-polarized light and the S-polarized light. Therefore, the light after passing through the quarter-wave plate 10 is expressed by the following formula.
ep′=Acos(wt−θ)
es′=Acos wt …(3)
その後に再び別のPBS11を1/4波長板1
0に対して45゜の方位に置いて空間的に直交する
偏波成分をとり出し、各々の光を光電変換器1
2,12で電気信号に変換し、それぞれの出力を
差動増幅器13に導きその出力を観測する。 ep′=Acos(wt−θ) es′=Acos wt …(3) After that, another PBS11 is added to the 1/4 wavelength plate 1
0, spatially orthogonal polarization components are taken out, and each light is sent to the photoelectric converter 1.
2 and 12, the respective outputs are led to a differential amplifier 13 and the outputs are observed.
PBS11の出射成分は、PBS11の方位が1/4
波長板に対し45゜傾けられていることから、PBS
11の透過側出射光および反射側出射光は
で与えられるものであり、従つて光電変換器1
2,12で受光される光強度として
P1=K/2A2(1+sinθ)
P2=K/2A2(1+sinθ) …(5)
の電気信号を得ることができる。但しkは定数で
ある。ゆえに差動増幅器13で観測される出力は
次式により表される。 The output component of PBS11 is 1/4 the direction of PBS11.
Since it is tilted at 45° to the wave plate, PBS
The transmission side output light and reflection side output light of 11 are Therefore, the photoelectric converter 1
As the light intensity received at 2 and 12, an electric signal of P 1 =K/2A 2 (1+sin θ) P 2 =K/2A 2 (1+sin θ) (5) can be obtained. However, k is a constant. Therefore, the output observed by the differential amplifier 13 is expressed by the following equation.
P=P1−P2=kA2sinθ …(6)
しかして(6)式より、偏波面保存光フアイバコイ
ル9が回転しないときは出力が0、回転すればそ
の回転方向によつて出力が正負の極性をもつて表
われることは明らかであろう。 P=P 1 -P 2 =kA 2 sinθ...(6) Therefore, from equation (6), when the polarization preserving optical fiber coil 9 does not rotate, the output is 0, and when it rotates, the output changes depending on the direction of rotation. It is clear that it appears with positive and negative polarities.
実際には、静止状態で光電変換器12の出力が
等しくなるように減衰器を用いて予め調整してお
くのがよい。また差動増幅器13の出力を積分す
ることによつて初期状態からの方向がわかるよう
になる。更に差動増幅器13の出力に対しP/
(P1+P2)の演算を行うようにすれば、信号は規
格火され、光源の変動等の影響を一切受けない高
精度の検出が可能となる。 In fact, it is preferable to use an attenuator to adjust in advance so that the outputs of the photoelectric converters 12 are equal in a stationary state. Furthermore, by integrating the output of the differential amplifier 13, the direction from the initial state can be determined. Furthermore, P/
By performing the calculation of (P 1 +P 2 ), the signal is standardized and highly accurate detection is possible which is completely unaffected by fluctuations in the light source.
なお、各機器、素子間を光を伝搬させるとき
は、空気を媒体とすると振動の影響を受けやすい
ので、第1図破線4の如く偏波面保存光フアイバ
により偏光を伝搬するようにしてもよい。 Note that when light is propagated between each device or element, if air is used as a medium, it is easily affected by vibrations, so the polarized light may be propagated using a polarization-maintaining optical fiber as shown by the broken line 4 in Figure 1. .
ここで、偏波面保存光フアイバとは、例えば第
2図に示すような断面構造の光フアイバーであ
り、断面が楕円形の層を有していることにより伝
搬する光の偏波面を保存する性質を有するもので
ある。 Here, the polarization-maintaining optical fiber is an optical fiber having a cross-sectional structure as shown in FIG. It has the following.
以下説明したように本発明の光フアイバレーザ
ジヤイロであれば次のような顕著な効果を奏す
る。 As explained below, the optical fiber laser gyroscope of the present invention has the following remarkable effects.
(1) 出射した直線偏光を1/4波長板を透過させる
ことにより、S偏光とP偏光間には90゜の位相
差が付加されることから、差動増幅器での出力
がsinθに比例した出力となるので、出力の正負
により、回転方向の検出が可能である。(1) By transmitting the emitted linearly polarized light through a quarter-wave plate, a 90° phase difference is added between the S-polarized light and the P-polarized light, so the output of the differential amplifier is proportional to sinθ. Since it is an output, the direction of rotation can be detected based on the positive or negative sign of the output.
(2) 光フアイバ伝搬中の消光比の劣化が問題とな
らないため感度が大幅に向上する。(2) Sensitivity is greatly improved because deterioration of the extinction ratio during optical fiber propagation is not a problem.
(3) 偏波面保存光フアイバを用いているため、光
フアイバ中の偏波面が安定している。(3) Since a polarization-maintaining optical fiber is used, the polarization plane in the optical fiber is stable.
(4) 差動増幅器を用いているため、光源や光フア
イバの温度特性による出力変動が問題となら
ず、信頼性が高い。(4) Since a differential amplifier is used, output fluctuations due to temperature characteristics of the light source or optical fiber are not a problem, and reliability is high.
第1図は本発明光フアイバレーザジヤイロの一
実施例を示す説明図であり、第2図は本発明に用
いた偏波面保存光フアイバの一例を示す断面図で
ある。
1:光源、2:1/2波長板、3:BS、4:偏波
面保存光フアイバ、5:PBS、6:マイクロレ
ンズ、9:偏波面保存光フアイバコイル、10:
1/4波長板、11:PBS、12:光電変換器、1
3:差動増幅器。
FIG. 1 is an explanatory diagram showing an embodiment of the optical fiber laser according to the present invention, and FIG. 2 is a sectional view showing an example of the polarization-maintaining optical fiber used in the present invention. 1: Light source, 2: 1/2 wavelength plate, 3: BS, 4: Polarization preserving optical fiber, 5: PBS, 6: Microlens, 9: Polarization preserving optical fiber coil, 10:
1/4 wavelength plate, 11: PBS, 12: Photoelectric converter, 1
3: Differential amplifier.
Claims (1)
プリツタ)3に導き、偏光ビームスプリツタ
(PBS)5に対し45゜の方位で入射させ、該偏光ビ
ームスプリツタ5の透過側および反射側に偏波面
保存光フアイバコイル9の両端が該偏光ビームス
プリツタ5に対し固有偏光を空間的に直交させる
ように配置して前記透過側出射光と反射側出射光
とが前記偏波面保存光フアスバコイル9の同じ固
有偏光軸に入射するように固定し、前記偏波面保
存光フアイバコイル9を両方向で伝搬した光の位
相差を1/4波長板10及び偏光ビームスプリツタ
11を介して差動増幅器により検出するように構
成したことを特徴とする光フアイバレーザジヤイ
ロ。1. Linearly polarize the light from the light source, guide it to the BS (beam splitter) 3, make it incident on the polarizing beam splitter (PBS) 5 at an angle of 45 degrees, and make it enter the polarizing beam splitter (PBS) 5 on the transmission side and reflection side. Both ends of the polarization-maintaining optical fiber coil 9 are arranged so that the inherent polarization is spatially perpendicular to the polarization beam splitter 5, so that the transmission side output light and the reflection side output light are connected to the polarization-maintaining optical fiber coil 9. 9, and the phase difference of the light propagated in both directions through the polarization-maintaining optical fiber coil 9 is transferred to a differential amplifier via a quarter-wave plate 10 and a polarizing beam splitter 11. An optical fiber laser gyroscope characterized in that it is configured to detect by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57078964A JPS58196414A (en) | 1982-05-11 | 1982-05-11 | Optical fiber laser gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57078964A JPS58196414A (en) | 1982-05-11 | 1982-05-11 | Optical fiber laser gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58196414A JPS58196414A (en) | 1983-11-15 |
JPS6344171B2 true JPS6344171B2 (en) | 1988-09-02 |
Family
ID=13676574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57078964A Granted JPS58196414A (en) | 1982-05-11 | 1982-05-11 | Optical fiber laser gyroscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58196414A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712576A (en) * | 1992-08-11 | 1995-01-17 | Fujitsu Ltd | Optical fiber ring interferometer |
WO2007066686A1 (en) * | 2005-12-07 | 2007-06-14 | Japan Science And Technology Agency | Optical nonlinear evaluation device and optical switching element |
-
1982
- 1982-05-11 JP JP57078964A patent/JPS58196414A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58196414A (en) | 1983-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11268811B2 (en) | Non-interferometric optical gyroscope based on polarization sensing | |
JPH05503999A (en) | Lightwave polarization determination using a hybrid system | |
KR101978444B1 (en) | Optical fiber Sagnac interferometer using a polarizing beam splitter | |
WO2019024753A1 (en) | Reciprocal and differential type frequency-modulated continuous wave interferometric polarization-maintaining fiber gyroscope | |
EP0078931B1 (en) | Angular rate sensor | |
JPS6344171B2 (en) | ||
JPH0247684B2 (en) | ||
JPS595912A (en) | Optical fiber gyroscope | |
JPS6344174B2 (en) | ||
JPS6221016A (en) | Optical fiber gyroscope | |
JPS58196415A (en) | Optical fiber laser gyroscope | |
JPS60104271A (en) | Magnetic field sensor using polarization plane maintaining optical fiber | |
JPS6344172B2 (en) | ||
JPS6344173B2 (en) | ||
JP2723977B2 (en) | Rotation speed measurement method | |
JPS58219404A (en) | Optical fiber gyro device | |
JP2553358B2 (en) | Optical isolator | |
JPS6326326B2 (en) | ||
JPS59217113A (en) | Optical fiber gyro of optical heterodyne system | |
JPS6148715A (en) | Optical fiber gyro | |
JPH0720217A (en) | Polarization surface storage optical fiber type magnetic field sensor | |
JPS60120207A (en) | Optical fiber gyro | |
JPS60122312A (en) | Optical heterodyne system optical fiber gyroscope | |
JPS5940277A (en) | Polarization surface preserving optical fiber type magnetic field sensor | |
JPH01162104A (en) | Optical fiber sensor |