JPS6344141A - Light emitting characteristic measuring system for light emitting element - Google Patents
Light emitting characteristic measuring system for light emitting elementInfo
- Publication number
- JPS6344141A JPS6344141A JP61188077A JP18807786A JPS6344141A JP S6344141 A JPS6344141 A JP S6344141A JP 61188077 A JP61188077 A JP 61188077A JP 18807786 A JP18807786 A JP 18807786A JP S6344141 A JPS6344141 A JP S6344141A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- level
- light
- emitting element
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 238000003384 imaging method Methods 0.000 claims description 10
- 206010047571 Visual impairment Diseases 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000004020 luminiscence type Methods 0.000 claims description 5
- 238000000691 measurement method Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000012937 correction Methods 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000001360 synchronised effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えばレーザーダイオードのように高レベル
強度で発光する発光素子の発光をCCD型又はMOS型
ビデオカメラのように固体撮像索子を使用したビデオカ
メラによって撮像して上記発光素子の発光:fj注を測
定するようにした発光、¥f注測定方式t′ζ関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to the use of a solid-state imaging device such as a CCD type or MOS type video camera to capture light emitted from a light emitting element that emits light at a high level of intensity, such as a laser diode. The light emission is imaged by the video camera used and the light emission of the light emitting element: fj is measured, and the measurement method t'ζ is concerned.
例工ばレーザーダイオードのように各種計測又は各種情
報読取り号のための光源に使用される発光素子には良好
な発光特性が求められる。For example, a light emitting element such as a laser diode used as a light source for various measurements or various information reading signals is required to have good light emission characteristics.
発光素子の発光′fj住は発光面又は発光の投影像の同
一レベル点を結んだ等高線状パターンで表現さnるが、
このような発光特性を得る測定装置として、ビデオカメ
ラで被測定発光素子の発光を撮像して解析し発光パター
ンを描くようKした装置がある。The light emission of a light emitting element is expressed by a contour line pattern connecting the same level points of the light emitting surface or the projected image of light emission.
As a measurement device for obtaining such light emission characteristics, there is a device that uses a video camera to image the light emission of a light emitting element to be measured, analyzes it, and draws a light emission pattern.
本件発明の発明者は、ビデオカメラに固体撮像素子を使
用したカメラ(CCD型又はMOS型ビデオカメラ)を
使用し、被測定発光素子の瞬間的発光による撮影像を上
記固体撮像索子の残像特性で暫時保持することだよシ被
測定発光素子への発光電力印加時間を極めて短くでき、
従って当該発光素子には熱的ストレスが残らないため、
その発光%性をチップ段階(!8!造工程に於けるケー
シング以前、すなわちヒートシンクを施す前の段階)で
測定することができる測定装置を別の特許出願で提案し
た。The inventor of the present invention uses a camera (CCD type or MOS type video camera) that uses a solid-state image sensor as a video camera, and captures the image taken by the instantaneous light emission of the light-emitting element to be measured by the afterimage characteristics of the solid-state imaging element. It is best to hold it for a while at
Therefore, since no thermal stress remains in the light emitting element,
In another patent application, we proposed a measuring device that can measure the luminescence percentage at the chip stage (before the casing in the manufacturing process, that is, before the heat sink is applied).
上記提案の測定装置に於いて、ビデオカメラに使用する
固体撮像素子で例えばレーザーダイオードのように発光
強度の強い発光素子の発光像を撮像すると、固体撮像素
子の受光レベルが飽和領域に達し、撮像信号の出力レベ
ルが飽和レベルでクリップされた状態となって入射光に
比例した正しい撮像信号が得られない。In the measurement device proposed above, when a solid-state image sensor used in a video camera captures a light emission image of a light-emitting element with a strong emission intensity, such as a laser diode, the light reception level of the solid-state image sensor reaches a saturation region, and the image is captured. The output level of the signal is clipped at the saturation level, and a correct imaging signal proportional to the incident light cannot be obtained.
以上の問題点を解決するためには、例えばビデオカメラ
の絞り機構を絞シ込めばよいが、前記6111定装置で
はり測定発光素子の発光時間はl Q Q n5ec程
度の短時間であるので、適性な絞り値を人為的に設定す
ることは困難であり、また絞り値pcよる発光特性の補
正も困難である。In order to solve the above problems, for example, the aperture mechanism of the video camera can be narrowed down, but since the light emitting time of the light emitting element for beam measurement in the 6111 measurement device is a short time of about l Q Q n5ec, It is difficult to artificially set an appropriate aperture value, and it is also difficult to correct the light emission characteristics using the aperture value pc.
本発明は以上に述べた諸問題を解決すべく提案するもの
で固体撮像素子を有するビデオカメラを用いて発光特注
を測定する測定装置に於いて、上記ビデオカメラの撮像
能力を越えた強いレベルで発光する発光素子であっても
、その発光特注を正しく測定できる測定方式を得ろこと
を目的とする。The present invention is proposed to solve the above-mentioned problems, and is a measuring device for measuring custom-made luminescence using a video camera having a solid-state image sensor, which has a strong level of imaging capability exceeding that of the video camera. The purpose of this study is to obtain a measurement method that can accurately measure the light emission of a light-emitting element that emits light.
以上の問題を解決するため、本発明はビデオカメラで被
σill定発光素子の瞬間的発光を撮像したときの固体
撮像素子の受光レベルが当該固体撮像素子の飽和領域に
達したとき、当該固体撮像素子の画像残像レベルが飽和
レベルを脱するまでの時間を計測し、この時間から被測
定発光素子の発光レベルを演算するか(上記受光レベル
の飽和レベルを越した程度が低いとき)、又は当該時間
から被測定発光素子の発光レベルを、推定して当該発光
レベルで上記固体撮像素子が飽和しない絞り値を演算し
、ビデオカメラの絞り機構を上記絞り値に設定したのち
被測定発光素子を再度瞬間的に発光させて当該ビデオカ
メラで撮像する(上記受光レベルの飽和レベルを越した
程度が高いとき)ことにより発光特注を得るようにした
ものである。In order to solve the above-mentioned problems, the present invention provides a method for capturing an image of the solid-state image sensor when the light reception level of the solid-state image sensor reaches the saturation region of the solid-state image sensor when the instantaneous light emission of the σill constant light emitting element is imaged with a video camera. Measure the time until the image afterimage level of the element leaves the saturation level, and calculate the light emission level of the light emitting element to be measured from this time (when the degree to which the received light level exceeds the saturation level is low), or Estimate the light emitting level of the light emitting element to be measured from the time, calculate an aperture value that will not saturate the solid-state image sensor at that light emitting level, set the aperture mechanism of the video camera to the above aperture value, and then turn the light emitting element to be measured again. A special order for light emission can be obtained by emitting light instantaneously and capturing an image with the video camera (when the above-mentioned light receiving level exceeds the saturation level).
第1図は本発明の実施例に係る頂1j定装置の構成を示
すブロック図である。FIG. 1 is a block diagram showing the configuration of a top 1j fixing device according to an embodiment of the present invention.
第1図に示すように、本発明に係る測定装置は、例えば
レーザーダイオードのよう(て高レベルで発光する被測
定発光素子(以下、発光素子という。)1の発光光をj
敢像するビデオカメラ2、該ビデオカメラ2からの画像
信号をA/Df換するV変換器3、発光素子IK極めて
短い時間巾(約100 n5ec)の駆動パルスを供給
する駆動パルス発生器4、上記ビデオカメラ2及びA/
D変換器3に同期信号を送出し、かつ上記駆動パルス発
生器4に駆動パルスの送出タイミング信号を送出する同
期信号発生器5、及び各種制御を一括して行うとともに
上記A/D変換器3を経てビデオカメラ2から送られる
画像信号を処理して発光特性を得る処理袋f(所謂CP
U )6で構成される。As shown in FIG. 1, the measuring device according to the present invention measures the emitted light of a light-emitting element to be measured (hereinafter referred to as a light-emitting element) 1 that emits light at a high level, such as a laser diode.
A video camera 2 that captures an image, a V converter 3 that converts the image signal from the video camera 2 into A/Df, a drive pulse generator 4 that supplies a drive pulse with an extremely short duration (approximately 100 n5ec) to the light emitting element IK, The above video camera 2 and A/
A synchronization signal generator 5 that sends a synchronization signal to the D converter 3 and a drive pulse sending timing signal to the drive pulse generator 4, and a synchronization signal generator 5 that collectively performs various controls and the A/D converter 3. A processing bag f (so-called CP
U) Consists of 6.
ビデオカメラ2の受光部には処理袋[f6によって制御
される電動絞り機構21が設けられており、また当該ビ
デオカメラ2の撮像素子は、CCD型又はMO8型撮像
素子のような固体撮像素子が使用されている。The light receiving part of the video camera 2 is provided with an electric aperture mechanism 21 controlled by the processing bag [f6, and the image sensor of the video camera 2 is a solid-state image sensor such as a CCD type or MO8 type image sensor. It is used.
第2図は第1図に示す実施例の動作を示すタイムチャー
ト、第3図は処理装置6での制御を示すフローチャート
、第4図及び第5図囚、■)はビデオカメラ2に使用さ
れる固体撮像素子の特注を説明する図である。2 is a time chart showing the operation of the embodiment shown in FIG. 1, FIG. 3 is a flowchart showing control by the processing device 6, and FIGS. FIG.
まず、第4図及び第5図囚、(B)で固体撮像素子の特
性について説明する。First, the characteristics of the solid-state image sensor will be explained with reference to FIGS. 4 and 5 (B).
固体撮像素子は入射光量に応じた量で荷電し、受光面各
部の電荷量に基いて画像信号を出力する。上記受光面各
部の電荷量は受光後糸々に自然放電されていき、当該電
荷が残存している間は光の入射がなくても画像信号を取
り出すことができる。すなわち残像特注を有する。The solid-state image sensor is charged with an amount corresponding to the amount of incident light, and outputs an image signal based on the amount of charge on each part of the light-receiving surface. The amount of charge on each part of the light-receiving surface gradually discharges naturally after receiving light, and as long as the charge remains, an image signal can be extracted even if no light is incident. In other words, it has a custom-made afterimage.
ところで固体撮像素子の荷電による電荷の蓄積量には画
像信号として出力できる限界と電荷として蓄積できなく
なる限界とがある。ここでは前者を飽和レベルとし、後
者を荷電限界レベルという(第5図参照)。By the way, the amount of charge accumulated by a solid-state image sensing device has a limit at which it can be output as an image signal and a limit at which it can no longer be accumulated as a charge. Here, the former is referred to as the saturation level, and the latter is referred to as the charging limit level (see FIG. 5).
発光素子1の発光による固体撮像素子での受光レベルが
上記飽和レベル以上であると、第4図中実線で示すよう
に固体撮像素子からの画像信号は飽和レベルでクリップ
されるので入射光量(発光素子10発光による受光レベ
ル)に応じた画像信号が得られない。しかしながらビデ
オカメラ2での受光レベルは固体撮像素子の荷電電荷の
放電特性と画像信号レベルが飽和領域を脱するまでの時
間とKより求めることができる。すなわち、第4図に放
いて、実線で示す画像信号レベルが飽和レベルを脱する
点PK達するまでの時間Tから発光素子1の発光による
受光レベルtを求めることができる。If the level of light received by the solid-state image sensor due to light emission from the light-emitting element 1 is equal to or higher than the saturation level, the image signal from the solid-state image sensor is clipped at the saturation level, as shown by the solid line in FIG. An image signal corresponding to the level of light received by light emitted from the element 10 cannot be obtained. However, the level of light received by the video camera 2 can be determined from the discharge characteristics of the charges in the solid-state image sensor, the time until the image signal level exits the saturation region, and K. That is, as shown in FIG. 4, the light reception level t due to light emission from the light emitting element 1 can be determined from the time T taken until the image signal level reaches the point PK, which is indicated by the solid line, at which it leaves the saturation level.
また、第5図^に示すように、固体撮像素子への入射光
レベルが飽和レベル以上であっても荷電限界レベル以下
であるときには、固体撮像素子で受光後暫時経過した時
点で出力される画像信号は、一点鎖線で示すように発光
素子1の発光レベルパターン(破線で示す)と一定の関
係を保って出力される。ところが第5図(B)に示すよ
うに、固体撮像素子への入射光レベルが荷電限界レベル
を越えて高いときくは、固体撮像素子で受光後暫時経過
した時点で出力される画像信号は、一点鎖線で示すよう
江上記荷電限界レベルを越えるS部分についてクリップ
された出カバターンが残るため、発光レベルパターン(
破線で示す)との間で一定の関係が保たれない。但し、
上記入射光レベルが荷、!限界レベル以上となっても固
体撮像素子の受光面全体が荷電限界レベル以上で受光す
ることはないことから第4図に示す時間Tは発光索子1
の発光レベルの大小によって変化するので発光素子1の
発光レベル(固体撮像素子への入射光レベル)を推定す
ることは可能である。Furthermore, as shown in Figure 5^, when the level of light incident on the solid-state image sensor is above the saturation level but below the charging limit level, the image is output after some time has passed after the solid-state image sensor receives the light. The signal is output while maintaining a constant relationship with the light emission level pattern (shown by the broken line) of the light emitting element 1, as shown by the dashed line. However, as shown in FIG. 5(B), when the level of light incident on the solid-state image sensor is higher than the charging limit level, the image signal outputted after a certain period of time after the solid-state image sensor receives the light is as follows. As shown by the dashed line, a clipped output pattern remains for the S portion that exceeds the charge limit level above Egami, so the emission level pattern (
(indicated by a broken line). however,
The above incident light level is load,! Even if the charge level exceeds the charge limit level, the entire light-receiving surface of the solid-state image sensor will not receive light at a charge charge limit level or above, so the time T shown in FIG.
It is possible to estimate the light emission level of the light emitting element 1 (the level of light incident on the solid-state image sensor) because it changes depending on the magnitude of the light emission level of the light emitting element 1.
本発明の実施例では、上記@5図囚に示す場合と、第5
図の)に示す場合とでは処理方法を異ならせている。In the embodiment of the present invention, the case shown in @5 above and the case shown in Figure 5
The processing method is different from the case shown in ) in the figure.
次に第2図及び第3図により動作を説明する。Next, the operation will be explained with reference to FIGS. 2 and 3.
尚、第2図のA−Fは第1図(C於いて同じ記号を付し
た点に出力される信号を示している。Note that A to F in FIG. 2 indicate signals output to points with the same symbols in FIG. 1 (C).
同期信号発生器5は第2図Aに示すようにビデオカメラ
2、A/D変換器3及び処理装置6ンζ力メラ同期信号
を設定周期t、で送出しており、これによってビデオカ
メラ2は撮像動作を繰り返し、 A/D変換器3はビデ
オカメラ2の撮像動作と同期してディジタル4,7号は
変換した画像信号を処理装置6に送出している。また処
理装置6に入力されるカメラ同期信号は後述する画像信
号レベルの変化時間を計測する際に使用される。As shown in FIG. 2A, the synchronization signal generator 5 sends a synchronization signal to the video camera 2, the A/D converter 3, and the processing device 6 at a set period t. repeats the imaging operation, and the A/D converter 3 synchronizes with the imaging operation of the video camera 2, and the digital signals 4 and 7 send converted image signals to the processing device 6. Further, the camera synchronization signal input to the processing device 6 is used when measuring the change time of the image signal level, which will be described later.
処理装置6に測定開始指令を投入すると、当該処理装置
6は第3図(イ)に示すようにカウンタをクリアし、第
3図(ロ)に示すように1第2図Bのショット信号を同
期信号発生器5に送出する。When a measurement start command is input to the processing device 6, the processing device 6 clears the counter as shown in FIG. 3(A) and outputs the shot signals of FIG. The signal is sent to the synchronization signal generator 5.
上記カウンタはカメラ同期信号を計数するために処理装
f6内に設定されたプログラムによるカウンタ(所謂ソ
フトカウンタ)である。同期信号発生器5は上記ショッ
ト信号が入力されてから最初に送出するカメラ同期信号
と同時に駆動パルス発生器4に第2図Cに示す駆動パル
ス送出タイミング信号を送出し、これにより駆動パルス
発生器4は第2図りに示すようにパルス巾t、の駆動パ
ルスを出力する。駆動パルスのパルス巾は10 Q n
5ec程度の極めて短い時間に設定されており発光素子
lは第2図EK示すように瞬間的に発光する。The above-mentioned counter is a counter (so-called soft counter) according to a program set in the processing device f6 to count camera synchronization signals. The synchronization signal generator 5 sends a drive pulse sending timing signal shown in FIG. 4 outputs a driving pulse with a pulse width t as shown in the second diagram. The pulse width of the driving pulse is 10 Q n
The time is set to be extremely short, about 5 ec, and the light emitting element 1 emits light instantaneously as shown in FIG. 2EK.
発光素子1の発光光は第3図(ハ)て示すようにビデオ
カメラ2で撮像される。当該発光素子1の発光は瞬間的
であるが、ビデオカメラ2には固体撮像素子の残像特注
によって暫時撮影像が保持され、これによってビデオカ
メラ2から出力される画像信号はA/D変換器3でディ
ジタル信号に変換されて処理袋f6に入力されろ。The light emitted from the light emitting element 1 is imaged by a video camera 2 as shown in FIG. 3(c). Although the light emitted from the light emitting element 1 is instantaneous, the video camera 2 temporarily retains the captured image by customizing the afterimage of the solid-state image sensor, and the image signal output from the video camera 2 is thereby transmitted to the A/D converter 3. It is converted into a digital signal and input to the processing bag f6.
処理装置6は、画II!信号が入力されると、第3図に
)K示すように画像信号レベルからビデオカメラ2に入
力された発光素子1の発光光の受光レベルが固体撮像索
子の飽和レベルに達しているか否かを判断する。The processing device 6 processes the image II! When a signal is input, as shown in FIG. to judge.
上記発光光の受光レベルがビデオカメラ2の固体撮像素
子の飽和レベルに達しないレベルであるときては、第2
図Fに於いて一点鎖線で示すように画像信号は受光レベ
ルに対応したレベルで固体撮像索子に残留するので、処
理装置6は第3図(ホ)、(へ)K示すように上記画像
信号を処理して発光特性を演算し、発光特注パターンを
出力する。When the light reception level of the emitted light is at a level that does not reach the saturation level of the solid-state image sensor of the video camera 2, the second
Since the image signal remains in the solid-state imaging probe at a level corresponding to the received light level as shown by the dashed line in FIG. Processes the signal, calculates the luminescence characteristics, and outputs a custom-made luminescence pattern.
上記発光光の受光レベルがビデオカメ′f)2の固体撮
像素子の飽和レベル以上のレベルであるとき、すなわち
第2図Fに於いて破線で示すようなレベルのときには実
線で示すように画像信号は飽和レベルでクリップされた
信号となるので、この画像信号から直ちに発光特性を演
算することはできない。そこで処理装置16は固体撮像
素子の受光による電荷の放電によって上記画像信号のレ
ベルが飽和レベルKまで低下するまでの時間、すなわち
前記第4図で説明した時間Tの計測を次のようにして行
なう。すなわち、第3図(ト)に示すように、ビデオカ
メラ2で発光素子1の発光光を受光したのちに同期信号
発生器5から出力されるカメラ同期信号で処理装置6に
設定したカウンタを歩進させ、第3図(イ)に示すよう
に、固体撮像素子に残留している画像のレベルが12!
和レベルまで低下したか否かを検出し、この動作をカウ
ンタを歩進さぜながら画像レベルが飽和レベルに達する
まで繰り返す。When the light receiving level of the emitted light is higher than the saturation level of the solid-state image sensor of the video camera 'f)2, that is, the level shown by the broken line in FIG. Since this is a signal clipped at the saturation level, it is not possible to immediately calculate the light emission characteristics from this image signal. Therefore, the processing device 16 measures the time it takes for the level of the image signal to drop to the saturation level K due to the discharge of the charge caused by the light reception of the solid-state image sensor, that is, the time T explained in FIG. 4, as follows. . That is, as shown in FIG. 3(G), after the video camera 2 receives the light emitted from the light emitting element 1, the camera synchronization signal output from the synchronization signal generator 5 is used to control the counter set in the processing device 6. As shown in Figure 3 (a), the level of the image remaining on the solid-state image sensor is 12!
It is detected whether or not the image level has decreased to the sum level, and this operation is repeated while incrementing the counter until the image level reaches the saturation level.
これによって上記カウンタの値が第2図A(て示すよう
に’n’ となったものとすると上記時間Tは「n−
tl」となる。As a result, if the value of the counter becomes 'n' as shown in Figure 2A, then the time T becomes 'n-
tl".
次に処理装置6は第3図(男に示すように上記カウンタ
の値nが設定値m以上であるか否かを判断する。この設
定値mは、前記第5図囚、旧)で説明したように受光レ
ベルが荷電限界レベル以上であるか否かを判断する値で
ある。すなわち、受光レベルが高ければ画像レベルが飽
和レベルまで低下する時間が長くなるため、この時間か
ら受光レベルが荷電限界レベル以上であるか否かを判断
できることとなり、第5図に於いて、「t、 = mt
、J (t、については第2図A参照)となるようにm
の値を設定すればよい。Next, the processing device 6 determines whether the value n of the counter is greater than or equal to the set value m as shown in FIG. This value is used to determine whether the received light level is equal to or higher than the charging limit level. In other words, if the received light level is high, it takes a long time for the image level to drop to the saturation level, so it can be determined from this time whether the received light level is equal to or higher than the charging limit level. , = mt
, J (see Figure 2A for t).
Just set the value of .
上記カウンタの値nが上記設定値mより小さいときには
固体撮像素子での受光状態は第5図囚に示す状態であり
、前記したように受光レベルは固体撮像素子に残留して
いる画像信号から演算によって求めることができる。す
なわち、第2図Fの部分拡大図に示すように、n回目の
カメラ同期信号の送出時に於ける画像信号レペルt1は
画像信号レベルの減衰特性が一定の関係を保っているこ
とから演算で求めることができ、この画像信号レベルt
1とカウンタの値nとから受光レベルを求めることがで
きる。以上のことから処理装置6は第3図G)に示すよ
うにカウンタの値nによる画像信号の補正を行ない、第
3図けう、(へ)に示すように上記補正を加えて発光特
注を演算し、発光特性パターンを出力する。When the value n of the counter is smaller than the set value m, the light receiving state at the solid-state image sensor is as shown in Figure 5, and as described above, the light receiving level is calculated from the image signal remaining in the solid-state image sensor. It can be found by That is, as shown in the partially enlarged view of FIG. 2F, the image signal level t1 at the time of sending the n-th camera synchronization signal is calculated by calculation since the attenuation characteristics of the image signal level maintain a constant relationship. and this image signal level t
The light reception level can be determined from 1 and the counter value n. Based on the above, the processing device 6 corrects the image signal using the counter value n as shown in FIG. and outputs a light emission characteristic pattern.
上記カウンタの値nが上記設定値mより太きいときKは
固体撮像素子での受光状態は第5図1) K示す状態で
あり、前記したように固体撮像素子に残留している画像
信号から受光レベルを演算で求めることはできない。そ
こで処理装置6は第3図に)、(イ)K示すように固体
撮像素子の残留画像信号をクリアするとともに上記カウ
ンタの値nから受光レベルを推定して当該受光レベルで
固体撮像素子が飽和しをいような絞り値を演算により求
め、第2図Gに示すようにビデオカメラ2の電動絞り機
構21に上記で演算した絞り値を示す信号を送出して第
3図(ロ)に示すように当該電動絞り81構21を上記
絞υ値に設定する。その後前記で説明した第3図(イ)
、(0)、Hの処理を行ない、第3図に)の処理では上
記電動絞り機構21の制御によって受光レベルは第2図
FKfで示すように飽和レベル以下であるので処理が第
3図(ホ)に進み、発光特性の演算が行なわれ発光特注
パターンが出力される。尚、この時点での発光特性の演
算には上記、絞り機構21の絞り値による補正が加えら
れる。When the value n of the counter mentioned above is larger than the set value m, the light receiving state K at the solid-state image sensor is the state shown in FIG. It is not possible to calculate the received light level. Therefore, the processing device 6 clears the residual image signal of the solid-state image sensor as shown in FIG. A desired aperture value is calculated, and a signal indicating the aperture value calculated above is sent to the electric aperture mechanism 21 of the video camera 2 as shown in FIG. 2G, as shown in FIG. 3 (B). The electric aperture 81 structure 21 is set to the aperture υ value as described above. After that, Figure 3 (A) explained above
, (0), and H. In the process shown in FIG. 3), the received light level is below the saturation level as shown by FKf in FIG. Proceeding to step (e), the light emission characteristics are calculated and a custom light emission pattern is output. Note that the above-mentioned correction based on the aperture value of the aperture mechanism 21 is added to the calculation of the light emission characteristics at this point.
以上の動作に於いて、第5図(1の、(、ff)の処理
を省略することもできる。すなわち、受光レベルの大小
を飽和レベルのみで判断し、飽和レベル以上の受光レベ
ルのときは全て較り機構21を制御して固体撮像素子の
入射光量を飽和レベル以下に制御するようにしてもよい
。In the above operation, it is also possible to omit the processing in FIG. The comparison mechanism 21 may be controlled to control the amount of light incident on the solid-state image sensor to be below the saturation level.
また、以上の実施例では時間計測をカメラ同期信号に基
いて行ったが、処理装置のクロック信号に基いて行って
も本発明を実施することができる。Further, in the above embodiments, time measurement was performed based on the camera synchronization signal, but the present invention can also be implemented based on the clock signal of the processing device.
以上、詳細に説明したように、本発明はビデオカメラの
固体撮像素子に残留している画像信号が当該固体撮像素
子の飽和レベルまで低下する時間を計測して当該時間に
よる補正を加えて受光レベルを演算するか、又は当該時
間から演算した絞り値に上記ビデオカメラの絞り機構に
設定して再度被測定発光素子を発光させて発光特性パタ
ーンを得るようVこしたものであり、ビデオカメラの撮
像能力を越えた強いレベルで発光する発光素子であって
もその発光特注を正しく計測でき、また被測定発光素子
に印加する発光電力の印加時間は他めて短い時間に設定
でき、その回数も最大2回でよいので上記発光素子に熱
的ストレスが生ずることがない等、本発明は極めて顕著
な効果を有する。As explained in detail above, the present invention measures the time for the image signal remaining in the solid-state image sensor of a video camera to drop to the saturation level of the solid-state image sensor, and makes corrections based on the time to adjust the received light level. or by setting the aperture value calculated from the time in the aperture mechanism of the video camera to cause the light emitting element to be measured to emit light again to obtain a light emission characteristic pattern. Even if a light-emitting element emits light at a strong level that exceeds its ability, the light emission can be accurately measured, and the application time of the light-emitting power applied to the light-emitting element to be measured can be set to a short time, and the number of times it can be applied is also maximized. The present invention has extremely significant effects, such as the fact that thermal stress does not occur on the light emitting element because it only needs to be applied twice.
第1図は本発明の実施例に係る測定装置のブロック図、
第2図は第1図に示す実施例の動作タイムチャート、第
3図は第1図に示す実施例の制御を示すフローチャート
、第4図及び第5図囚、 a1+)は固体撮像素子の画
像信号特注を説明する図である。
(主な記号)
1・・・被測定発光素子 2・・・ビデオカメラ21
・・・電動絞り機構 6・・・処理装置。FIG. 1 is a block diagram of a measuring device according to an embodiment of the present invention;
Fig. 2 is an operation time chart of the embodiment shown in Fig. 1, Fig. 3 is a flowchart showing control of the embodiment shown in Fig. 1, Figs. 4 and 5, and a1+) are images of the solid-state image sensor. FIG. 3 is a diagram illustrating custom-made signals. (Main symbols) 1...Light emitting element to be measured 2...Video camera 21
...Electric aperture mechanism 6...Processing device.
Claims (1)
該被測定発光素子の発光特性を得るようにした測定装置
に於いて、ビデオカメラに固体撮像素子を有するカメラ
を使用し、被測定発光素子の発光強度が上記固体撮像素
子の受光レベルをその荷電限界以内で飽和させる程度に
高いレベルであるとき、被測定発光素子の瞬間的発光に
よつて撮像した上記固体撮像素子の画像の残像レベルが
飽和レベルを脱するまでの時間を計測し、この時間から
上記被測定発光素子の発光レベルを演算して発光特性を
得るようにした発光素子の発光特性測定方式。 2 固体撮像素子の残像レベルが飽和領域を脱するまで
の時間を、ビデオカメラの撮像同期信号の計数によつて
計測するようにした特許請求の範囲第1項に記載の発光
素子の発光特性測定方式。 3 ビデオカメラで被測定発光素子の発光を撮像して当
該被測定発光素子の発光特性を得るようにした測定装置
に於いて、ビデオカメラに固体撮像素子を有するカメラ
を使用し、被測定発光素子の発光強度が上記固体撮像素
子の受光レベルを飽和させるような高いレベルであると
き、被測定素子の瞬間的発光によつて撮像した上記固体
撮像素子の画像の残像レベルが飽和レベルを脱するまで
の時間を計測し、この時間から上記被測定発光素子の発
光レベルを推定して当該発光レベルで上記固体撮像素子
が飽和しない絞り値を演算し、上記ビデオカメラの絞り
機構を上記絞り値に設定したのち被測定発光素子を再度
瞬間的に発光させて当該ビデオカメラで撮像することに
より発光特性を得るようにした発光素子の発光特注測定
方式。 4 固体撮像素子の残像レベルが飽和領域を脱するまで
の時間を、ビデオカメラの撮像同期信号の計数によつて
計測するようにした特許請求の範囲第3項に記載の発光
素子の発光特性測定方式。[Scope of Claims] 1. In a measuring device that images the light emission of a light emitting element to be measured using a video camera to obtain the light emitting characteristics of the light emitting element to be measured, a camera having a solid-state imaging device is used as the video camera. When the light emission intensity of the light emitting element to be measured is at a level high enough to saturate the light reception level of the solid-state image sensor within its charge limit, the solid-state image sensor captures an image by instantaneous light emission of the light-emitting element to be measured. A method for measuring light emitting characteristics of a light emitting element, in which the time required for the afterimage level of the image to escape the saturation level is measured, and the light emitting level of the light emitting element to be measured is calculated from this time to obtain the light emitting characteristics. 2. Measurement of the light emitting characteristics of the light emitting element according to claim 1, wherein the time until the afterimage level of the solid-state image sensor leaves the saturation region is measured by counting the imaging synchronization signal of the video camera. method. 3. In a measurement device that uses a video camera to image the light emitted from a light emitting element to be measured to obtain the luminescence characteristics of the light emitting element to be measured, a camera having a solid-state image sensor is used as the video camera, and the light emitting element to be measured is When the light emission intensity of is at a high level that saturates the light reception level of the solid-state image sensor, until the afterimage level of the image of the solid-state image sensor captured by the instantaneous light emission of the device under test exceeds the saturation level. estimating the light emission level of the light emitting element to be measured from this time, calculating an aperture value at which the solid-state image sensor is not saturated at the light emission level, and setting the aperture mechanism of the video camera to the aperture value. A custom light emitting measurement method for a light emitting element in which the light emitting element to be measured is then momentarily caused to emit light again and the light emitting characteristics are obtained by capturing an image with the video camera. 4. Measurement of the light emitting characteristics of the light emitting device according to claim 3, wherein the time until the afterimage level of the solid-state image pickup device exits the saturation region is measured by counting the imaging synchronization signal of the video camera. method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61188077A JPS6344141A (en) | 1986-08-11 | 1986-08-11 | Light emitting characteristic measuring system for light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61188077A JPS6344141A (en) | 1986-08-11 | 1986-08-11 | Light emitting characteristic measuring system for light emitting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6344141A true JPS6344141A (en) | 1988-02-25 |
JPH0262172B2 JPH0262172B2 (en) | 1990-12-25 |
Family
ID=16217299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61188077A Granted JPS6344141A (en) | 1986-08-11 | 1986-08-11 | Light emitting characteristic measuring system for light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6344141A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0273129A (en) * | 1988-09-09 | 1990-03-13 | Fuji Electric Co Ltd | Device for measuring light distribution of head lamp for automobile or the like |
CN102323528A (en) * | 2010-04-01 | 2012-01-18 | 夏普株式会社 | Luminescence measuring apparatus, Luminescence assay, control program and readable medium recording program performing |
JP2015210134A (en) * | 2014-04-24 | 2015-11-24 | 豊田合成株式会社 | Optical measuring device and wavelength measurement method of light-emitting element |
-
1986
- 1986-08-11 JP JP61188077A patent/JPS6344141A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0273129A (en) * | 1988-09-09 | 1990-03-13 | Fuji Electric Co Ltd | Device for measuring light distribution of head lamp for automobile or the like |
CN102323528A (en) * | 2010-04-01 | 2012-01-18 | 夏普株式会社 | Luminescence measuring apparatus, Luminescence assay, control program and readable medium recording program performing |
JP2015210134A (en) * | 2014-04-24 | 2015-11-24 | 豊田合成株式会社 | Optical measuring device and wavelength measurement method of light-emitting element |
Also Published As
Publication number | Publication date |
---|---|
JPH0262172B2 (en) | 1990-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4530571B2 (en) | 3D image detection device | |
US5987261A (en) | Strobe device | |
US12041351B2 (en) | Distance measurement device, distance measurement method, and distance measurement program | |
US20230251377A1 (en) | Distance measurement device, distance measurement method, and distance measurement program | |
US6456368B2 (en) | Three-dimensional image capturing device | |
SE0103286L (en) | Optical sensor device and method for controlling its exposure time | |
JP3820087B2 (en) | 3D image detection device | |
JP4105801B2 (en) | 3D image input device | |
US6683676B1 (en) | Three-dimensional image capturing device | |
US6437853B2 (en) | Three-dimensional image capturing device | |
JPS6344141A (en) | Light emitting characteristic measuring system for light emitting element | |
US6714734B2 (en) | Camera | |
JP2001050866A (en) | Apparatus and method for inspecting spray | |
KR100741363B1 (en) | Lensmeter | |
JP4369575B2 (en) | 3D image detection device | |
JP4369574B2 (en) | 3D image detection device | |
JP4270658B2 (en) | 3D image detection device | |
JP2003194949A (en) | Apparatus and method for radiography | |
JPH05281038A (en) | Light intensity distribution measuring device for pulsed laser beam | |
JPH0670226A (en) | Camera and its preliminary method for photometory and equipment therefor and method | |
JP3001013B2 (en) | Distance measuring device | |
JP4250281B2 (en) | 3D image detection device | |
JP2002296032A (en) | Position detector | |
JP4289382B2 (en) | Monitoring device and imaging device. | |
JP2013044997A (en) | Imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |