JPS6343885B2 - - Google Patents
Info
- Publication number
- JPS6343885B2 JPS6343885B2 JP57082319A JP8231982A JPS6343885B2 JP S6343885 B2 JPS6343885 B2 JP S6343885B2 JP 57082319 A JP57082319 A JP 57082319A JP 8231982 A JP8231982 A JP 8231982A JP S6343885 B2 JPS6343885 B2 JP S6343885B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- layer
- conductor
- liquid resin
- insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 claims description 148
- 238000000576 coating method Methods 0.000 claims description 88
- 238000009413 insulation Methods 0.000 claims description 88
- 239000011248 coating agent Substances 0.000 claims description 76
- 239000004020 conductor Substances 0.000 claims description 74
- 239000007788 liquid Substances 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 41
- 229920005989 resin Polymers 0.000 claims description 41
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 239000011810 insulating material Substances 0.000 claims description 14
- 239000000499 gel Substances 0.000 claims description 11
- 239000010408 film Substances 0.000 claims description 9
- 239000012774 insulation material Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 238000010292 electrical insulation Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims 1
- 239000000615 nonconductor Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 129
- 239000011247 coating layer Substances 0.000 description 16
- 230000005855 radiation Effects 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 4
- 239000011111 cardboard Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011345 viscous material Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Landscapes
- Insulating Of Coils (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Description
【発明の詳細な説明】
発明の分野
本発明は電気導体用絶縁性支持物に関し、さら
に詳しくは電気コイルの製法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to insulating supports for electrical conductors, and more particularly to methods of making electrical coils.
発明の背景
従来、これまでのコイル、例えば変圧器のコイ
ル、種々の導体又は巻線層は、セルロース絶縁
物、例えば油紙又は厚紙によつて互いに支持し絶
縁している。導体を支持及び絶縁する従来の非セ
ルロース絶縁材料を使用した他のコイル構造物、
例えば注型樹脂、及びセルロースを用いていない
コイルは、短絡、湿度劣化、機械的な振動及び火
災に対して耐久性がある限りにおいて利点を有し
ており、且つガス発生及び熱老化を受けにくい。
残念ながら、従来の設計によるセルロースを使用
しないコイルもまたある種の欠点を有しており、
その主なものは手作業及び装填による相対的にコ
スト高であり、収縮空洞を除去する困難さであ
る。BACKGROUND OF THE INVENTION Conventionally, conventional coils, such as transformer coils, and various conductor or winding layers are supported and insulated from each other by cellulosic insulation, such as oiled paper or cardboard. Other coil structures using conventional non-cellulose insulation materials to support and insulate the conductors;
For example, cast resin and cellulose-free coils have advantages insofar as they are resistant to short circuits, moisture degradation, mechanical vibrations and fire, and are less susceptible to gassing and heat aging. .
Unfortunately, non-cellulose coils of conventional design also have certain drawbacks.
The main ones are the relatively high cost of manual labor and loading, and the difficulty of removing the shrinkage cavity.
発明の開示
本発明の主な目的は上述のようなセルロースを
使用していない構造物の問題点を軽減する方法を
提供することであり、本発明は巻線支持材、液体
樹脂塗布装置および樹脂ゲル化装置を用意し、
前記巻線支持材と液体樹脂塗布装置および樹脂
ゲル化装置との間に相対的回転運動を与え、
導体を巻線支持材上に巻回することによつて少
なくとも1層の導体巻線を備えた第1巻線層を形
成し、
前記第1巻線層上に所定の厚さに電気絶縁物皮
膜を設けることからなる実質上連続式操作により
セルロースを含まない電気巻線構造体の製造方法
において、
前記電気絶縁物皮膜を設ける工程が前記相対的
回転運動による各回転運動中に液体樹脂塗布装置
からの液体樹脂絶縁物の薄い皮膜を塗布して直ち
にその場で塗布した液体樹脂絶縁物皮膜を各回転
毎に巻線層を支持するのに充分な硬さにゲル化
し、液体樹脂絶縁物皮膜の1回転毎に塗布した厚
さを液体樹脂絶縁物皮膜が各回転毎にゲル化する
時に起こる収縮を収容して収縮による空洞の最大
寸法を調整且つ制限するように選択することによ
つて多数回の回転により電気絶縁層を形成させ、
ゲル化した樹脂電気絶縁物上に導体を巻回する
ことによつて少なくとも1層の導体巻線層からな
る第2巻線層を形成させることを特徴とする、実
質上連続式操作でセルロースを含まない電気巻線
構造体の製造方法に存する。DISCLOSURE OF THE INVENTION The primary purpose of the present invention is to provide a method for alleviating the problems of non-cellulose structures as described above, and the present invention provides a winding support, a liquid resin applicator, and a resin coating system. providing a gelling device, applying relative rotational motion between the winding support and the liquid resin applicator and the resin gelling device; and winding the conductor on the winding support, forming a first winding layer with a layer of conductor windings, and applying an electrically insulating coating to a predetermined thickness on said first winding layer; In the method for manufacturing a wire-wound structure, the step of providing an electrical insulating film includes applying a thin film of a liquid resin insulator from a liquid resin coating device during each rotational movement due to the relative rotational movement, and immediately applying the thin film of a liquid resin insulating film on the spot. The applied liquid resin insulation film is gelled to a hardness sufficient to support the winding layer with each rotation, and the liquid resin insulation film is The gelled resin electrical insulation is formed by forming an electrically insulating layer through multiple rotations, by selecting a method to accommodate the shrinkage that occurs during gelling with each rotation and to adjust and limit the maximum dimension of the cavity due to the shrinkage. A substantially continuously operated, cellulose-free electrical winding structure characterized in that a second winding layer comprising at least one conductor winding layer is formed by winding a conductor over an object. It lies in the method of manufacturing the body.
上述した手順の工程は導体層の所望の数をうる
のに必要な回数くり返すことができ、マンドレ
ル、絶縁支持部材又は絶縁支持部材上に施した第
1導体層は、絶縁物質の第1液体被覆層を施して
ゲル化する基材となり、このゲル化した絶縁被覆
層に支持された次後の各導体層は、施され且つゲ
ル化される次の絶縁液体被覆層の基材となる。 The steps of the above-described procedure may be repeated as many times as necessary to obtain the desired number of conductive layers, the first conductive layer applied on the mandrel, insulating support member or insulating support member being a first liquid of insulating material. A coating layer is applied and gelled to provide a substrate, and each subsequent conductor layer supported by the gelled insulating coating layer provides a substrate for the next insulating liquid coating layer to be applied and gelled.
本発明で使用する用語“ゲル化”は液体絶縁物
上に施した導体を機械的に支持するに十分な程度
の稠密さをもつが、しかし導体にとつては幾らか
嵌り込むことができるのに充分な可塑性を残さ
せ、それにより滑動しないように固定化する程度
に部分重合させることを意味する。さらに、液体
絶縁被覆は導体層に施され、導体層はゲル化した
絶縁被覆上に施すので、導体層並びに各層のすべ
ての導体部分は完全に絶縁材で結合されることと
なり、重合による収縮は絶縁構造物が形成される
に従い順応され、これらすべてがコイルの絶縁が
均質で且つ本質的に空洞を含まない硬化体であ
り、巻線の本質的に全表面または絶縁硬化体中に
埋設された巻線と物理的に緊密に接触しているコ
イルの製造に寄与する。 As used herein, the term "gelling" refers to a liquid insulation that is dense enough to provide mechanical support to a conductor, but which allows for some embedding of the conductor. This means that the material is partially polymerized to the extent that it retains sufficient plasticity so that it is immobilized so that it does not slide. Furthermore, since the liquid insulation coating is applied to the conductor layer and the conductor layer is applied to the gelled insulation coating, the conductor layer and all conductor parts of each layer are completely bonded by the insulation material, and shrinkage due to polymerization is avoided. As the insulating structures are formed, they are all adapted so that the insulation of the coil is a homogeneous and essentially void-free cured body, either on essentially the entire surface of the winding or embedded in the insulating cured body. Contributes to the production of coils that are in close physical contact with the windings.
液体絶縁物質は好適には適当なエネルギー源例
えば赤外線装置又は紫外線装置又は電子ビーム装
置からの放射線の照射によりゲル化される。現
在、紫外線照射が最も実際的であると考えられ、
従つて最も好適である。 The liquid insulating material is preferably gelled by irradiation with radiation from a suitable energy source, such as an infrared or ultraviolet device or an electron beam device. Currently, ultraviolet irradiation is considered the most practical,
Therefore, it is the most suitable.
絶縁物質は適当な架橋可能な液体樹脂例えばア
クリルエポキシで良く、放射線照射により即座に
ゲル化可能な実質的に無充填の樹脂が好適であ
る。 The insulating material may be any suitable cross-linkable liquid resin, such as an acrylic epoxy, preferably a substantially unfilled resin that can readily gel upon exposure to radiation.
ゲル化する前の液体絶縁物の粘性及び各最終被
覆の所望の厚さなどのような因子に依存して、各
基材(すなわち、マンドレル、絶縁支持部材又は
予め被覆された導体層)上の絶縁被覆は単層被覆
として施すか、又は薄い液体絶縁層を1枚ずつ施
して、次の層の前にゲル化することによつて数層
の薄層を施しても良い。液体絶縁物の粘性は被覆
層が形成される時に気泡の巻き込みや空洞(ボイ
ド)が発生する機会を最少となし、しかしゲル化
前に施した液体絶縁材の望ましくない流れを最小
とするために充分な粘性とすべきである。 Depending on factors such as the viscosity of the liquid insulation before gelling and the desired thickness of each final coating, the The insulating coating may be applied as a single layer coating or in several thin layers by applying one thin liquid insulating layer and gelling before the next layer. The viscosity of the liquid insulation is designed to minimize the chance of entrained air bubbles and voids as the coating layer is formed, but also to minimize undesirable flow of the applied liquid insulation prior to gelation. It should have sufficient viscosity.
これまでに述べた利点並びに記述が進むに従つ
て明らかとなる他の利点に加えて、製造されるコ
イル構造物がマンドレル又はコイル巻型上にあつ
て、マンドレル又はコイル巻型が工業的な巻線ス
ピードで回転している間に巻層の絶縁はその場所
で成されるので、本発明による方法はコイル製造
の業界にかなり良く適合できる。 In addition to the advantages previously mentioned, and others that will become apparent as the description progresses, it is also possible to provide the advantage that the coil structure to be manufactured is on a mandrel or coil former, and that the mandrel or coil former is suitable for industrial winding. Since the insulation of the winding layers is done in situ while rotating at line speed, the method according to the invention can be adapted very well to the coil manufacturing industry.
本発明を使用した場合、本発明方法は好適には
回転マンドレル又はコイル巻型上に液体絶縁被覆
層1層又は数層となして施し、次いで即座に各層
をゲル化させることによつて回転マンドレル又は
コイル巻型上に絶縁被覆を形成する工程を含み、
さらに上述の絶縁被覆層上に導電体層を巻き、前
記導電体層上に上述のようにゲル化した絶縁被覆
層を形成させ、その上に他の導電体層を巻き、コ
イル製造工程が完了するまで上述の工程をくり返
すことを含有する。コイル製造工程が完了した
後、最終生成物に適当な硬化処理を施してゲル化
した絶縁材を硬化させる。所望により、コイル形
成操作の中で適当に加熱することにより融解する
例えばポリエチレンのような最終コイルから後で
除去できる材料の帯状片を液体絶縁物に導入する
ことによつて、冷却ダクトを設けることができ
る。 When using the present invention, the process is preferably carried out on a rotating mandrel or coil former by applying one or several layers of liquid insulating coating onto the rotating mandrel or coil former, and then immediately gelling each layer. or a step of forming an insulating coating on the coil former,
Furthermore, a conductive layer is wound on the above-mentioned insulating coating layer, a gelled insulating coating layer is formed on the conductive layer as described above, and another conductive layer is wound on top of the gelled insulating coating layer, and the coil manufacturing process is completed. This includes repeating the above steps until the process is completed. After the coil manufacturing process is completed, the final product is subjected to a suitable curing treatment to harden the gelled insulation. Optionally, cooling ducts may be provided by introducing into the liquid insulation strips of material that can be removed later from the final coil, such as polyethylene, which is melted by appropriate heating during the coil-forming operation. I can do it.
本発明により製造したコイルの占積率は慣用の
例えば紙巻コイルよりもはるかに良好であると認
められる。新規なコイル巻線方法は導線の平均巻
回数及び全コイル寸法(コイルに必要なコアの大
きさを決定する)の減少を可能とし、さらに、コ
ストのかかるコイルの接着及び乾燥作業を取り除
き、慣用のセルロース物質例えば紙を使用した絶
縁系とは異なつて、本発明方法によるコイルの製
造では絶縁の目的で油を使用しないので、油含浸
問題を無くし、これらすべての点から先行技術の
コイル構造物に比して非常にコストが低くなる。 It is observed that the space factor of the coils produced according to the invention is much better than conventional, for example, paper-wound coils. The new coil winding method allows for a reduction in the average number of turns of conductor and overall coil size (which determines the core size required for the coil), and also eliminates costly coil gluing and drying operations, making it easier to Unlike insulation systems using cellulosic materials such as paper, the production of coils according to the method of the invention does not use oil for insulation purposes, thereby eliminating oil impregnation problems and, in all these respects, compared to prior art coil structures. The cost is much lower than that of
さらに、本発明によるコイル巻線での重要な利
点は絶縁の勾配に関係している。導体の連続層を
形成するように導線をコイル両端間でコイル軸の
まわりにらせん状に巻き進み一巻き戻すことによ
つて電気巻線を製造する場合、層から層への誘電
応力は隣接する2つの巻線層の互いに接続してい
る端部では相対的に低く、これらの巻線層の相互
に接続していない端部の方に向つて徐々に増大す
る。巻線又は巻線層が全長すなわちコイルの軸上
寸法に均一に離れた慣用のコイル構造物の場合に
はコイル全体の大きさは巻線層間の絶縁材が最高
誘電応力に耐えるために持たなければならない厚
さによつて決定される。すなわち、それは導体巻
線層の非接続端で必要な厚さによつて決定され
る。 Furthermore, an important advantage in the coil winding according to the invention relates to the slope of the insulation. When electrical windings are manufactured by spirally winding a conductor between the ends of the coil around the coil axis to form successive layers of conductor, the dielectric stress from layer to layer is It is relatively low at the mutually connected ends of the two winding layers and increases gradually towards the mutually unconnected ends of these winding layers. In the case of conventional coil constructions in which the windings or winding layers are spaced uniformly over the length or axial dimension of the coil, the overall size of the coil must be such that the insulation between the winding layers can withstand the highest dielectric stresses. Determined by the required thickness. That is, it is determined by the required thickness at the non-connecting ends of the conductor winding layers.
本発明方法では絶縁層の全容積、従つて全コイ
ル寸法はコイル巻回中に絶縁材の厚さに勾配を付
することによつて、すなわち誘電応力の変化に従
つて隣接巻線層間の絶縁層の厚さを変えることに
より容易にかなり減少させることが可能である。 In the method according to the invention, the total volume of the insulation layer, and therefore the total coil dimension, is determined by grading the thickness of the insulation material during coil winding, i.e., by adjusting the insulation between adjacent winding layers as the dielectric stress changes. It can easily be significantly reduced by varying the layer thickness.
本発明の好適な実施態様によれば、上述のコイ
ル構造物を回転させながら液体絶縁材の重なり合
つた層を施し即座にゲル化する際に、導体巻線層
すなわち巻線部分に対して高応力を有する下層の
巻線部分の端部から下層の巻線部分全体に亘つて
測定した時の種々の絶縁層の幅が絶縁層から後続
する絶縁層へと徐々に増大するように、従つて生
成する絶縁被覆がくさび状又はテーパをなす断面
となる、すなわち勾配付きとなるように巻線層ま
たは巻線部分に絶縁被覆を施してゲル化させるこ
とによつて勾配付き絶縁被覆がコイル構造物の導
体巻線層すなわち導体部分に形成される。すなわ
ち絶縁層の厚さは高応力端で最大となり、被覆さ
れた下層巻線部分の低応力端に向つて徐々に減少
する。 According to a preferred embodiment of the invention, when applying and immediately gelling the overlapping layers of liquid insulation while rotating the coil structure described above, a high so that the width of the various insulation layers, when measured from the end of the stressed underlying winding section over the entire underlying winding section, gradually increases from one insulation layer to the subsequent insulation layer; By applying the insulation coating to the winding layer or the winding portion and gelling it so that the resulting insulation coating has a wedge-shaped or tapered cross section, that is, it has a slope, the sloped insulation coating can be used to form a coil structure. It is formed in the conductor winding layer, that is, the conductor portion. That is, the thickness of the insulating layer is maximum at the high stress end and gradually decreases toward the low stress end of the covered lower winding portion.
逐次施した絶縁層の巾のこの漸進的変化は絶縁
物アプリケータ及びコイル構造物との間でコイル
構造物が回転している時に行われる軸方向に相対
的移動によつて達成される。 This gradual change in the width of the successively applied insulation layers is accomplished by relative axial movement between the insulation applicator and the coil structure as the coil structure is rotated.
本発明に基く他の実施態様では、所望のくさび
状断面状又は長方形断面(これはひき続き例えば
ゴム製の刃又同様なものなどのワイパーで所望の
くさび状断面形状を得るために再成形する)の絶
縁材の押出した層を造るような形状のノズルから
押出成形して単層すなわち液体絶縁材の被覆を導
体巻線上に施してゲル化して、厚さの変化する絶
縁被覆層をコイル構造物の導体巻線層上に形成す
る。 In another embodiment according to the invention, the desired wedge-shaped cross-sectional shape or rectangular cross-sectional shape (which is subsequently reshaped with a wiper such as a rubber blade or the like to obtain the desired wedge-shaped cross-sectional shape) is provided. ) is extruded through a nozzle shaped to create an extruded layer of insulation material, a single layer or liquid insulation coating is applied over the conductor winding and gelled, and the insulation coating layer of varying thickness is formed into a coil structure. Formed on the conductor winding layer of the object.
本発明の好適な実施態様の説明
以下、図に基き本発明の好適な実施態様を説明
する。DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION Hereinafter, preferred embodiments of the present invention will be described based on the drawings.
第1図を参照すると、これはコイル形成マンド
レル4上にある慣用の変圧器用コイルの一部を示
し、導体巻線層3a,3b及び3cがコイルの巻
線の一部を形成しており、これらは紙包装又は厚
紙チユーブ2a,2b及び2cの形のセルロース
絶縁物によつて互いに支持され絶縁されている。
代表的にはこのようなコイルは、マンドレル4上
にセルロース絶縁物2aの第1の包装又はチユー
ブを施し、次いでその上にコイルの一端から他端
まで第1導体巻線層3aを第1図の最も下の矢印
の示すように巻き、その後導体巻線層3a上に絶
縁体の第2包装又はチユーブ2bを施し、次にそ
の上に逆方向に第2の巻線層3bを巻き、コイル
が完成するまでこれをくり返すことによつて連続
工程で製造される。 Referring to FIG. 1, this shows a portion of a conventional transformer coil on a coil-forming mandrel 4, with conductor winding layers 3a, 3b and 3c forming part of the windings of the coil; These are supported and insulated from each other by cellulose insulation in the form of paper wrappers or cardboard tubes 2a, 2b and 2c.
Typically such a coil is constructed by applying a first wrap or tube of cellulose insulation 2a on a mandrel 4, and then depositing thereon a first conductor winding layer 3a from one end of the coil to the other, as shown in FIG. Then, a second wrapping or tube 2b of insulator is applied on the conductor winding layer 3a, and then a second winding layer 3b is wound on top of it in the opposite direction to complete the coil. It is manufactured in a continuous process by repeating this process until it is completed.
第2図は本発明による第3図及び第4図に示す
ようなセルロースを使用しないコイルの製法を示
す略図である。第2図において、番号4は再びマ
ンドレルを示し、番号5はペイントローラーのよ
うなアプリケータを示し、番号6は巻線部分を、
番号7はエナメル銅線のような導体を、番号9は
ゲル化ステーシヨンをそれぞれ示し、番号10は
マンドレル4上のコイル構造物をコイル製造作業
で回転する方向を示し、番号17はアプリケータ
5により施した絶縁被覆層を示す。すでに述べた
ように、ゲル化ステーシヨン9は適当な各放射線
源例えば赤外線装置又は紫外線装置又は電子ビー
ム装置を含んでもよいが、紫外線の放射線装置が
好適である。 FIG. 2 is a schematic diagram illustrating a method of manufacturing cellulose-free coils as shown in FIGS. 3 and 4 according to the present invention. In Figure 2, number 4 again indicates the mandrel, number 5 indicates the applicator, such as a paint roller, and number 6 indicates the winding section.
Number 7 indicates a conductor such as enamelled copper wire, number 9 indicates a gelling station, number 10 indicates the direction in which the coil structure on the mandrel 4 is rotated in the coil manufacturing operation, and number 17 indicates the direction in which the coil structure on the mandrel 4 is rotated by the applicator 5. The applied insulation coating layer is shown. As already mentioned, the gelling station 9 may contain any suitable radiation source, such as an infrared device or an ultraviolet device or an electron beam device, although an ultraviolet radiation device is preferred.
第2図はコイル製造作業が進められている状態
でのコイル製造作業を示している。第3図から本
発明の実施態様の全コイル製造作業は以下の工程
からなることを示している:すなわち、マンドレ
ル4上に絶縁基材13を施す工程;絶縁基材13
上に1次すなわち低電圧側コイルを、マンドレル
を回すことにより施しすなわち絶縁基材13上に
数層の絶縁層15例えばエナメル塗布導体片を
次々に重ねて施し、巻いた絶縁層15上にゲル化
した絶縁被覆17を施す工程;第2すなわち高圧
側コイルの一部として導体巻線19の層を形成す
るために、ゲル化した被覆17上にコイルの一端
から他端まで、好適には絶縁した例えばエナメル
導線を第2図のようにらせん状に巻く工程;この
導体巻線層19にゲル化した絶縁被覆21を施す
工程;絶縁被覆21上に上記と同じ導線を逆の軸
方向にして導体巻線層23をらせん状に巻く工
程;導体巻線層23を絶縁被覆25、好適にはゲ
ル化した被覆で覆う工程を含む。絶縁被覆層1
7,21及び25は第3図に示すようにそれぞれ
重なり部分17′,21′及び25′を形成し、隣
接巻線部分又は巻線部分の両端のアークーオーバ
から最大限に保護するために、コイルの両端で上
記絶縁被覆層はそれぞれ巻線15及び巻線層1
9,23の端部を覆う。 FIG. 2 shows the coil manufacturing operation in progress. FIG. 3 shows that the entire coil manufacturing operation of the embodiment of the invention consists of the following steps: applying the insulating base material 13 on the mandrel 4;
A primary or low voltage side coil is applied on top by rotating a mandrel, that is, several layers of insulation 15, such as enamel-coated conductor pieces, are layered one after another on the insulation base material 13, and gel is applied on the wound insulation layer 15. Applying an insulating coating 17, preferably an insulating coating, on the gelled coating 17 from one end of the coil to the other in order to form a layer of conductor winding 19 as part of the second or high voltage side coil. For example, a step of winding an enamel conductive wire in a spiral shape as shown in FIG. 2; a step of applying a gelled insulation coating 21 to this conductor winding layer 19; The step includes the step of spirally winding the conductor winding layer 23; and the step of covering the conductor winding layer 23 with an insulating coating 25, preferably a gelled coating. Insulating coating layer 1
7, 21 and 25 form overlapping sections 17', 21' and 25', respectively, as shown in FIG. At both ends of the insulating coating layer are a winding 15 and a winding layer 1, respectively.
Cover the ends of 9 and 23.
マンドレル4上の基材13は適当な樹脂材料か
ら予め造られた管状部材で、マンドレル上を滑動
装着したものでもよく、又は被覆層17及び2
1、及び好適にはさらに被覆層25と同様に絶縁
被覆層を形成したもの、すなわちアプリケータ5
(第2図)により粘性液体の絶縁物質を施し、矢
印10の方向にマンドレル4を回転させゲル化ス
テーシヨン9を通過させて放射線を受けて液体絶
縁物を即座にゲル化したものでもよい。 The substrate 13 on the mandrel 4 may be a prefabricated tubular member of a suitable resin material and slidably mounted on the mandrel, or the base material 13 on the mandrel 4 may be a prefabricated tubular member made of a suitable resin material and may be slidably mounted on the mandrel, or
1, and preferably further formed with an insulating coating layer similar to the coating layer 25, that is, the applicator 5
(FIG. 2), a viscous liquid insulating material may be applied, the mandrel 4 is rotated in the direction of arrow 10, the material is passed through a gelling station 9, and the liquid insulating material is immediately gelled by being exposed to radiation.
各絶縁被覆層13,17,21又は25の厚さ
は、被覆の必要な絶縁強度すなわち又は耐電圧、
機械的強度などに依存して変更してもよく、所望
の全被覆層の厚さ、施す液体絶縁物の粘性、コイ
ル巻線スピード等に依存して、単一層被覆又は複
層被覆のように種々の被覆を形成してもよい。 The thickness of each insulating coating layer 13, 17, 21 or 25 is determined by the required insulation strength of the coating, or withstand voltage.
Variations may be made depending on the mechanical strength, etc., such as single layer or multi-layer coating, depending on the desired total coating layer thickness, viscosity of the liquid insulation applied, coil winding speed, etc. Various coatings may be formed.
マンドレル4を回転し、アプリケータ5により
液体絶縁物の比較的薄い層を数枚順に上に重ねて
施し、ゲル化ステーシヨン9でそれらを瞬間的に
ゲル化することによつて、マンドレルを回転して
いる間に多層被覆が形成される。絶縁物の液体層
は即座にゲル化する。例えば各々1.0mm(40ミル)
の厚さの5層〜10層の液体層は互いに重ね合わせ
て約5.0〜約10.0mm(0.2〜0.4インチ)の厚さの被
覆を造るか、或いは各々0.1mm(4ミル)の厚さ
の30層〜50層の液体層を互いに重ね合せて3.0〜
5.0mm(0.1〜0.2インチ)の厚さの被覆が造られ
る。 The mandrel 4 is rotated, and the applicator 5 applies several relatively thin layers of liquid insulation one on top of the other, and the gelling station 9 instantaneously gels them. During this time a multilayer coating is formed. The liquid layer of insulation immediately gels. For example, each 1.0mm (40mil)
5 to 10 liquid layers, each 0.1 mm (4 mil) thick, can be stacked on top of each other to create a coating about 5.0 to 10.0 mm (0.2 to 0.4 inch) thick, or each 0.1 mm (4 mil) thick. 3.0~ by stacking 30~50 liquid layers on top of each other
A 5.0 mm (0.1-0.2 inch) thick coating is created.
液体絶縁物の薄層を他の薄層上に塗布し直ちに
ゲル化することによつて絶縁被覆を重ね合わせて
つくることは、こうして薄膜に施された液体絶縁
物は、隣接する導体部分間の空間穴及び空隙中に
容易に流れ込んでそれらの空間、穴、空隙をなく
し、小さな汚染物質が存在した場合、完成した被
覆の絶縁破壊強度を減少するが、これを完全に覆
い効果的に絶縁する限りにおいて重大な利用を提
供する。もちろん絶縁物が層上に層を重ねて施し
た場合でも、液体として施し硬化でなく丁度ゲル
化した時、次の層を施す前のゲル化層は、次の層
と層状でなく緻密で均質な被覆を与えると思われ
る。このように、“複層被覆”の表現の一部とし
てここで用いる用語“複層(multi―lager)”は
被覆を施す方法に基くものであり完成した被覆の
構造を意味するものではない。 The creation of superimposed insulation coatings by applying one thin layer of liquid insulation over another and immediately gelling allows the liquid insulation applied to the thin film to form a layer between adjacent conductor sections. Easily flows into voids and voids, eliminating those voids, pores, and voids, reducing the breakdown strength of the finished coating if small contaminants are present, but completely covering it and effectively insulating it. Provide significant use insofar as possible. Of course, even if the insulating material is applied in layers on top of each other, when it is applied as a liquid and just gels rather than hardens, the gelled layer before applying the next layer will not be layered with the next layer but will be dense and homogeneous. It is thought that it provides a good covering. Thus, the term "multi-layer" as used herein as part of the expression "multi-layer coating" is based on the method of applying the coating and does not imply the structure of the finished coating.
所望により、予め絶縁された巻線の導体帯状片
15を所定のように巻くときに、アプリケータ5
(第2図)により絶縁物の液体層を施し、こうし
て施した液体層をゲル化ステーシヨン9で放射線
を受けさせることによつて即座にゲル化させるこ
とによつて第1巻線の導体帯状片層15間に余分
の絶縁物を設けることができる。 If desired, when winding the conductor strip 15 of the pre-insulated winding in the prescribed manner,
A conductor strip of the first winding is formed by applying a liquid layer of insulating material according to the method shown in FIG. Extra insulation can be provided between layers 15.
第1巻線層は第3図の実施態様でらせん状すな
わち帯状導体を層状に巻いているが、第2図に示
すと同様にらせん状に巻いた導線から造つてもよ
くさらに、第2巻線はここでは導線かららせん状
に巻かれたものとして示されているが、この実施
態様の第1巻線層15と同様に導体帯状物質を層
状に巻くことで形成することができる。もちろん
この実施態様で使用した導体層15及び導体巻線
層19,23の数は本発明の範囲に関して限定的
なものとして考えてはならない。 In the embodiment shown in FIG. 3, the first winding layer is formed by winding a spiral or strip-shaped conductor in a layered manner, but it may also be made from a spirally wound conductor as shown in FIG. Although the wire is shown here as being helically wound from a conducting wire, it could be formed by winding a conductive strip material in layers, similar to the first winding layer 15 of this embodiment. Of course, the number of conductor layers 15 and conductor winding layers 19, 23 used in this embodiment should not be considered as limiting with respect to the scope of the invention.
巻線15又は各巻線層19または23を形成し
た時に巻線層15及び各巻線層19又は23の両
端に絶縁層を施された両端部絶縁層を直ちにゲル
化することによつて、絶縁被覆について述べたの
と同様にして被覆17,21,25とは独立に絶
縁重なり部分17′,21′及び25′をつくるこ
とができる。 When the winding 15 or each winding layer 19 or 23 is formed, the insulation coating is formed by immediately gelling the insulating layers at both ends of the winding layer 15 and each winding layer 19 or 23. The insulating overlaps 17', 21' and 25' can be produced independently of the coatings 17, 21, 25 in the same manner as described above.
好適な他の方法では、絶縁材を塗布する巻線ま
たは巻線層の両端部を越えて過剰に施して重なり
合うようにし、こうして造つた重なり合つた部分
を被覆の他の部分と一緒にゲル化することによつ
てそれぞれの絶縁被覆17,21,25と同時に
重なり合う被覆17′,21′,25′を造ること
もできる。 Another preferred method is to over-apply the insulation over the ends of the winding or winding layer to be applied so that it overlaps, and to gel the resulting overlap with the rest of the coating. By doing so, it is also possible to create coatings 17', 21', 25' that overlap the respective insulation coatings 17, 21, 25 at the same time.
第3図及び第4図からわかるように、コイル構
造物が完成した時除去できる適当な物質の帯状片
又は複数の帯状片35を外側絶縁被覆25に巻く
ことによつて、冷却ダクトを容易に造ることがで
きる。すなわち、所望の厚さに形成した絶縁被覆
25上に帯状片35を所望の位置に適切に置き、
次いでマンドレル4を連続的に回転してさらに樹
脂物で覆う。コイル巻線作業が終りコイル構造物
が完成した時、帯状板35を除けば冷却液体例え
ば変圧器用油を通すためのダクトが後に残され
る。帯状板35がつくられる適当な物質は、完成
コイルを冷媒に浸す前に例えば通電することによ
り、後で溶融できるポリエチレンである。 As can be seen in FIGS. 3 and 4, the cooling ducts can be easily constructed by wrapping the outer insulation sheathing 25 with a strip or strips 35 of a suitable material that can be removed when the coil structure is completed. can be built. That is, the strip 35 is appropriately placed at a desired position on the insulating coating 25 formed to a desired thickness,
The mandrel 4 is then continuously rotated and further covered with resin. When the coil winding operation is finished and the coil structure is completed, the strip 35 is removed, leaving behind a duct for the passage of cooling liquid, such as transformer oil. A suitable material from which the strips 35 are made is polyethylene, which can be melted later, for example by applying an electric current, before immersing the finished coil in the refrigerant.
第5,6及び7図は本発明に基き絶縁物の厚さ
に勾配をつけた電気コイルの部分断面図であり、
第5図はマンドレル4上に取付けたコイルを示
し、巻線の一部を形成する導体巻線層29a,2
9b及び29c、マンドレル上の絶縁した基材又
はベース被覆27a、厚さに勾配をつけた絶縁被
覆27b及び27c、及び絶縁被覆34からな
る。単一の導体7(第6図)例えば銅線を巻いた
導体巻線層29a〜29cは、完全な巻線を形成
するために厚さに勾配をつけた絶縁被覆27b及
び27cの薄い端部で接続させる。本発明はもち
ろん実施態様で示した3つの巻線部分、及び4つ
の絶縁被覆に限定されるものではなく、巻線又は
巻線部分の数、従つて絶縁被覆の数は各々の場合
所望のコイルの種類に依存している。 5, 6 and 7 are partial cross-sectional views of electrical coils with graded insulation thickness according to the present invention;
FIG. 5 shows the coil mounted on the mandrel 4, with conductor winding layers 29a, 2 forming part of the winding.
9b and 29c, an insulated substrate or base coating 27a on the mandrel, graded thickness insulation coatings 27b and 27c, and insulation coating 34. The conductor winding layers 29a-29c of a single conductor 7 (FIG. 6), for example of copper wire, are formed by thin ends of insulation sheaths 27b and 27c, which are tapered in thickness to form a complete winding. Connect with . The invention is of course not limited to the three winding sections and four insulation sheaths shown in the embodiment; the number of windings or winding sections, and therefore the number of insulation sheaths, can in each case be adjusted to suit the desired coil. depends on the type.
第6図は第5図で示したコイルの製造方法を示
す。絶縁物の厚さに勾配をつける工程を除けば、
この方法はここで前述した方法と同様であり、す
なわち、ゲル化した絶縁物の液体層を1層の上に
他の層を重ねて絶縁被覆を形成する方法であり、
同一番号は同一部分、例えばコイル巻型又はマン
ドレル4、絶縁物アプリケータ5及びゲル化ステ
ーシヨン9である。第5図に示すコイルの内側又
は外側絶縁被覆27a及び34は実質的に全体に
均一な厚さであり前述の実施態様と同様に形成さ
れる。以下の記載は厚さに勾配を付した絶縁被覆
例えば被覆27b及び27cの成形方法に限定さ
れる。 FIG. 6 shows a method of manufacturing the coil shown in FIG. Except for the step of creating a gradient in the thickness of the insulation.
This method is similar to the method described hereinabove, that is, one layer of liquid gelled insulator is layered on top of another to form an insulating coating;
Identical numbers refer to identical parts, such as the coil former or mandrel 4, the insulation applicator 5 and the gelling station 9. The inner or outer insulation coatings 27a and 34 of the coil shown in FIG. 5 are of substantially uniform thickness throughout and are formed similarly to the previously described embodiments. The following description is limited to methods of forming the graded thickness insulation coatings, such as coatings 27b and 27c.
ゲル化ステーシヨンでコイル成形作業を示す第
6図に関連して、導体巻線層29aは絶縁被覆2
7a上に巻き、絶縁被覆27bは導体巻線層29
a上に施され、これから、この実施態様において
は液体絶縁物を施す時絶縁物アプリケータ5とコ
イル構造物との間に軸上の相対的変移を起させる
設備を備ける。より詳細には、導体巻線作業中ア
プリケータ5を同軸方向に進ませ、その結果コイ
ル巻型4の各回転の間、前工程で施してゲル化し
た層全体を覆い、さらに少くとも導体巻線層29
aの1つの露出した巻線層を覆うために、アプリ
ケータ5により絶縁物の液体層(直ちにゲル化ス
テーシヨン9でゲル化する)を施す。この手順は
第7図に図示してあり、線例えば27b1及び27
b2は、一連続作業が好適であるが、個々に施して
ゲル化した液体絶縁物の種々の層を表わす。この
実施態様で連続的に施した層の幅は徐々に増加す
るように示されているが(この理由は第6図及び
第7図で示すようにアプリケータ5を左から右へ
動かすことを仮定しているためである)、仮に下
層の導電体巻線層の幅全体を覆うためにアプリケ
ータ5を始めに液体絶縁物に施し、次いで右へ動
かすと層の幅は徐々に減少する。 With reference to FIG. 6, which shows the coil forming operation at the gelling station, the conductor winding layer 29a is coated with the insulation coating 2.
7a, and the insulation coating 27b is the conductor winding layer 29.
a, from which, in this embodiment, provision is provided to cause a relative axial displacement between the insulation applicator 5 and the coil structure when applying the liquid insulation. More specifically, during the conductor winding operation, the applicator 5 is advanced coaxially so that during each revolution of the coil former 4 it covers the entire gelled layer applied in the previous step and also at least the conductor winding. line layer 29
A liquid layer of insulation (which immediately gels in gelling station 9) is applied by applicator 5 to cover one exposed winding layer of a. This procedure is illustrated in FIG. 7, for example lines 27b 1 and 27
b 2 represents various layers of liquid insulation applied individually and gelled, although a continuous operation is preferred. Although in this embodiment the width of the successively applied layers is shown to increase gradually (the reason for this is that moving the applicator 5 from left to right as shown in FIGS. 6 and 7) If the applicator 5 is first applied to the liquid insulation in order to cover the entire width of the underlying conductor winding layer and then moved to the right, the width of the layer will gradually decrease.
このように成形した絶縁被覆27b上に巻線層
29bを成形するために導線7を薄い被覆の端か
ら被覆の厚い端に向つて巻き、次いでその上に被
覆27bに関して記述したと同様に厚さが変化し
た絶縁被覆27cを成形する。しかし、その場合
既に成形した被覆27bと逆のテーパーを有する
被覆27cを成形するために、アプリケータ5と
コイル構造物との軸方向の相対的な動きを逆にす
る。 To form a winding layer 29b on the insulating sheathing 27b formed in this way, the conductor 7 is wound from the thin end of the sheath to the thick end of the sheath, and then the thickness is An insulating coating 27c having a changed value is molded. However, in that case the relative axial movement of the applicator 5 and the coil structure is reversed in order to form a coating 27c with an opposite taper to the already formed coating 27b.
次に、ゲル化した被覆27c上の所定の場所に
導電体巻線層29cを成形し、次いで巻線層29
c上に絶縁被覆34を好適には前記と同じアプリ
ケータ5により成形するが、軸上の動きを停止し
て液体絶縁物を他層の上に数層重ね合せて施し、
その層すべてはコイルが回転しているためにコイ
ルの幅全体に渡る。 Next, the conductor winding layer 29c is formed at a predetermined location on the gelled coating 27c, and then the winding layer 29c is formed on the gelled coating 27c.
An insulating coating 34 is formed on c, preferably by the same applicator 5 as described above, but with the axial movement stopped and the liquid insulating material applied in several layers one on top of the other,
All of that layer spans the entire width of the coil as it rotates.
本発明により実質的に連続作業で、絶縁被覆例
えば被覆27a―c及び34と、導体巻線層例え
ば巻線層29a―cとを交替して成形できること
が理解されよう。さらに、上述により成形したコ
イル中の絶縁物の体積は、第1図に示すような慣
用の方法により成形した同様な定格のコイルの絶
縁物の体積の約半分にすぎず、慣用の方法では導
体巻線層間の絶縁層は、最大の電気応力を有する
測定した部分では均一な厚さである。 It will be appreciated that the present invention allows alternating formation of insulating coatings, such as coatings 27a-c and 34, and conductor winding layers, such as winding layers 29a-c, in a substantially continuous operation. Furthermore, the volume of insulation in the coil formed as described above is only about half the volume of insulation in a similarly rated coil formed by conventional methods as shown in FIG. The insulating layer between the winding layers is of uniform thickness in the measured areas with the greatest electrical stress.
さて本発明の次の実施態様を考えると、第8図
は端部フランジ60及び62を有するマンドレル
又はコイル巻型上に取付けたコイル構造物を示し
ており、これは第5図と同様に導電体巻線層44
a,44b,44c、絶縁ベース被覆又は基材4
2a、絶縁外面被覆50、及び例えばそれぞれ6
8又は76の一端が相対的に厚く、他の端例えば
それぞれ70又は78が相対的に薄い絶縁被覆4
2b及び42cを含む。 Now considering the next embodiment of the invention, FIG. 8 shows a coil structure mounted on a mandrel or coil former having end flanges 60 and 62, which, like FIG. Body winding layer 44
a, 44b, 44c, insulating base coating or base material 4
2a, an insulating outer coating 50, and e.g.
The insulation coating 4 is relatively thick at one end of 8 or 76 and relatively thin at the other end, e.g. 70 or 78, respectively.
2b and 42c.
第8図のコイル構造物が第5図の方法と異なる
点は、絶縁被覆を形成する仕方、又はむしろ被覆
を施す際に使用するアプリケータの種類が異なる
点である。これに関して第9図ないし第15図に
よれば、第9図はマンドレル4上に長方形の断面
(第12図)のノズル54から施したベース被覆
42aを示しており、ノズルから液体絶縁物質4
2、好適には架橋性粘性樹脂をマンドレル4の表
面上に、マンドレル4を矢印10の方向に回しな
がら押し出す。この実施態様において、押し出し
た絶縁物質はマンドレルを完全に一回転すれば必
要な厚さを有し、被覆42aを成形するに充分な
厚さをもつものとなり、マンドレルが一回転した
時に絶縁材42をノズルの所で切断され、その結
果こうして施された粘性液体層の先端と末端とは
互に突合わせ接合状に合体して連続被覆42aを
形成する。もちろん、ここでも再びノズル54か
ら押出した樹脂の粘性は、紫外線放射器58とし
て示すゲル化ステーシヨンでゲル化するまで樹脂
の望ましくない流れを最小にするように選ばれ
る。 The coil structure of FIG. 8 differs from the method of FIG. 5 in the manner in which the insulation coating is formed, or rather in the type of applicator used to apply the coating. In this regard, according to FIGS. 9-15, FIG. 9 shows a base coating 42a applied onto the mandrel 4 through a nozzle 54 of rectangular cross-section (FIG. 12), from which liquid insulating material 42a is applied.
2. Preferably, a crosslinked viscous resin is extruded onto the surface of the mandrel 4 while rotating the mandrel 4 in the direction of arrow 10. In this embodiment, the extruded insulating material will have the required thickness after one complete revolution of the mandrel and will be thick enough to form the coating 42a, and the extruded insulation material will be thick enough to form the coating 42a after one complete revolution of the mandrel. is cut at the nozzle, so that the tips and ends of the viscous liquid layer thus applied join together in a butt joint to form a continuous coating 42a. Of course, once again the viscosity of the resin extruded from nozzle 54 is selected to minimize undesirable flow of the resin until gelling at the gelling station, shown as ultraviolet emitter 58.
第8図のようにゲル化した絶縁被覆42a上に
導電体例えばエナメル線を左から右に巻いて巻線
層44aを形成し、その上に被覆42aに関して
述べたと同様な仕方で、第10図に示すように絶
縁被覆42bを成形する。しかし、今度は一般に
三角又は台形開口部66(第13図参照)を有す
るノズル64を使用しているから、このノズルは
絶縁物質42に所望のテーパーのついた、すなわ
ちくさび状断面形状を付与するため被覆42bの
厚さに勾配が付与され、従つて被覆42bは一端
の68では相対的に厚く、他端の70では相対的
に薄くなる。 As shown in FIG. 8, a conductor, e.g., an enameled wire, is wound from left to right on the gelled insulating coating 42a to form a winding layer 44a, and then a winding layer 44a is formed thereon in the same manner as described for the coating 42a, as shown in FIG. The insulation coating 42b is formed as shown in FIG. However, now using a nozzle 64 having a generally triangular or trapezoidal opening 66 (see FIG. 13), this nozzle imparts the desired tapered or wedge-shaped cross-sectional shape to the insulating material 42. This provides a gradient in the thickness of the coating 42b such that the coating 42b is relatively thick at one end 68 and relatively thin at the other end 70.
第15図の等角図は、絶縁物質42がノズル6
4からどのようにして導体巻線層44a上に押し
出されるかを詳細に示している。もちろん、絶縁
被覆42bの単層もマンドレル4を回転させなが
ら放射線源58(第10図)から放射線を放射し
て直ちにゲル化する。 The isometric view of FIG. 15 shows that the insulating material 42
4 and shows in detail how it is extruded onto the conductor winding layer 44a. Of course, the single layer of the insulating coating 42b is also immediately gelled by emitting radiation from the radiation source 58 (FIG. 10) while rotating the mandrel 4.
マンドレル4を連続的に回転させて、導電体巻
線層44bを厚さに勾配を付しゲル化した絶縁被
覆42b上に第8図に示すように右から左へ巻
き、その上に絶縁被覆42cを施すノズル72
(第11図)を位置につける。このノズル72は
ノズル64と丁度同じように一般に三角形又は台
形の開口部74(第14図)をもつが、相対的に
180゜転置してあり、被覆42cを同様に施す時被
覆42cは相対的に厚い端部又はエツジ76を有
し、この部分での巻線層44bと44cとの電気
応力は最も大きく、相対的に薄い端部又はエツジ
78を有し、この部分での電気応力は小さくなる
ように配置される。巻線層44cを連続的に巻く
作業は、ゲル化した被覆42c上に左から右に第
8図に示すように行う。 By continuously rotating the mandrel 4, the conductor winding layer 44b is wound from right to left on the gelled insulating coating 42b with a gradient thickness, as shown in FIG. Nozzle 72 for applying 42c
(Fig. 11) is placed in position. This nozzle 72 has a generally triangular or trapezoidal opening 74 (FIG. 14) just like nozzle 64, but relatively
Transposed 180 degrees, when coating 42c is similarly applied, coating 42c has a relatively thick end or edge 76, where the electrical stress between winding layers 44b and 44c is greatest and the relative It has a thinner end or edge 78 at the edge 78 and is arranged so that the electrical stress in this area is reduced. The winding layer 44c is continuously wound on the gelled coating 42c from left to right as shown in FIG.
必要に応じ、付加的な導体巻線層又は勾配をも
つた絶縁被覆を施してもよいが、示例の目的では
巻線層44cは電気巻線を完成させ、この層は絶
縁被覆すなわち被覆50で覆われ、この被覆50
はベース被覆42aと同様な方法で、すなわち第
12図に示す長方形型ノズル54から押出して施
す。もちろん、各絶縁被覆は紫外線放射装置58
で示すゲル化ステーシヨンでゲル化する。 For illustrative purposes, winding layer 44c completes the electrical winding, and this layer is insulated or coated 50, although additional conductor winding layers or graded insulation coatings may be applied if desired. covered, this covering 50
is applied in the same manner as base coating 42a, ie, by extrusion through a rectangular nozzle 54 shown in FIG. Of course, each insulation coating has an ultraviolet radiation device 58
Gel it using the gelling station shown in .
絶縁物に勾配を与える他の方法は第16図及び
第17図に示してあり、全絶縁被覆は長方形開口
部をもつたノズル54から押出して施し、被覆4
2b及び42cは、適な角度で或いは押出した粘
性物質42を84で示すような余分な粘性物質を
除去することにより所望の三角形又は台形の断面
をもつ形状に整えるための斜角切断エツジ82を
有する適当な角度で配置されたスクレーパーすな
わち刃80によつて勾配がつけられる。 Another method of grading the insulation is shown in FIGS. 16 and 17, in which the entire insulation coating is applied by extrusion through a nozzle 54 having a rectangular opening, and coating 4
2b and 42c are beveled cutting edges 82 for trimming the extruded viscous material 42 at a suitable angle or by removing excess viscous material, as shown at 84, into a shape with a desired triangular or trapezoidal cross section. The bevel is created by a scraper or blade 80 placed at an appropriate angle.
第18,19及び20図は第16及び17図と
非常に類似する改良を示すものであり、異なる点
は刃80、従つてゲル化ステーシヨン58がマン
ドレル4が10の回転方向に関してコイル構造物周
縁においてノズル54からかなり離れた点であ
る。第20図は第8図に示す三層の代りに巻線層
44a及び44bの単に二層を含み、且つ巻線層
44bに勾配をつけ、この巻線層44bはコイル
の外側寸法を均一にするために巻線層44bの勾
配に合わせたテーパー断面をもつ絶縁被覆92で
覆われる。 18, 19 and 20 show an improvement very similar to FIGS. 16 and 17, with the difference that the blades 80 and therefore the gelling station 58 are located at the periphery of the coil structure with respect to the direction of rotation of the mandrel 4. It is a point quite far away from the nozzle 54. FIG. 20 includes only two layers of winding layers 44a and 44b instead of the three layers shown in FIG. In order to do this, it is covered with an insulating coating 92 having a tapered cross section matching the slope of the winding layer 44b.
発明の効果
本発明により得られる効果は連続式操作による
セルロースを含まない電気巻線構造体の製造方法
を提供し、連続式操作によるコスト軽減、液体樹
脂塗布の厚さの調整による収縮空洞の除去、コイ
ルの占積率の向上、コイルの接着・乾燥作業の除
去、油含浸問題の除去等である。Advantages of the Invention The advantages obtained by the present invention are to provide a method for manufacturing a cellulose-free electrical winding structure by continuous operation, to reduce costs by continuous operation, and to eliminate shrinkage cavities by adjusting the thickness of liquid resin coating. , improving the space factor of the coil, eliminating the work of gluing and drying the coil, and eliminating the problem of oil impregnation.
第1図は先行技術による電気コイルの部分断面
図、第2図は本発明の好適な実施例に基く電気コ
イルの製法を示す等角略図、第3図は第4図の
―線断面図、第4図は完成に近いコイルの等角
図、第5図は本発明に基き絶縁層の厚さが変化し
ている電気コイルの部分断面図、第6図は第5図
で示したようなコイルに絶縁層を形成する1方法
を示す等角略図、第7図は第6図による方法の絶
縁層厚の変化をどのように行うかを詳細に示す拡
大部分断面図、第8図は第5図と同様な部分断面
図で、第9図〜第15図又は第16図〜第20図
で示す方法により製造した、厚さが変化している
絶縁層と共に電気コイルを示す部分断面図、第
9,10及び11図は第8図のコイルを製造する
際に絶縁層を施す遂次工程を示す部分端図、第1
2,13及び14図はそれぞれ第9,10及び1
1図のXII―XII、―及び―線断面
図、第15図は第8図のコイルの製造で、導体巻
線層上に液体絶縁層の厚さを変化させてどのよう
に施すかを示す等角及び部分断面図、第16図は
厚さが変化した絶縁層を形成する多少異なつた方
法を示す断面図、第17図は第16図の―
線断面図、第18図は第16図の方法の改良方
法を示す断面図、第19図は第18図の―
線断面図、及び第20図は第19図と同様であ
るが、次のコイル製造工程でのコイルを示す第1
8図の―線断面図である。
図中、2a,2b……厚紙チユーブ、3a,3
b,3c……導体巻線層、4……マンドレル、5
……アプリケータ、6……巻線部分、7……導電
体、9……ゲル化ステーシヨン、10……回転方
向、13……絶縁基材、15……導体帯状片層、
17,21,25……絶縁被覆、17′,21′,
25′……重なり部分、19……導体巻線、23,
29a,29b,29c,44……導体巻線層、
25……被覆層、27a,42a……ベース被
覆、27b,34,42b,42c……絶縁被
覆、35……帯状片、44a,44b,44c…
…導電体巻線層、50……絶縁外面被覆、54,
64,72……ノズル、58……放射線放射装
置、60,62……端部フランジ、66……開口
部、68,76……コイル端部、78……エツ
ジ、80……刃、82……切断エツジ、84……
除去部分。
1 is a partial cross-sectional view of an electric coil according to the prior art; FIG. 2 is an isometric schematic diagram illustrating the method of manufacturing an electric coil according to a preferred embodiment of the present invention; FIG. 3 is a cross-sectional view taken along the line -- of FIG. FIG. 4 is an isometric view of a near-completed coil, FIG. 5 is a partial cross-sectional view of an electrical coil with varying insulating layer thickness according to the present invention, and FIG. 7 is an enlarged partial cross-sectional view showing in detail how the variation of the insulation layer thickness is effected in the method according to FIG. 6; FIG. a partial sectional view similar to FIG. 5 showing an electric coil with an insulating layer of varying thickness manufactured by the method shown in FIGS. 9 to 15 or 16 to 20; 9, 10 and 11 are partial end views showing the successive steps of applying an insulating layer in manufacturing the coil of FIG.
Figures 2, 13 and 14 are numbers 9, 10 and 1, respectively.
Figure 1 is a sectional view taken along lines XII-XII, - and -, and Figure 15 shows how to manufacture the coil shown in Figure 8 by varying the thickness of the liquid insulating layer on the conductor winding layer. Isometric and partial cross-sectional views; FIG. 16 is a cross-sectional view showing somewhat different methods of forming insulating layers of varying thickness; FIG. 17 is a cross-sectional view of FIG.
18 is a cross-sectional view showing an improved method of the method shown in FIG. 16, and FIG. 19 is a cross-sectional view of the method shown in FIG.
The line cross-sectional view and FIG. 20 are similar to FIG. 19, but the first diagram shows the coil in the next coil manufacturing process.
8 is a sectional view taken along the line -- in FIG. 8. In the figure, 2a, 2b... cardboard tube, 3a, 3
b, 3c... Conductor winding layer, 4... Mandrel, 5
... Applicator, 6 ... Winding portion, 7 ... Conductor, 9 ... Gelling station, 10 ... Rotation direction, 13 ... Insulating base material, 15 ... Conductor strip layer,
17, 21, 25...Insulating coating, 17', 21',
25'...Overlapping portion, 19...Conductor winding, 23,
29a, 29b, 29c, 44... conductor winding layer,
25...Coating layer, 27a, 42a...Base coating, 27b, 34, 42b, 42c...Insulating coating, 35...Strip piece, 44a, 44b, 44c...
...Conductor winding layer, 50...Insulating outer coating, 54,
64, 72... Nozzle, 58... Radiation emitting device, 60, 62... End flange, 66... Opening, 68, 76... Coil end, 78... Edge, 80... Blade, 82... ...cutting edge, 84...
removed part.
Claims (1)
ル化装置を用意し、 前記巻線支持材と液体樹脂塗布装置および樹脂
ゲル化装置との間に相対的回転運動を与え、 導体を巻線支持材上に巻回することによつて少
なくとも1層の導体巻線を備えた第1巻線層を形
成し、 前記第1巻線層上に所定の厚さに電気絶縁物皮
膜を設けることからなる実質上連続式操作により
セルロースを含まない電気巻線構造体の製造方法
において、 前記電気絶縁物皮膜を設ける工程が前記相対的
回転運動による各回転運動中に液体樹脂塗布装置
からの液体樹脂絶縁物の薄い皮膜を塗布して直ち
にその場で塗布した液体樹脂絶縁物皮膜を各回転
毎に巻線層を支持するのに充分な硬さにゲル化
し、液体樹脂絶縁物皮膜の1回転毎に塗布した厚
さを液体樹脂絶縁物皮膜が各回転毎にゲル化する
時に起こる収縮を収容して収縮による空洞の最大
寸法を調整且つ制限するように選択することによ
つて多数回の回転により電気絶縁層を形成させ、 ゲル化した樹脂電気絶縁物上に導体を巻回する
ことによつて少なくとも1層の導体巻線層からな
る第2巻線層を形成させることを特徴とする、実
質上連続式操作でセルロースを含まない電気巻線
構造体の製造方法。 2 導体を巻線支持材に巻回する工程が導体をら
せん状に巻回して多数の巻いた導体を形成するこ
とからなる、特許請求の範囲第1項記載の方法。 3 導体を巻線支持材に巻回する工程が帯状導体
をらせん状に巻回して1つの導体巻回層を形成す
る、特許請求の範囲第1項記載の方法。 4 第1巻線層および第2巻線層を形成する工程
が同じ連続した導体を使用して同じ電気巻線の巻
線層を形成する特許請求の範囲第1項記載の方
法。 5 第1巻線層および第2巻線層を形成する工程
が異なる連続した導体を使用して異なる電気巻線
の巻線層を形成する特許請求の範囲第1項記載の
方法。 6 巻線支持材を用意する工程が基材に液体樹脂
絶縁層を多数回次ぎ次ぎに塗布し、各液体樹脂絶
縁層を次の液体樹脂絶縁層を塗布前に直ちにゲル
化することによつて多数回回転しながら巻線支持
材を形成させることからなる実質上連続操作の一
部として巻線支持材を形成する、特許請求の範囲
第1項記載の方法。 7 絶縁された巻線層を形成する工程を繰返して
所定層数の導電体巻線層を形成する特許請求の範
囲第1項記載の方法。 8 液体樹脂絶縁材の皮膜を次ぎ次ぎに塗布して
1回転毎に電気絶縁層を形成する工程が既に巻回
した巻線層の軸線端部を液体樹脂絶縁材で被覆す
る工程および被覆した液体樹脂絶縁材を直ちにゲ
ル化するゲル化工程を備える、特許請求の範囲第
7項記載の方法。 9 巻線層の軸線端部被覆工程の少なくとも幾つ
かは前に巻いた巻線層の軸線端部に塗布した既に
ゲル化した前の液体樹脂絶縁被覆とも更に重複し
て被覆される、特許請求の範囲第7項記載の方
法。 10 導体巻線の少なくとも幾つかの層の間に熱
融解性帯状片を挿入し、後で熱をかけて前記熱融
解性帯状片融解することにより除いて冷却剤ダク
トを形成する、特許請求の範囲第7項記載の方
法。 11 巻線層の軸線端部に液体樹脂絶縁体を施す
工程および前記液体樹脂絶縁体を直ちにゲル化す
るゲル化工程を備える、特許請求の範囲第1項記
載の方法。 12 巻線層に液体樹脂絶縁物の薄い皮膜をかけ
る工程が巻線層の軸線端部を液体樹脂絶縁物で被
覆し、巻線層の軸線端部に塗布した液体樹脂絶縁
物をゲル化するゲル化工程を含む、特許請求の範
囲第1項記載の方法。 13 巻線支持材が前に施した巻線層からなる特
許請求の範囲第1項記載の方法。[Claims] 1. A winding support material, a liquid resin application device, and a resin gelling device are provided, and a relative rotational movement is applied between the winding support material, the liquid resin application device, and the resin gelling device. , forming a first winding layer having at least one layer of conductor windings by winding the conductor on a winding support, and applying electrical insulation to a predetermined thickness on the first winding layer; A method of manufacturing a cellulose-free electrical winding structure by a substantially continuous operation comprising applying an electrically insulating film, wherein the step of providing an electrically insulating film comprises applying a liquid resin during each rotational movement of the relative rotational movement. Immediately after applying a thin film of liquid resin insulation from the equipment, the applied liquid resin insulation film gels in situ to a hardness sufficient to support the winding layer with each revolution. By selecting the applied thickness per revolution of the coating to accommodate the shrinkage that occurs as the liquid resin insulation film gels with each revolution to control and limit the maximum size of the shrinkage cavity. An electrical insulating layer is formed by multiple rotations, and a second winding layer consisting of at least one conductor winding layer is formed by winding a conductor on the gelled resin electrical insulator. A method of manufacturing a cellulose-free electrical winding structure in a substantially continuous operation characterized by: 2. The method of claim 1, wherein the step of winding the conductor on the winding support comprises spirally winding the conductor to form a multi-wound conductor. 3. The method according to claim 1, wherein the step of winding the conductor around the winding support material comprises winding the band-shaped conductor in a spiral manner to form one conductor winding layer. 4. The method of claim 1, wherein the step of forming the first winding layer and the second winding layer uses the same continuous conductor to form the winding layers of the same electrical winding. 5. The method of claim 1, wherein the winding layers of different electric windings are formed using continuous conductors in which the steps of forming the first winding layer and the second winding layer are different. 6. The step of preparing the winding support material is performed by applying a number of successive liquid resin insulation layers to the substrate and gelling each liquid resin insulation layer immediately before applying the next liquid resin insulation layer. 2. The method of claim 1, wherein the winding support is formed as part of a substantially continuous operation comprising forming the winding support during multiple rotations. 7. The method according to claim 1, wherein a predetermined number of conductor winding layers are formed by repeating the step of forming an insulated winding layer. 8 The process of successively applying films of liquid resin insulating material to form an electrical insulating layer for each rotation includes the process of coating the axial end of the already wound winding layer with liquid resin insulating material and the coated liquid. 8. The method according to claim 7, comprising a gelling step of immediately gelling the resin insulation material. 9. At least some of the steps of coating the axial ends of the winding layer further overlap with the previous gelled liquid resin insulation coating applied to the axial ends of the previously wound winding layer. The method described in item 7. 10. Inserting heat-fusible strips between at least some layers of conductor windings and subsequently removing them by applying heat to melt said heat-fusible strips to form coolant ducts. The method described in scope item 7. 11. The method of claim 1, comprising the steps of applying a liquid resin insulation to the axial ends of the winding layer and gelling the liquid resin insulation immediately. 12 The process of applying a thin film of liquid resin insulation to the winding layer coats the axial end of the winding layer with the liquid resin insulation, and gels the liquid resin insulation applied to the axial end of the winding layer. 2. The method of claim 1, comprising a gelling step. 13. The method of claim 1, wherein the winding support comprises a previously applied winding layer.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26415181A | 1981-05-15 | 1981-05-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57194515A JPS57194515A (en) | 1982-11-30 |
JPS6343885B2 true JPS6343885B2 (en) | 1988-09-01 |
Family
ID=23004825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8231982A Granted JPS57194515A (en) | 1981-05-15 | 1982-05-15 | Method of executing insulating support for conductor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS57194515A (en) |
IN (1) | IN155961B (en) |
ZA (1) | ZA822994B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110383404B (en) * | 2017-03-10 | 2022-05-17 | 三菱电机工程技术株式会社 | Resonance type coil for power transmission |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5199260A (en) * | 1975-02-28 | 1976-09-01 | Toshiba Chem Prod | DENKIKIKIKOIRUKEISEIHO |
JPS52109155A (en) * | 1976-03-09 | 1977-09-13 | Tokyo Shibaura Electric Co | Method of manufacturing sheet coil |
JPS5373351A (en) * | 1976-12-10 | 1978-06-29 | Omron Tateisi Electronics Co | Coil spool |
JPS5538044A (en) * | 1978-09-12 | 1980-03-17 | Toshiba Corp | Preparation of multiplex-winding coil |
-
1982
- 1982-04-28 IN IN473/CAL/82A patent/IN155961B/en unknown
- 1982-04-30 ZA ZA822994A patent/ZA822994B/en unknown
- 1982-05-15 JP JP8231982A patent/JPS57194515A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5199260A (en) * | 1975-02-28 | 1976-09-01 | Toshiba Chem Prod | DENKIKIKIKOIRUKEISEIHO |
JPS52109155A (en) * | 1976-03-09 | 1977-09-13 | Tokyo Shibaura Electric Co | Method of manufacturing sheet coil |
JPS5373351A (en) * | 1976-12-10 | 1978-06-29 | Omron Tateisi Electronics Co | Coil spool |
JPS5538044A (en) * | 1978-09-12 | 1980-03-17 | Toshiba Corp | Preparation of multiplex-winding coil |
Also Published As
Publication number | Publication date |
---|---|
IN155961B (en) | 1985-04-06 |
JPS57194515A (en) | 1982-11-30 |
ZA822994B (en) | 1983-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4554730A (en) | Method of making a void-free non-cellulose electrical winding | |
US4780157A (en) | Method and apparatus for manufacturing transposed ribbon cable and electromagnetic device | |
US4503605A (en) | Method of making a cellulose-free electrical winding | |
US4038741A (en) | Method of making electrical coils for dynamo-electric machines having band-formed insulation material | |
US4658090A (en) | Ribbon cable, a transposed ribbon cable, and a method and apparatus for manufacturing transposed ribbon cable | |
EP0065147B1 (en) | Method of forming electric coils | |
JPS6343885B2 (en) | ||
US2928964A (en) | Dynamoelectric machine winding coil with coil sides and end turns of different flexibility | |
US20050140484A1 (en) | Coils for electrical machines | |
US3626587A (en) | Methods of constructing electrical transformers | |
US4888071A (en) | Method for manufacturing ribbon cable and transposed cable | |
CA1218715A (en) | Cellulose-free transformer coil structure and method | |
RU2672670C1 (en) | Capacitive electric device manufacturing method | |
JPH09246064A (en) | Dry transformer winding, its manufacture and dry transformer | |
US4403404A (en) | Method of making a cellulose-free transformer coils | |
CN1154129C (en) | Resin molded coil for resin molded transformer | |
EP0274173A1 (en) | Ribbon cable, transposed ribbon cable, and method and apparatus for making the same and electromagnetic device | |
JPH05227689A (en) | Winding for electric machine | |
JPS5815444A (en) | Insulating coil for high-voltage | |
JPH08236384A (en) | Manufacture of transformer winding | |
JPS6210972Y2 (en) | ||
JPS5849072A (en) | Manufacture of insulated coil for rotary electric machine | |
JPS59113747A (en) | Insulating method for coil of rotary electric machine | |
JPH08279311A (en) | Former and electromagnetic device | |
JPH07170702A (en) | Manufacture of insulated coil for high-voltage rotating electric machine |