JPS6343870A - Power steering device having control part for distributing torque for four-wheel-drive vehicle - Google Patents

Power steering device having control part for distributing torque for four-wheel-drive vehicle

Info

Publication number
JPS6343870A
JPS6343870A JP61188281A JP18828186A JPS6343870A JP S6343870 A JPS6343870 A JP S6343870A JP 61188281 A JP61188281 A JP 61188281A JP 18828186 A JP18828186 A JP 18828186A JP S6343870 A JPS6343870 A JP S6343870A
Authority
JP
Japan
Prior art keywords
pressure oil
steering
oil passage
pressure
control part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61188281A
Other languages
Japanese (ja)
Inventor
Kyoichi Nakamura
中村 京市
Kyosuke Haga
芳賀 恭輔
Masaji Yamamoto
正司 山本
Toshihiko Shima
稔彦 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP61188281A priority Critical patent/JPS6343870A/en
Publication of JPS6343870A publication Critical patent/JPS6343870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To enable a vehicle to eliminate its corner braking phenomenon generated in accordance with steering of the vehicle, when it is driven running by four wheels, by providing a torque distribution control part, which operates interlocking to the action of a steering force control part, in a single hydraulic control device. CONSTITUTION:A fixed quantity unit 1, for continually holding a stable feed amount of flow, is connected with the delivery side of a supply pump P, and a fixed flow amount of pressure oil, fed out from said fixed quantity unit 1, is supplied to a flow dividing control valve 2. And this flow dividing control valve 2 allows the pressure oil to flow dividedly into the first pressure oil passage 31, which supplies the oil to a steering power cylinder 330 through a steering force control part 30, and into the second pressure oil passage 32 which supplies the oil to a torque distributing control part 40 for a four-wheel-drive vehicle. The steering force control part 30, which is actuated by a relative rotation between input and output shafts of steering force, is constituted so as to adjust a pressure of the pressure oil in the first pressure oil passage 31 is accordance with a change of said relative rotation, while the torque distributing control part 40 is constituted so as to adjust a pressure of the pressure oil in the second pressure oil passage 32 in accordance with a change of the above described relative rotation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は4輪駆動車の4輪駆動旋回時に、前輪側の駆動
系より後輪側の駆動系への駆動1ヘルクの伝達量を、ハ
ンドル操舵角に応じてコントロールしてコーナブレーキ
イング現象を減少させることのできる4輪駆動車用トル
ク配分制御部をもつ動力舵取装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is designed to reduce the amount of one herk of drive transmitted from the front wheel drive system to the rear wheel drive system during a four-wheel drive turn of a four-wheel drive vehicle. The present invention relates to a power steering system having a torque distribution control section for a four-wheel drive vehicle that can reduce corner braking by controlling according to the steering angle of the steering wheel.

[従来の技術] 従来、4輪駆動車の4輪駆動旋回時に発と1づるコーナ
ーブレーキインク現象(前輪と後輪との回転差によって
前輪は回転不足でひきずり状態となり、後輪は過剰の回
転力をスリップして発散づる現象)を回避するだめの先
行技術として例えば、特開昭51−109’131号公
報に開示された構成がある。この先行技術によると、前
輪と後輪との両駆動系の中間に設けられ該両駆動系の接
続dりよび接続の解除を行なう油圧クラッチと、核油J
1クラッチへ圧油を供給する圧油回路と、該圧油回路に
設置され該圧油回路を車速及びハンドルの操舵角との関
係に基づいて開閉するソレノイドとからなり、コーナー
ブレーキインク現象の発生し易い条件となった場合に、
ソレノイドが車速センサと、ハンドル操舵角センサから
の情報に基づいて電気的にコントロールされ、油圧クラ
ッチの係合状態を解き4輪駆動から2輪駆動に切換制御
する構成が示されている。
[Conventional technology] Conventionally, a corner brake ink phenomenon occurs when a four-wheel drive vehicle makes a four-wheel drive turn (due to the rotation difference between the front wheels and the rear wheels, the front wheels are under-rotated and drag, and the rear wheels are over-rotated). As a prior art technique for avoiding the phenomenon of force slipping and dispersion, for example, there is a configuration disclosed in Japanese Patent Application Laid-open No. 109-131-1983. According to this prior art, a hydraulic clutch is provided between the drive systems for the front wheels and the rear wheels for connecting and disconnecting the two drive systems, and a nuclear oil J
1 Consists of a pressure oil circuit that supplies pressure oil to the clutch, and a solenoid installed in the pressure oil circuit that opens and closes the pressure oil circuit based on the relationship between the vehicle speed and the steering angle of the steering wheel, which prevents corner brake ink from occurring. When conditions are favorable,
A configuration is shown in which a solenoid is electrically controlled based on information from a vehicle speed sensor and a steering wheel angle sensor to disengage the hydraulic clutch and control switching from four-wheel drive to two-wheel drive.

[本発明が解決しようとする問題点] 従来の4輪駆動から2輪駆動に切換制御する構成は、4
輪駆動車の4輪駆動族回に伴い、車速とハンドル操舵角
との関係でコーナーブレーキインク現象時を発生する条
件が生じた場合、これを電気的に検知するための車速セ
ンサ、操舵角センサ、マイクロコンピュータ、ソレノイ
ド、ソレノイドの作動時期を電子制御でコントロールす
るためのコントローラー等の装置および制御ソフトの設
定が必要であり、このため装置全体として大幅にコスト
アップすることが必然である。
[Problems to be solved by the present invention] The conventional configuration for controlling switching from four-wheel drive to two-wheel drive has four
With the introduction of four-wheel drive vehicles, vehicle speed sensors and steering angle sensors are used to electrically detect when a corner brake ink phenomenon occurs due to the relationship between vehicle speed and steering angle. It is necessary to set up devices such as a microcomputer, a solenoid, and a controller for electronically controlling the operating timing of the solenoid, as well as control software, which inevitably increases the cost of the entire device.

本発明はコストの低い装置で4輪駆動族回時に発生する
コーナブレーキインク現象を減少せしめる構成を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-cost device that reduces the corner brake ink phenomenon that occurs when driving a four-wheel drive vehicle.

F問題点を解決するための手段] 本発明の4輪駆動車用トルク配分制御部をもつ動力舵取
装置は、一定量の圧油を送出する供給ポンプと、該供給
ポンプからの圧油を舵取用パワーシリンダへ供給する第
1圧油通路および4輪駆動用油圧クラッチへ供給する第
2圧油通路に分流する分流制御弁と、操舵力入力軸と操
舵力出力軸との相対回転により作動され、該相対回転の
増減に応じて該第1圧油通路の圧油圧力を増減する操舵
力制御部と該相対回転の増減に応じて該第2圧油通路の
圧油圧力を増減するトルク配分制御部をもつ油圧制御装
置とを有することを特徴とするものである。
Means for Solving Problem F] The power steering device having a torque distribution control section for a four-wheel drive vehicle according to the present invention includes a supply pump that delivers a certain amount of pressure oil, and a supply pump that supplies the pressure oil from the supply pump. Due to the relative rotation between the steering force input shaft and the steering force output shaft, the flow control valve divides the flow into the first pressure oil passage that supplies the steering power cylinder and the second pressure oil passage that supplies the four-wheel drive hydraulic clutch. A steering force control unit that is operated to increase or decrease the pressure oil pressure in the first pressure oil passage in accordance with an increase or decrease in the relative rotation; and a steering force control unit that increases or decreases the pressure oil pressure in the second pressure oil passage in accordance with an increase or decrease in the relative rotation. The present invention is characterized in that it has a hydraulic control device having a torque distribution control section.

このように構成した本発明の4輪駆動車用トルク配分制
御部をもつ動力舵取装置は、4輪駆動車の4輪駆動族回
時に、ハンドル操作に伴ない動力舵取装置の操舵入力軸
と操舵出力軸との相対回転角の増減に応じて作動する操
舵力制御部によって第1圧油通路からパワーシリンダへ
圧油の供給を行なう。これと共にトルク配分制御部によ
って油圧多板クラッチに作動する第2圧油通路の圧油圧
力をコントロールすることができる。これにJ:つて前
輪、後輪がともに駆動した状態時に後輪側への駆動トル
クの配分量を制御して、駆動トルク番低下させることが
でき、かつコーナブレーキインク現象を解消することが
できる。
The power steering device having the torque distribution control section for a four-wheel drive vehicle of the present invention configured as described above is such that when the four-wheel drive vehicle is in four-wheel drive mode, the steering input shaft of the power steering device according to the steering wheel operation is controlled. Pressure oil is supplied from the first pressure oil passage to the power cylinder by a steering force control section that operates according to an increase or decrease in the relative rotation angle between the steering output shaft and the steering output shaft. At the same time, the torque distribution control section can control the hydraulic pressure in the second pressure oil passage that operates on the hydraulic multi-disc clutch. In addition, when both the front and rear wheels are driven, it is possible to control the amount of drive torque distributed to the rear wheels, reduce the drive torque, and eliminate the corner brake ink phenomenon. .

[発明の作用] 4輪駆動車の4輪駆動時に、供給ポンプはエンジンの駆
動ノjで作動し圧油を送出する。供給ポンプから送出さ
れた圧油は流量制御弁により常時一定流量を保った状態
で分流制御弁内に導入する。
[Operation of the Invention] When the four-wheel drive vehicle is in four-wheel drive, the supply pump is operated by the engine drive nozzle and sends out pressurized oil. The pressure oil sent out from the supply pump is introduced into the branch control valve with a constant flow rate maintained at all times by the flow control valve.

供給ポンプからの圧油はこの分流制御弁によって第1圧
油通路を介して操舵力制御部に向かう圧油流と、分流制
御弁より第2圧油通路を介してトルク配分制御部に向か
う圧油流とに2分される。この状態において、 (1)4輪駆動車が4輪駆動で直進走行している場合に
は、操舵力入力軸と操舵力出力軸とは中立状態に保持さ
れる。このため操舵力制御部は4輪駆動車の直進走行に
対応した圧油の流れをコントロールする状態を保持する
。即ち、操舵力制御部は第1圧油通路を、ドレン通路を
介してリザーバに接続する。これによって第1圧油通路
より操舵力制御部に流入した圧油はドレン通路よりリザ
ーバに戻る。又、操舵力制御部は供給ポンプからの圧油
をリザーバタンクに戻すことによって、該圧油をパワー
シリンダへ供給しない状態に保持する。又、トルク配分
制御部は第2圧油通路の開口面積を最小限にした状態を
保持するため、第2油圧通路より油圧多板クラッチへ作
用する油圧を一定に保つ。従って油圧多板クラッチは直
結した状態を保持する。
The pressure oil from the supply pump is divided into a pressure oil flow directed to the steering force control unit via the first pressure oil passage by this flow control valve, and a pressure oil flow directed from the separation control valve to the torque distribution control unit via the second pressure oil passage. It is divided into two parts: oil flow and oil flow. In this state: (1) When the four-wheel drive vehicle is traveling straight ahead in four-wheel drive, the steering force input shaft and the steering force output shaft are maintained in a neutral state. Therefore, the steering force control section maintains a state in which the flow of pressure oil corresponding to straight-ahead traveling of the four-wheel drive vehicle is controlled. That is, the steering force control section connects the first pressure oil passage to the reservoir via the drain passage. As a result, the pressure oil that has flowed into the steering force control section from the first pressure oil passage returns to the reservoir from the drain passage. Further, the steering force control section returns the pressure oil from the supply pump to the reservoir tank, thereby maintaining the state in which the pressure oil is not supplied to the power cylinder. Further, the torque distribution control section maintains a state in which the opening area of the second pressure oil passage is minimized, so that the hydraulic pressure acting on the hydraulic multi-disc clutch from the second oil pressure passage is kept constant. Therefore, the hydraulic multi-disc clutch maintains a directly connected state.

(2)又、4輪駆動車の4輪駆動車行時に、ハンドル操
作により動力舵取装置を作動させ、4輪駆動車を右ある
いは左方向に旋回させた場合には、操舵力入力軸と操舵
出力軸との相対回転が発生する。これによって操舵力制
御部及びトルク配分制御部は4輪駆動車の旋回走行に対
応した圧油の流れをコントロールする状態を保持する。
(2) Also, when the four-wheel drive vehicle is traveling in four-wheel drive, if the power steering device is activated by operating the steering wheel and the four-wheel drive vehicle turns to the right or left, the steering force input shaft Relative rotation with the steering output shaft occurs. As a result, the steering force control section and the torque distribution control section maintain a state in which they control the flow of pressure oil corresponding to cornering of the four-wheel drive vehicle.

即ち操舵力制御部は第1圧油通路をパワーシリンダに連
通させる。すると第1圧油通路内の圧油は操舵制御部に
よって流量をコントロールされつつパワーシリンダに供
給される。又、第1圧油通路内からパワーシリンダの一
方の圧力作用室に供給される圧油の流量は操舵力制御部
によってコントロールされた開口面積によって決定され
る。これと共にパワーシリンダの他方の圧力作用室から
の排出油はりザーバへ排出され、パワーシリンダのパワ
ーアシスト力によりハンドル操舵を容易にする。
That is, the steering force control section communicates the first pressure oil passage with the power cylinder. Then, the pressure oil in the first pressure oil passage is supplied to the power cylinder while its flow rate is controlled by the steering control section. Further, the flow rate of the pressure oil supplied from the first pressure oil passage to one pressure action chamber of the power cylinder is determined by the opening area controlled by the steering force control section. At the same time, the discharged oil from the other pressure chamber of the power cylinder is discharged to the reservoir, and the power assist force of the power cylinder facilitates steering.

トルク配分制御部は第2圧油通路の開口面積の増加量を
コントロールする。すると、トルク配分制御部は第2圧
油通路内の圧油のリザーバへのドレン流量を変化せしめ
油圧多板クラッチに作用する圧油の圧力をコントロール
する。これによって第2圧油通路より油圧多板クラッチ
への圧油の作用力は低下し、油圧多板クラッチは後輪へ
の駆動力の伝達邑を減少させる。即ち、トルク配分制御
部は4輪駆動走行時において、ハンドル操舵角がゼロの
とき後輪側の駆動系への駆動トルクの配分量を最大とす
る。又、ハンドルの操舵角がゼロより大きくなるにつれ
、前記操舵力制御部の入力軸と出力軸との相対回転角度
が次第に大きくなってトルク配分制御部による第2圧油
通路の間口面積も大きくなる。すると、この分、第2.
rf油通路内の圧油はトルク配分制御部より、リザーバ
へのドレン流量を増加する。かつ油圧多板クラッチへの
圧油の作用力も弱くなり、後輪(2輪)側の駆動系への
駆動トルクの配分量は減少し、かつ油圧多板クラッチは
前輪と後輪との回転差を吸収する。
The torque distribution control section controls the amount of increase in the opening area of the second pressure oil passage. Then, the torque distribution control section changes the drain flow rate of the pressure oil in the second pressure oil passage to the reservoir and controls the pressure of the pressure oil acting on the hydraulic multi-disc clutch. As a result, the acting force of the pressure oil from the second pressure oil passage to the hydraulic multi-disc clutch is reduced, and the hydraulic multi-disc clutch reduces the ability of the hydraulic multi-disc clutch to transmit driving force to the rear wheels. That is, during four-wheel drive driving, the torque distribution control section maximizes the amount of drive torque distributed to the rear wheel drive system when the steering angle is zero. Further, as the steering angle of the steering wheel becomes larger than zero, the relative rotation angle between the input shaft and the output shaft of the steering force control section gradually increases, and the frontage area of the second pressure oil passage by the torque distribution control section also increases. . Then, this minute, the second.
The pressure oil in the rf oil passage increases the drain flow rate to the reservoir by the torque distribution control section. In addition, the acting force of pressure oil on the hydraulic multi-disc clutch becomes weaker, the amount of drive torque distributed to the drive system on the rear wheels (two wheels) side decreases, and the hydraulic multi-disc clutch reduces the rotation difference between the front and rear wheels. absorb.

[効果] このように本発明の4輪駆動車用トルク配分制御部をも
つ動力舵取装置によれば、油圧制御装置の操舵力制御部
の作動に連動するトルク配分制御部が配設されている。
[Effect] As described above, according to the power steering device having a torque distribution control section for a four-wheel drive vehicle of the present invention, a torque distribution control section that is interlocked with the operation of the steering force control section of the hydraulic control device is disposed. There is.

これによって4輪駆動車の4輪駆動走行に伴なう旋回時
に操舵力I!IIノ御部により舵取のパワーアシスト力
をコントロールできるとともに、トルク配分制御部によ
り、油圧多板クラッチへの圧油の作用力をコン1ヘロー
ルでき、かつ後輪側の駆動系への駆動トルクの配分量を
減少せしめることによって4輪駆動車の前輪と後輪との
内輪差に伴なう回転差を吸収1.Jコーナブレーキイン
グ現象の発生を押えることができる。これによって4輪
駆動車が4輪駆動状態で旋回した場合において、良好な
運転状態が得られる。またその構成も従来のように車速
センサ、舵角センサ、コントロ一ラー、マイクロコンピ
ュータ、等の装置および制御ソフトの設定を必要とせず
、コスト低減に寄与できる。
As a result, the steering force I! The power assist force for steering can be controlled by the II control part, and the torque distribution control part can control the force of the pressure oil applied to the hydraulic multi-disc clutch, and the drive torque to the rear wheel drive system. 1. Absorbs the rotational difference caused by the inner wheel difference between the front and rear wheels of a four-wheel drive vehicle by reducing the amount of distribution. It is possible to suppress the occurrence of the J-corner braking phenomenon. As a result, when the four-wheel drive vehicle turns in the four-wheel drive state, a good driving condition can be obtained. Further, its configuration does not require the setting of devices such as a vehicle speed sensor, steering angle sensor, controller, microcomputer, etc. and control software as in the past, and can contribute to cost reduction.

[実施例] 本発明の4輪駆動車用トルク配分制御部をもつ動力舵取
装置の実施例を第1図、第2図、第3図、第4図、第5
図に基づいて説明する。
[Example] Examples of a power steering device having a torque distribution control section for a four-wheel drive vehicle according to the present invention are shown in FIGS. 1, 2, 3, 4, and 5.
This will be explained based on the diagram.

実施例の4輪駆動車用トルク配分制御部をもつ動力舵取
装置は、供給ポンプPと、分流制御弁2と、油圧制御装
置3とを構成要素としている。なお、供給ポンプP及び
分流制御弁2は従来のものを使用できる。
The power steering device having a torque distribution control section for a four-wheel drive vehicle according to the embodiment includes a supply pump P, a flow control valve 2, and a hydraulic control device 3 as components. Note that the supply pump P and the branch control valve 2 can be conventional ones.

供給ポンプPは車両のエンジンの駆動力によって回動し
圧油を送出するとともに第3図に示す一定流量Qの圧油
を後で述べる分流制御弁2に供給するものである。供給
ポンプPより送出される圧油の流量は、エンジンの回転
数に応じて変化する。
The supply pump P is rotated by the driving force of the vehicle's engine and sends out pressure oil, and also supplies a constant flow rate Q of pressure oil shown in FIG. 3 to a branch control valve 2, which will be described later. The flow rate of the pressure oil sent out from the supply pump P changes depending on the engine speed.

このため供給ポンプPはエンジンの回転数の変1j>に
かかわらず常時安定した一定の送出流量を保つための定
量装置1をもつ。定量装置1は供給ポンプPより分制御
流弁2に至る圧油通路11の途中に設置されたオリフィ
ス12と、オリフィス12の前方及び後方で圧油通路1
1に接続するバイパス通路13と、バイパス通路13の
途中に設置され押しバネ14と組合されたスプール15
)を摺動可能に収容したシリンダー状のハウジング1G
等をもつバイパス弁17と、供給ポンプPから送出され
た圧油の過剰の流量をバイパス弁17の作11Jによっ
てリザーバTに戻す戻し通路18とで構成されている。
For this reason, the supply pump P has a metering device 1 for always maintaining a stable and constant delivery flow rate regardless of changes in the engine speed. The metering device 1 includes an orifice 12 installed in the middle of a pressure oil passage 11 leading from a supply pump P to a control flow valve 2, and a pressure oil passage 1 installed in front and behind the orifice 12.
1, and a spool 15 installed in the middle of the bypass passage 13 and combined with a push spring 14.
) is slidably housed in a cylindrical housing 1G.
11J of the bypass valve 17, and a return passage 18 which returns the excess flow rate of the pressure oil sent out from the supply pump P to the reservoir T by the operation 11J of the bypass valve 17.

また、定量装置1はエンジンの回転数に応じて変化する
供給ポンプPより送出される圧油の流量に対し、オリフ
ィス12の前後の圧油の圧力差と押バネ14の付勢力と
で作動するバイパス弁17によってリザーバ下への戻し
量をコントロールすることによって、一定流mQの圧油
を分流制御弁2に供給することができる。
Further, the metering device 1 is operated by the pressure difference between the pressure oil before and after the orifice 12 and the biasing force of the press spring 14, with respect to the flow rate of the pressure oil sent out from the supply pump P, which changes depending on the engine rotation speed. By controlling the amount returned to the bottom of the reservoir by the bypass valve 17, a constant flow mQ of pressure oil can be supplied to the diversion control valve 2.

分流制御弁2は圧油通路11より分岐し、オリフィス2
1をIftしたバイパス通路22及びバネ23と組合さ
れた制御スプール24を摺動可能に収容したシリンダー
状のハウジング25等を備えている。制御スプール24
はオリフィス21の前後の圧油の圧力差と押しバネ23
の付勢力とで作動する。分流制御弁2は供給ポンプPか
らの圧油を、後述する操舵力制御部30を介して舵取用
パワーシリンダ330へ供給する第1圧油通路31およ
び4輪駆動車用トルク配分制御部40へ供給する第2圧
油通路32に分流するものである。即ち、前記第1圧油
通路31および第2圧油通路32にそれぞれ圧油の一定
流量Q1およびQ2を分配するものである。
The flow control valve 2 branches from the pressure oil passage 11 and has an orifice 2.
It is provided with a cylindrical housing 25 that slidably accommodates a control spool 24 combined with a bypass passage 22 and a spring 23. control spool 24
is the pressure difference between the pressure oil before and after the orifice 21 and the push spring 23
It operates with the urging force of. The diversion control valve 2 supplies pressure oil from the supply pump P to a steering power cylinder 330 via a steering force control section 30 (described later) and a first pressure oil passage 31 and a four-wheel drive vehicle torque distribution control section 40. The flow is divided into a second pressure oil passage 32 that supplies the oil to the second pressure oil passage 32. That is, constant flow rates Q1 and Q2 of pressure oil are distributed to the first pressure oil passage 31 and the second pressure oil passage 32, respectively.

油圧制御装置3は第1図に示すハウジング本体△に組合
された弁ハウジングB内に操舵力制御部30とトルク配
分制御部40をもつ。操舵力制御部30は弁ハウジング
Bと、弁ハウジングBに収容された中空のスリーブ弁3
10と、スリーブ弁310内に配設されると共にハンド
ルからの操作によって回動する中空の入力軸340の一
部に一体に形成された第10−タ弁3408とで構成さ
れている。弁ハウジングBは第1圧油通路31及び分流
弁2を介して供給ポンプPと接続する高圧油ポート31
1およびリザーバTに接続する低圧油ポート312、パ
ワーシリンダー330に接続する2個の切換ポート31
3.314を備えている。スリーブ弁310と第10−
タ弁3408とは相対的に回動する。このスリーブ弁3
10並びに第10−タ弁3408には周知の如く内外周
面にそれぞれ軸方向に長溝(図面せず)ならびにランド
部(図示せず)が周方向に間隔をおいて形成されている
。長溝とランド部とはハンドルが4輪駆動車の直進を保
持する位置にある場合に、高圧油ポート311と低圧油
ポート312とを連通した状態に保持する。又、ハンド
ル操作の布切り時に前記、長溝とランド部との間に位相
ズレを生じさせて高圧油ポート311と切換ポート31
4とを連通もするとともに、切換ポート313と低圧油
ポート312とを連通ずる。また、ハンドル操作の左切
り時にも同様にして高圧油ポート311と切換ポート3
13とを連通するとともに、切換ポート314と低圧油
ポート312とを連通ずる。
The hydraulic control device 3 has a steering force control section 30 and a torque distribution control section 40 in a valve housing B combined with the housing body Δ shown in FIG. The steering force control unit 30 includes a valve housing B and a hollow sleeve valve 3 accommodated in the valve housing B.
10, and a tenth valve 3408 which is disposed within the sleeve valve 310 and is integrally formed with a part of the hollow input shaft 340 which is rotated by operation from the handle. The valve housing B has a high pressure oil port 31 connected to the supply pump P via the first pressure oil passage 31 and the diverter valve 2.
1 and a low pressure oil port 312 connected to the reservoir T, and two switching ports 31 connected to the power cylinder 330.
3.314. Sleeve valve 310 and 10th-
It rotates relative to the taper valve 3408. This sleeve valve 3
As is well known, long grooves (not shown) and land portions (not shown) are formed in the axial direction on the inner and outer circumferential surfaces of the 10 and 10th valves 3408 at intervals in the circumferential direction. The long groove and the land portion keep the high pressure oil port 311 and the low pressure oil port 312 in communication when the steering wheel is in a position that keeps the four-wheel drive vehicle moving straight. Moreover, when the cloth is cut by operating the handle, a phase shift occurs between the long groove and the land portion, and the high pressure oil port 311 and the switching port 31
4, and also communicates the switching port 313 and the low pressure oil port 312. Also, when the handle is turned to the left, the high pressure oil port 311 and the switching port 3 are connected in the same way.
13, and also communicates the switching port 314 and the low pressure oil port 312.

また、パワーシリンダ330はピストン331を境にし
て一方の圧力作用室332と他方の圧力作用室333と
を形成している。また、一方の圧力作用室332は、通
路334によって切換ポート313に接続している。他
方の圧力作用室333は通路335によって切換ポート
314に接続している。
Moreover, the power cylinder 330 forms one pressure action chamber 332 and the other pressure action chamber 333 with the piston 331 as a boundary. Further, one pressure action chamber 332 is connected to the switching port 313 through a passage 334. The other pressure chamber 333 is connected to the switching port 314 by a passage 335 .

トルク配分制御部40は、弁ハウジングBに形成され第
2圧油通路32に接続する高圧油ポート410と、リザ
ーバTに接続する低圧油ポート420と、弁ハウジング
B内に収容されたスリーブ弁310と、このスリーブ弁
310の内部に配設され入力軸340と一体に形成され
た第20−タ弁34. Obと、スリーブ弁310と第
20−タ弁340b間に配設され、第20−タ弁340
bに対し、スリーブ弁310とともに相対回転可能な圧
油制御弁400とからなる。圧油制御弁400は筒状壁
部401の円周上に、第2圧油通路32と接続する連通
孔402及び筒状壁部401の内周側で連通孔402に
連設された流量調節弁孔4o3を備えている、第20−
タ弁340bは前記流量調節弁孔403に対面する位置
に流量調節突部343を備えている。流量調節突部34
3は、4輪駆動車の直進するハンドル位置で第2図の断
面で示す流量調節弁孔403の最小開口面積を保持して
いる。流量調節突部343はハンドルの布切及び左切操
作に伴なって第2図で示す位置より時計方向及び反時計
方向に回動し、流量調節弁孔403の開口面積を増大さ
せ得る。また、第2圧油通路32より弁ハウジングBと
スリーブ弁310との間に環状の通路Cが形成されてい
る。又、圧油制御弁400と第20−タ弁340bとの
間に形成された環状の室Eは第20−タ弁340bの開
口341b 、中空部3410、排圧口341e、圧油
制御弁400に形成された排圧通路404、スリーブ弁
310に形成された排圧孔315を介して低圧油ポート
420に連通している。葉鳴            
            ルう=また分流制御弁2と前
記高圧油ポート410との間の第2圧油通路32は油圧
通路321によって油圧多板クラッチ41と接続してる
。即ち、トルク配分制御部40によって第2圧油通路3
2内の圧油を高圧油ポート410及び低圧油ポート42
0を介してリザーバTへドレンする量をコントロールす
ることにより、油圧多板クラッチ41に作用する圧油の
圧力を調節できる。油圧多板クラッチ41は第5図に示
すように4輪駆動車の前輪用差動装w8と後輪用差動装
置9との間の回転駆動軸10上に配設されている。なお
、油圧多板クラッチ41は公知のものを使用できる。エ
ンジン6の駆動力はトランスミッション7より第1ギア
群71を介して前輪用差動装置8に伝達されドライブシ
ャフト81及び82を介して右側前輪811及び左側前
輪821を回転駆動する。これとともに油圧多板クラッ
チ41が係合状態にある場合には、後輪用差動装置9に
前記エンジン6からの駆動トルクが伝達され、かつ前輪
用差動装置8より第2ギア群72、油圧多板クラッチ4
1、を介して後輪用差動装W9に伝達された駆動力はド
ライブシャフト91及び92を介して右側後輪911及
び左側後輪921を回転駆動する。また油圧多板クラッ
チ41の係合が解かれた場合には、右側前輪811及び
左側前輪821のみにエンジン6からの駆動力が伝達さ
れ、右側後輪911及び左側後輪921に伝達されない
The torque distribution control unit 40 includes a high pressure oil port 410 formed in the valve housing B and connected to the second pressure oil passage 32, a low pressure oil port 420 connected to the reservoir T, and a sleeve valve 310 housed in the valve housing B. and a 20th valve 34 , which is disposed inside the sleeve valve 310 and formed integrally with the input shaft 340 . Ob, arranged between the sleeve valve 310 and the 20th valve 340b, and the 20th valve 340b.
b, it consists of a pressure oil control valve 400 that is rotatable relative to the sleeve valve 310. The pressure oil control valve 400 includes a communication hole 402 connected to the second pressure oil passage 32 on the circumference of the cylindrical wall 401 and a flow rate adjustment valve connected to the communication hole 402 on the inner circumference side of the cylindrical wall 401. No. 20-, which is provided with a valve hole 4o3.
The taper valve 340b is provided with a flow rate adjustment protrusion 343 at a position facing the flow rate adjustment valve hole 403. Flow rate adjustment protrusion 34
3 maintains the minimum opening area of the flow control valve hole 403 shown in the cross section of FIG. 2 at the steering wheel position where the four-wheel drive vehicle moves straight. The flow rate adjustment protrusion 343 rotates clockwise and counterclockwise from the position shown in FIG. 2 as the handle is operated to cut the cloth and to the left, thereby increasing the opening area of the flow rate adjustment valve hole 403. Furthermore, an annular passage C is formed between the valve housing B and the sleeve valve 310 from the second pressure oil passage 32 . The annular chamber E formed between the pressure oil control valve 400 and the 20th valve 340b includes the opening 341b of the 20th valve 340b, the hollow portion 3410, the exhaust port 341e, and the pressure oil control valve 400. It communicates with a low-pressure oil port 420 via an exhaust pressure passage 404 formed in the sleeve valve 310 and an exhaust pressure hole 315 formed in the sleeve valve 310 . Hanaki
A second pressure oil passage 32 between the branch control valve 2 and the high pressure oil port 410 is connected to a hydraulic multi-disc clutch 41 via a hydraulic passage 321. That is, the second pressure oil passage 3 is controlled by the torque distribution control section 40.
The pressure oil in 2 is connected to the high pressure oil port 410 and the low pressure oil port 42.
By controlling the amount drained to the reservoir T via the hydraulic multi-disc clutch 41, the pressure of the pressure oil acting on the hydraulic multi-disc clutch 41 can be adjusted. As shown in FIG. 5, the hydraulic multi-plate clutch 41 is disposed on a rotary drive shaft 10 between a front wheel differential w8 and a rear wheel differential 9 of a four-wheel drive vehicle. Note that a known hydraulic multi-disc clutch 41 can be used. The driving force of the engine 6 is transmitted from the transmission 7 to the front wheel differential 8 via the first gear group 71, and rotationally drives the right front wheel 811 and the left front wheel 821 via drive shafts 81 and 82. At the same time, when the hydraulic multi-disc clutch 41 is in the engaged state, the driving torque from the engine 6 is transmitted to the rear wheel differential device 9, and the front wheel differential device 8 transmits the driving torque to the second gear group 72, Hydraulic multi-plate clutch 4
The driving force transmitted to the rear wheel differential W9 through the drive shafts 91 and 92 rotationally drives the right rear wheel 911 and the left rear wheel 921. Further, when the hydraulic multi-plate clutch 41 is disengaged, the driving force from the engine 6 is transmitted only to the right front wheel 811 and the left front wheel 821, and is not transmitted to the right rear wheel 911 and the left rear wheel 921.

なお、前記入力軸340の内部に収容されたトーション
バー350は一端350aを入力軸340に連結し、他
端350bをビニオン360aをもつ出力軸360に連
結している。これによって入力軸340は出力軸360
と可撓的に連結されている。又出力軸360のビニオン
360aには、舵取用パワーシリンダ330のピストン
331に連結されたラック軸370のラック歯370a
が係合している。
The torsion bar 350 housed inside the input shaft 340 has one end 350a connected to the input shaft 340, and the other end 350b connected to an output shaft 360 having a pinion 360a. As a result, the input shaft 340 becomes the output shaft 360.
is flexibly connected. Moreover, the rack tooth 370a of the rack shaft 370 connected to the piston 331 of the steering power cylinder 330 is attached to the pinion 360a of the output shaft 360.
is engaged.

以上のように構成された本発明4輪駆動車用トルク配分
制御部をもつ動力舵取装置の作用を説明する。
The operation of the power steering system having the torque distribution control section for a four-wheel drive vehicle of the present invention configured as above will be explained.

−16一 本発明の実施例によれば、ハンドル等の舵取装置により
前輪がほぼ前方に向いた4輪駆動走行時の場合には、ロ
ータ弁340a 、340bとスリて第1圧油通路31
より操舵力制御部30の高圧油ポート311、低圧油ポ
ート312を通り、リザーバTへ戻される。このためパ
ワーシリンダ310への通路331および335へ通じ
る切換ポート313および314は低圧で等圧状態にあ
る。
-16- According to the embodiment of the present invention, when driving in four-wheel drive with the front wheels facing substantially forward by a steering device such as a steering wheel, the rotor valves 340a and 340b slide into the first pressure oil passage 31.
The oil passes through the high pressure oil port 311 and the low pressure oil port 312 of the steering force control unit 30 and is returned to the reservoir T. Therefore, the switching ports 313 and 314 leading to passages 331 and 335 to the power cylinder 310 are at low pressure and equal pressure.

これとともにトルク配分制御部40は僅かな間隔を保っ
た状態で(第2図参照)はぼその間口度を最小限に保っ
た状態にある。このため第2圧油通路32内の圧油圧力
および該第2圧油通132に連通する油圧通路321を
介して油圧多板クラッチ41へ作用する圧油も最大のも
のとなる。これによって多板クラッチ41は確実に係合
しており、かつ前輪用差動装置8側からの駆動力を確実
に後輪用差動装置9に伝達する。この駆動力はドライブ
シャフト91及び92を介して右側後輪911及び左側
後輪921を回転駆動する。従って前輪および後輪は円
滑にエンジン6からの駆動を受は回転している。
At the same time, the torque distribution control section 40 is in a state in which a slight interval is maintained (see FIG. 2), and the degree of mouth is kept at a minimum. Therefore, the hydraulic pressure in the second pressure oil passage 32 and the pressure oil acting on the hydraulic multi-disc clutch 41 via the hydraulic passage 321 communicating with the second pressure oil passage 132 are also maximized. As a result, the multi-disc clutch 41 is reliably engaged, and the driving force from the front wheel differential device 8 side is reliably transmitted to the rear wheel differential device 9. This driving force rotationally drives the right rear wheel 911 and the left rear wheel 921 via the drive shafts 91 and 92. Therefore, the front wheels and the rear wheels receive the drive from the engine 6 and rotate smoothly.

ここにおいて、ハンドルを操作し前輪を操舵した場合に
は、操舵入力軸340と操舵出力軸360との相対回転
により操舵力制御部30およびトルク配分制御部40は
同時に同方向に同じ角度回動し、かつパワーシリンダ3
10へはハンドルの切れ方向の一方の圧油作用室332
あるいは他方の圧油作用室333のいずれかに高圧油が
作用し、パワーピストン331に対しアシスト力を与え
るとともに、トルク配分制御部40によって、第2圧油
通路32の開口面積が増加し、かつ増加した分、第2圧
油通路32より該トルク配分制御部40を介してリザー
バTへ戻される圧油の排出抵抗が減少する。すると油圧
多板クラッチ41への圧油の作用力が減少する。これに
よって油圧多板クラッチ41は係合状態を前記圧油の作
用力に応じてゆるくし、後輪への駆動トルクの配分を減
少し、かつ駆動トルクの伝達量を減少せしめる。ずなわ
ち、ハンドル回転角に対してクラッチ41に作用する油
圧は第4図に示す曲線Aのように変化する。
Here, when the front wheels are steered by operating the steering wheel, the relative rotation between the steering input shaft 340 and the steering output shaft 360 causes the steering force control section 30 and the torque distribution control section 40 to simultaneously rotate in the same direction and at the same angle. , and power cylinder 3
10 is one pressure oil action chamber 332 in the direction of turning the handle.
Alternatively, high pressure oil acts on one of the other pressure oil action chambers 333 to provide an assisting force to the power piston 331, and the torque distribution control section 40 increases the opening area of the second pressure oil passage 32, and The discharge resistance of the pressure oil returned from the second pressure oil passage 32 to the reservoir T via the torque distribution control section 40 decreases by the increased amount. Then, the acting force of the pressure oil on the hydraulic multi-disc clutch 41 decreases. As a result, the hydraulic multi-disc clutch 41 loosely engages in accordance with the acting force of the pressure oil, reduces the distribution of drive torque to the rear wheels, and reduces the amount of drive torque transmitted. That is, the oil pressure acting on the clutch 41 changes as shown by curve A in FIG. 4 with respect to the rotation angle of the handle.

これによって4輪駆動車は4輪駆動走行時におけるコー
ナブレーキング現象を、減少させることができる。
As a result, the four-wheel drive vehicle can reduce the corner braking phenomenon during four-wheel drive driving.

このように本発明の実施例の構成によれば、4輪駆動車
の4輪駆動走行時に、操舵に伴うコーナブレーキング現
象を、一つの油圧制御装置内に、操舵力制御部と共に併
設したトルク配分制御部の働きで油圧多板クラッチのト
ルク配分をコントロールすることによって解消できる。
As described above, according to the configuration of the embodiment of the present invention, when a four-wheel drive vehicle is traveling in four-wheel drive, the corner braking phenomenon associated with steering can be controlled by a torque control system installed in one hydraulic control device together with a steering force control section. This problem can be solved by controlling the torque distribution of the hydraulic multi-disc clutch using the distribution control unit.

また一つの装置で済むのでコスト的にも従来の装置と比
べ低減できるとともに、車両への設置スペースも節約す
ることができる。
Furthermore, since only one device is required, the cost can be reduced compared to conventional devices, and the installation space in the vehicle can also be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の4輪駆動車用トルク配分制御部をも
つ動力舵取装置の使用状態を示す縦断面図である。第2
図は第1図における要部の■−I−線断矢視図である。 第3図は第1図における油圧回路図である。第4図はハ
ンドル回転角とクラ=  19 − ッチ油圧との関係を示す図である。第5図は本実施例で
用いる4輪駆動車の駆動力伝達系統を示す概略系統図で
ある。 2・・・分流制御弁 4・・・4輪駆動車用トルク配分制御部21・・・第1
圧油通路 22・・・第2圧油通路 5・・・油圧制御装置 40・・・トルク配分制御部 41・・・油圧クラッチ P・・・供給ポンプ
FIG. 1 is a longitudinal cross-sectional view showing a state in which a power steering device having a torque distribution control section for a four-wheel drive vehicle according to the present invention is used. Second
The figure is a cross-sectional view taken along the line (■--I) of the main part in FIG. 1. FIG. 3 is a hydraulic circuit diagram in FIG. 1. FIG. 4 is a diagram showing the relationship between the steering wheel rotation angle and the clutch oil pressure. FIG. 5 is a schematic system diagram showing the driving force transmission system of the four-wheel drive vehicle used in this embodiment. 2... Diversion control valve 4... Torque distribution control section for four-wheel drive vehicle 21... First
Pressure oil passage 22...Second pressure oil passage 5...Hydraulic control device 40...Torque distribution control section 41...Hydraulic clutch P...Supply pump

Claims (1)

【特許請求の範囲】[Claims] (1)一定量の圧油を送出する供給ポンプと、該供給ポ
ンプからの圧油を舵取用パワーシリンダへ供給する第1
圧油通路および4輪駆動用油圧クラッチへ供給する第2
圧油通路に分流する分流制御弁と、 操舵力入力軸と操舵力出力軸との相対回転により作動さ
れ、該相対回転の増減に応じて該第1圧油通路の圧油圧
力を増減する操舵力制御部と該相対回転の増減に応じて
該第2圧油通路の圧油圧力を増減するトルク配分制御部
をもつ油圧制御装置とを有することを特徴とする4輪駆
動車用トルク配分制御部をもつ動力舵取装置。
(1) A supply pump that delivers a certain amount of pressure oil, and a first supply pump that supplies pressure oil from the supply pump to the steering power cylinder.
No. 2, which supplies pressure oil passages and four-wheel drive hydraulic clutches.
A control valve that divides the flow into the pressure oil passage, and a steering system that is operated by relative rotation between a steering force input shaft and a steering force output shaft, and increases or decreases the pressure oil pressure in the first pressure oil passage in accordance with an increase or decrease in the relative rotation. Torque distribution control for a four-wheel drive vehicle, comprising a force control section and a hydraulic control device having a torque distribution control section that increases or decreases the pressure oil pressure in the second pressure oil passage according to an increase or decrease in the relative rotation. A power steering device with a section.
JP61188281A 1986-08-11 1986-08-11 Power steering device having control part for distributing torque for four-wheel-drive vehicle Pending JPS6343870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188281A JPS6343870A (en) 1986-08-11 1986-08-11 Power steering device having control part for distributing torque for four-wheel-drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188281A JPS6343870A (en) 1986-08-11 1986-08-11 Power steering device having control part for distributing torque for four-wheel-drive vehicle

Publications (1)

Publication Number Publication Date
JPS6343870A true JPS6343870A (en) 1988-02-24

Family

ID=16220901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188281A Pending JPS6343870A (en) 1986-08-11 1986-08-11 Power steering device having control part for distributing torque for four-wheel-drive vehicle

Country Status (1)

Country Link
JP (1) JPS6343870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013031A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Structure for arranging brake hose
CN102632924A (en) * 2012-04-17 2012-08-15 北京理工大学 Control strategy for sliding steering of four-wheel-hub motor driven vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013031A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Structure for arranging brake hose
CN102632924A (en) * 2012-04-17 2012-08-15 北京理工大学 Control strategy for sliding steering of four-wheel-hub motor driven vehicles

Similar Documents

Publication Publication Date Title
US4420934A (en) Automotive vehicle hydraulic system
US3865207A (en) Hydraulic feed for wheel motors
US4601358A (en) Power steering system
GB2169252A (en) Dual flow variable assist power steering gear mechanism
US4759420A (en) Steering gear with speed sensitive detent switch
EP0159687B1 (en) Power steering system
US4434866A (en) Speed-sensitive power steering system
US3931711A (en) Controller assembly
EP0502456B1 (en) Fluid controller with load sensing priority flow control capability
EP0480431B1 (en) Controller with reduced travel limit slip
JPS6343870A (en) Power steering device having control part for distributing torque for four-wheel-drive vehicle
JPH09309357A (en) Yaw moment control method for vehicle
US4805714A (en) Power steering system with hydraulic reaction
JPH0717277A (en) Torque distribution control device for vehicle
US5244052A (en) Steering control unit for multiple steerable axles
JP3147768B2 (en) Vehicle steering control device
US5069301A (en) Vehicle power assisted steering system
US5332055A (en) Power steering apparatus having hydraulic reaction mechanism
JP3715001B2 (en) Power transmission device for four-wheel drive vehicle
JPH0255261B2 (en)
JPS61102382A (en) Steering force controller of power steering unit
JPH0255260B2 (en)
JPS6371481A (en) Power transmission device for vehicle
JPH0435263Y2 (en)
EP0020032B1 (en) Hydraulic power assisted steering system