JPS6343673B2 - - Google Patents

Info

Publication number
JPS6343673B2
JPS6343673B2 JP58238463A JP23846383A JPS6343673B2 JP S6343673 B2 JPS6343673 B2 JP S6343673B2 JP 58238463 A JP58238463 A JP 58238463A JP 23846383 A JP23846383 A JP 23846383A JP S6343673 B2 JPS6343673 B2 JP S6343673B2
Authority
JP
Japan
Prior art keywords
inner shell
furnace
heat
shell
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58238463A
Other languages
Japanese (ja)
Other versions
JPS60129591A (en
Inventor
Tsuneo Harada
Masaaki Orii
Isao Tanaka
Shigeru Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP23846383A priority Critical patent/JPS60129591A/en
Publication of JPS60129591A publication Critical patent/JPS60129591A/en
Publication of JPS6343673B2 publication Critical patent/JPS6343673B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 1 産業上の利用分野 本発明は加熱炉に係り、更に詳述すれば、例え
ば水素のような軽いガスを雰囲気ガスに使用する
に好適な連続加熱炉に係る。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a heating furnace, and more specifically, to a continuous heating furnace suitable for using a light gas such as hydrogen as an atmospheric gas.

2 従来技術 連続加熱炉は一般に入口側に昇温帯、中央部に
高温保持帯、出口側に降温帯が設けられ、必要に
応じて炉内に所定の温度曲線が付与されるように
してあり、更に必要に応じて炉内の雰囲気を所定
の雰囲気ガスとするようになつていて、熱処理、
粉末冶金に於ける焼結、セラミツクの焼成等広い
分野で使用されている。
2. Prior Art Continuous heating furnaces are generally provided with a temperature increasing zone on the inlet side, a high temperature holding zone in the center, and a cooling zone on the outlet side, and a predetermined temperature curve is provided in the furnace as necessary. Furthermore, the atmosphere inside the furnace is changed to a predetermined atmospheric gas as necessary, so that heat treatment,
It is used in a wide range of fields such as sintering in powder metallurgy and firing ceramics.

特に高温保持帯では炉内の温度が高く、一般に
炉壁は耐火物、とりわけ耐火煉瓦で構成されてい
るが、耐火物も熱を或程度伝導するので、炉内の
熱が炉外へ逃げ、エネルギーのロスが可成りある
のが現状である。とりわけ炉内雰囲気が例えば水
素を含む雰囲気ガスである場合は水素ガスが耐火
物を侵透してその熱伝導率が大であるために炉の
外殻を直接加熱、昇温させ、外殻から炉外へ熱が
放散されてエネルギーロスが一層大きくなる。耐
火煉瓦の外側を更に断熱煉瓦で覆う方法がある
が、この方法によつても上記の問題点を解決する
には不充分である上に、炉の外周寸法が大きくな
らざるを得ないという別の問題点を生ずる。
Especially in the high-temperature holding zone, the temperature inside the furnace is high, and the furnace walls are generally made of refractories, especially firebricks, but since refractories also conduct heat to a certain extent, the heat inside the furnace escapes to the outside of the furnace. The current situation is that there is considerable energy loss. In particular, when the atmosphere inside the furnace is an atmospheric gas containing hydrogen, hydrogen gas penetrates the refractory and has high thermal conductivity, so it directly heats the outer shell of the furnace and raises its temperature. Heat is dissipated outside the furnace, further increasing energy loss. There is a method of covering the outside of the refractory bricks with insulating bricks, but this method is not sufficient to solve the above problems, and has the additional problem of increasing the outer circumference of the furnace. This causes problems.

3 発明の目的 本発明は前記のような従来の加熱炉の問題点を
解消し、断熱が良好でエネルギーロスの小さい加
熱炉を提供することを目的としている。
3. Object of the Invention The present invention aims to solve the problems of conventional heating furnaces as described above, and to provide a heating furnace with good heat insulation and low energy loss.

4 発明の構成 即ち、本発明の第一の発明は、耐熱金属板製内
殻と、内殻の外側に内殻と離間して設けられた金
属板製外殻と、内殻と外殻との間に形成される空
間に充填された断熱材と、前記内殻の内側に設け
られた耐火物製内張り層とを具備する多重構造の
炉壁構造を有し、炉床側の前記内殻及び前記外殻
のうちの少なくとも内殻の上面が、中央部が両側
縁部よりも低位に位置するような傾斜面となつて
いて、炉床側の前記内殻と前記内張り層との間
に、この内張り層を支持するための耐熱金属製支
持部材、例えば後述の実施例に於ける桟22が設
けられていることを特徴とする加熱炉に係り、そ
の第二の発明は上記第一の発明に係る加熱炉の内
外殻間の空間がこの空間を減圧する減圧装置に連
通していることを特徴とする加熱炉に係る。
4. Structure of the Invention That is, the first invention of the present invention comprises an inner shell made of a heat-resistant metal plate, an outer shell made of a metal plate provided outside the inner shell at a distance from the inner shell, and an inner shell and an outer shell. It has a multi-layer furnace wall structure including a heat insulating material filled in a space formed between the inner shell and a refractory lining layer provided inside the inner shell, and the inner shell on the hearth side. and at least the upper surface of the inner shell of the outer shell is an inclined surface such that the center portion is located at a lower level than both side edges, and there is a space between the inner shell and the lining layer on the hearth side. , the second invention relates to a heating furnace characterized by being provided with a heat-resistant metal support member for supporting this lining layer, for example, the crosspiece 22 in the embodiments described below, and the second invention is the same as the first invention. The present invention relates to a heating furnace characterized in that a space between an inner and outer shell of the heating furnace is connected to a pressure reducing device that reduces pressure in this space.

5 実施例 実施例 1 先ず第一の発明についてその詳細を添付図面を
参照しながら説明する。
5 Examples Example 1 First, the details of the first invention will be explained with reference to the attached drawings.

第1図はIC基板の焼成用連続加熱炉の一例を
示す平面図、第2図は第1図の―線に沿う断
面図である。グリーンの(被焼成の)基板(図示
せず。)は耐火物製トレイ31(第1図では図示
省略す。)上に載置されて、図に於いて矢印の方
向に主プツシヤ13によつて第一の装入室1から
次々に炉本体3内に送り込まれ、昇温帯3a、高
温保持帯3b、降温帯3cを通り、第3図に示す
温度曲線の炉内で昇温、高温保持、降温の過程を
経て焼成され、第一の出口室4に送り込まれ、次
いで第二の出口室5、第二の出口室5に延設され
た第一のテーブル6を経て第一のパレツト8上に
移動し、図示しない駆動装置によつて第一のガイ
ド7の上を炉体3と平行に設けられたコンベヤ9
の炉出口側の端部に接する位置に送られる。
FIG. 1 is a plan view showing an example of a continuous heating furnace for firing IC substrates, and FIG. 2 is a sectional view taken along the line - in FIG. 1. A green (to-be-fired) substrate (not shown) is placed on a refractory tray 31 (not shown in FIG. 1) and is moved by the main pusher 13 in the direction of the arrow in the figure. They are fed into the furnace main body 3 one after another from the first charging chamber 1, pass through a temperature rising zone 3a, a high temperature holding zone 3b, and a cooling zone 3c, and are then heated and held at a high temperature in the furnace according to the temperature curve shown in Fig. 3. The pellets are baked through a cooling process and sent to the first outlet chamber 4, then passed through the second outlet chamber 5 and the first table 6 extending to the second outlet chamber 5, and then the first pallet 8. A conveyor 9 moves upward and is provided parallel to the furnace body 3 above the first guide 7 by a drive device (not shown).
It is sent to a position in contact with the end of the furnace outlet side.

装入物の加熱は端子3dに連結された図示しな
い電気抵抗発熱体によつて行われ、天井から炉内
に貫装された熱電対3eによつて測温され、図示
しない制御装置によつて所定の温度曲線が維持さ
れるようになつている。
The charge is heated by an electric resistance heating element (not shown) connected to a terminal 3d, the temperature is measured by a thermocouple 3e inserted into the furnace from the ceiling, and the temperature is measured by a control device (not shown). A predetermined temperature curve is maintained.

コンベヤ9上のトレイはトレイ送還用プツシヤ
14によつて次々に炉出口側端部から炉入口側端
部に送られ、第二のパレツト11の上に移動し、
次いで第二のガイド10の上を図示しない駆動装
置によつて第二の装入室2に延設された第二のテ
ーブル12、第二の装入室2を経て第一の装入室
1に送り込まれるようになつている。
The trays on the conveyor 9 are sent one after another from the furnace outlet side end to the furnace inlet side end by the tray return pusher 14, and are moved onto the second pallet 11.
Next, a second table 12 is extended over the second guide 10 into the second charging chamber 2 by a drive device (not shown), and then the second table 12 is extended through the second charging chamber 2 to the first charging chamber 1. It is beginning to be sent to

トレイの第二のパレツト11から第二のテーブ
ル12を経て第二の装入室2への移動は第一の副
プツシヤ15によつて、第二の装入室2から第一
の装入室1への移動は第二の副プツシヤ16によ
つて、第一の出口室4から第二の出口室5への移
動は第三の副プツシヤ17によつて、第二の出口
室5から第一のテーブル6を経て第一のパレツト
7への移動は第四の副プツシヤ18によつて行わ
れる。
The movement of the trays from the second pallet 11 to the second charging chamber 2 via the second table 12 is carried out by the first subsidiary pusher 15. The movement from the second outlet chamber 5 to the The movement through the first table 6 to the first pallet 7 is effected by a fourth sub-pusher 18.

炉体3の中にはトレイ31が60板1列に並んで
装入され、8時間かけて炉体3の中を通過するよ
うにしてある。また、コンベヤ9の上をトレイが
移動している間に焼成された基板をトレイから回
収し、そこにグリーンの基板を載置する。
In the furnace body 3, 60 trays 31 are lined up in one row, and the trays 31 are passed through the furnace body 3 over a period of 8 hours. Further, while the tray is moving on the conveyor 9, the fired substrate is collected from the tray, and a green substrate is placed thereon.

炉体3の中の雰囲気ガスは窒素ガス3に対して
AXガス(アンモニア分解ガス)5の割合で混合
した混合ガスとしてあり、ガスの炉内への供給は
降温帯3c、第一の装入室1及び第一の出口室4
の天井に設けられたガス導入孔3fから行われ
る。3gは防爆弁である。
The atmospheric gas in the furnace body 3 is relative to the nitrogen gas 3.
AX gas (ammonia decomposition gas) is a mixed gas mixed at a ratio of 5, and the gas is supplied into the furnace through the cooling zone 3c, the first charging chamber 1 and the first outlet chamber 4.
This is done through the gas introduction hole 3f provided in the ceiling of the building. 3g is an explosion-proof valve.

炉体3中に導入された雰囲気ガスはその大部分
が第一の装入室1と第二の装入室2との間の扉1
aに設けられたガス通過孔1bから第二の装入室
2へ送られる。第二の装入室2と外部との間を開
閉する扉2aを開いたときに、第二の装入室2か
ら外部へ放出されるガスは着火されて炎となり、
第二の装入室2と外部との境界でフレームカーテ
ンを形成して外気が侵入するのを防止する。
Most of the atmospheric gas introduced into the furnace body 3 passes through the door 1 between the first charging chamber 1 and the second charging chamber 2.
The gas is sent to the second charging chamber 2 through the gas passage hole 1b provided in a. When the door 2a that opens and closes between the second charging chamber 2 and the outside is opened, the gas released from the second charging chamber 2 to the outside is ignited and becomes a flame.
A frame curtain is formed at the boundary between the second charging chamber 2 and the outside to prevent outside air from entering.

雰囲気ガスの残りの部分は第一の出口室4と第
二の出口室5との間の扉4aに設けられたガス通
過孔4bから第二の出口室5へ送られる。第二の
出口室5と外部との間を開閉する扉5aを開いた
ときに、第二の出口室5から外部へ放出されるガ
スは着火されて炎となり、第二の出口室5と外部
との境界でフレームカーテンを形成して外気が侵
入するのを防止する。
The remaining part of the atmospheric gas is sent to the second outlet chamber 5 through a gas passage hole 4b provided in the door 4a between the first outlet chamber 4 and the second outlet chamber 5. When the door 5a that opens and closes between the second outlet chamber 5 and the outside is opened, the gas released from the second outlet chamber 5 to the outside is ignited and becomes a flame, which separates the second outlet chamber 5 from the outside. A frame curtain is formed at the border to prevent outside air from entering.

第二の装入室及びその周辺は第1図の―線
に沿う矢視断面図である第4図に示すように、雰
囲気ガスは図に於いて第二の装入室2の奥側にあ
る図示省略した第一の装入室を経て第一の扉1a
に設けられた第一のガス通過孔1bを通つて第二
の装入室2に入り、その床に設けられたガス排出
孔2bを経てガス排出管2c及びその途中に設け
られた調節弁2dを経由し、着火されて排出され
る。雰囲気ガスの炉内への供給量の調節は上記調
節弁2dによつて行われる。
As shown in Figure 4, which is a sectional view of the second charging chamber and its surroundings taken along the - line in Figure 1, the atmospheric gas is located at the back of the second charging chamber 2 in the figure. After passing through a first charging chamber (not shown), the first door 1a is opened.
It enters the second charging chamber 2 through the first gas passage hole 1b provided in the floor, and passes through the gas discharge hole 2b provided in the floor to the gas discharge pipe 2c and the control valve 2d provided in the middle thereof. is ignited and discharged. The amount of atmospheric gas supplied into the furnace is adjusted by the control valve 2d.

第二の扉2aを開いた時に第二の扉2aの閉じ
ている状態での下端近くに装入物の移動方向に直
角方向に設けられ、多数のノズル33aを具備す
る着火管33に連結された弁(図示せず。)が開
くようにしてあり、着火管33のノズルから放出
される燃料ガスがパイロツトバーナ32によつて
点火され、第二の装入室から外部へ放出される雰
囲気ガスは着火されて炎となり、第二の装入室2
と外部との境界でフレームカーテンを形成して外
気が侵入するのを防止し、フード34を経由して
排出される。
When the second door 2a is opened, the ignition pipe 33 is provided near the lower end of the second door 2a in the closed state in a direction perpendicular to the moving direction of the charge, and is connected to an ignition pipe 33 having a large number of nozzles 33a. The fuel gas released from the nozzle of the ignition pipe 33 is ignited by the pilot burner 32, and the atmospheric gas is released from the second charging chamber to the outside. is ignited, becomes a flame, and enters the second charging chamber 2.
A frame curtain is formed at the boundary between the air and the outside to prevent outside air from entering, and the air is exhausted through the hood 34.

第二のパレツト11から第二の装入室2への装
入物の移動は第二の扉2aを開いておいて第一の
副プツシヤ15(第1図参照)によつて行われ、
第二の装入室2から第一の装入室1への装入物の
移動は第一の扉1aを開いておいて第二の副プツ
シヤ16(第1図参照)によつて行われるが、第
二の扉2aと第一の扉1aとは常に少くともいず
れか一方が閉じているようにする。
The transfer of the charge from the second pallet 11 to the second charging chamber 2 is carried out by the first subsidiary pusher 15 (see Fig. 1) with the second door 2a open.
Transfer of the charge from the second charging chamber 2 to the first charging chamber 1 is carried out by the second secondary pusher 16 (see Fig. 1) with the first door 1a open. However, at least one of the second door 2a and the first door 1a is always closed.

第二の出口室5及びその周辺も上記第二の装入
室2及びその周辺の機構と同様の機構にしてあ
る。
The second outlet chamber 5 and its surroundings also have the same mechanism as the second charging chamber 2 and its surroundings.

炉体3の高温保持帯3b部分の断面は、第1図
のV―V線に沿う断面図である第5図に示すよう
に、厚さ6mmの耐熱鋼板SUS310S製の内殻19
と内殻19と離間して設けられた厚さ9mmの炭素
鋼板SS41製の外殻20との二重構造となつてい
て、両者の間の空間には断熱材としてセラミツク
フアイバ21が充填されている。19aは内殻1
9に付せられた補強リブである。
As shown in FIG. 5, which is a cross-sectional view taken along line V-V in FIG.
It has a double structure with an inner shell 19 and an outer shell 20 made of a carbon steel plate SS41 with a thickness of 9 mm provided apart from each other, and the space between the two is filled with ceramic fiber 21 as a heat insulating material. There is. 19a is inner shell 1
This is the reinforcing rib attached to 9.

この例では高温保持帯3bの部分では炉内温度
が最高1600℃であつて、内殻19は数百度に迄昇
温するので、内殻19の材料にはSUS310を使用
しているが、その材料としては一般には炉内温度
に応じて適当な材料を使用するのが良い。
In this example, the maximum temperature inside the furnace is 1600°C in the high temperature holding zone 3b, and the temperature of the inner shell 19 rises to several hundred degrees, so SUS310 is used as the material for the inner shell 19. In general, it is preferable to use an appropriate material depending on the temperature inside the furnace.

更に内殻19の内側は耐火煉瓦23で内張りさ
れている。このように炉の側壁を多重構造とする
ことによつて、内殻19が加熱された雰囲気ガス
及び耐火煉瓦23によつて加熱されても外壁20
の加熱は少なく、内外壁19,20の間に充填さ
れたセラミツクフアイバ21によつて一層断熱効
果が増大して炉内の熱が炉外へ放出されることを
防いでいる。このような効果は前述したように、
水素ガスは耐火煉瓦を侵透して炉の外殻を直接加
熱し易いので、炉内を水素雰囲気または水素を含
む雰囲気とする場合に特に大きい。
Furthermore, the inside of the inner shell 19 is lined with refractory bricks 23. By making the side wall of the furnace have a multilayer structure in this way, even if the inner shell 19 is heated by the heated atmospheric gas and the refractory bricks 23, the outer wall 20
Heating is small, and the ceramic fibers 21 filled between the inner and outer walls 19, 20 further increase the insulation effect and prevent the heat inside the furnace from being released outside the furnace. As mentioned above, this effect
Since hydrogen gas easily penetrates the refractory bricks and directly heats the outer shell of the furnace, it is particularly large when the inside of the furnace is made into a hydrogen atmosphere or an atmosphere containing hydrogen.

なお、炉内の位置によつて温度の異なる連続加
熱炉の場合、操業中に炉外殻に歪が生じて炉床表
面に凹凸が生じ、主プツシヤ13による装入物
(この例ではトレイ上に載置された基板)の搬送
が困難となることがある。そこで、第5図に示す
ように、炉殻の床部をその中央部を両端部よりも
低位に位置するように傾斜面とし、その上に耐熱
鋼製の桟22を載置し、その上に内張りの耐火煉
瓦23を平らに敷き詰めるようにして桟22で内
張りの耐火煉瓦23を支持するようにする。この
ような炉床構造とすることにより、操業中に炉殻
に歪が生じても、その歪は炉床部では炉殻の床部
で吸収され、即ち、炉殻を外側にだけ膨出させる
ので、炉床の耐火煉瓦は平面を維持することがで
き、装入物の炉内での搬送が困難になることはな
い。この例では炉体の高温保持部に第6図に示す
ような厚さ6mm、幅40mmの耐熱鋼板SUS310S製
の桟22を使用している。
In the case of a continuous heating furnace where the temperature varies depending on the position in the furnace, the outer shell of the furnace is distorted during operation, causing unevenness on the hearth surface. It may be difficult to transport the substrate (substrates placed on it). Therefore, as shown in Fig. 5, the floor of the furnace shell is made into an inclined surface so that the central part is located at a lower level than both ends, and a heat-resistant steel crosspiece 22 is placed on top of the slope. The inner refractory bricks 23 are laid flat so that the inner refractory bricks 23 are supported by the crosspieces 22. With such a hearth structure, even if strain occurs in the hearth during operation, the strain is absorbed by the floor of the hearth, which means that the hearth bulges only outward. Therefore, the refractory bricks in the hearth can maintain a flat surface, and there is no difficulty in transporting the charge inside the furnace. In this example, a crosspiece 22 made of a heat-resistant steel plate SUS310S and having a thickness of 6 mm and a width of 40 mm as shown in FIG. 6 is used in the high temperature holding part of the furnace body.

上記のような構造とすることによつて、炉体3
の全長9500mm、高温保持帯3b長さ3500mm、炉内
法寸法、幅315mm、高さ250mmの連続加熱炉に於い
て、前記の操業条件下で、従来の1板の鋼板で構
成された外殻構造の場合に高温保持帯に於けるエ
ネルギーの大気中への放出が1800Kcal/m2・hr
であつたものが、炉壁構造を内殻と外殻との二重
構造とすることによつてこれが1500Kcal/m2
hrとなり、更に内外殻の間の空間にセラミツクフ
アイバを充填した本発明の構造とすることによつ
て更にこれが900Kcal/m2・hrと従来の外殻構造
の場合に比べて半減した。
By having the above structure, the furnace body 3
In a continuous heating furnace with a total length of 9500 mm, a high temperature holding zone 3b length of 3500 mm, and internal dimensions of a width of 315 mm and a height of 250 mm, under the above operating conditions, an outer shell made of a conventional single steel plate was heated. In the case of a structure, the energy released into the atmosphere in the high temperature retention zone is 1800Kcal/m 2・hr
However, by making the furnace wall structure a double structure of an inner shell and an outer shell, this has been reduced to 1500Kcal/m 2 .
hr, and by using the structure of the present invention in which the space between the inner and outer shells is filled with ceramic fibers, this was further reduced by half to 900 Kcal/m 2 ·hr compared to the case of the conventional outer shell structure.

実施例 2 次に本発明の第二の発明について説明する。Example 2 Next, the second invention of the present invention will be explained.

第二の発明は前記第一の発明の外殻の内外殻の
間の空間を減圧するようにして空気の対流や伝導
による炉内から炉外への熱の伝播を防いて一層エ
ネルギーロスの減少を図つたものである。
The second invention further reduces energy loss by reducing the pressure in the space between the inner and outer shells of the first invention to prevent heat from propagating from the inside of the furnace to the outside of the furnace due to air convection or conduction. This is what we are trying to achieve.

その構造は高温保持帯の断面を示す第7図に示
すように、前記実施例1に於けると同様に、炉壁
は厚さ6mmの耐熱鋼板SUS310S製の内殻24と
厚さ9mmの炭素鋼板SS41製の外殻25とで二重
構造となつており、両者の間の空間にはセラミツ
クフアイバ26が充填されていて、更に内殻24
の内側は耐火煉瓦28で内張りされている。ま
た、炉床は前記実施例1に於けると同様に、外殻
の床部を炉の軸に直角方向中央部を両側部よりも
低位に位置するように傾斜を付し、その上に第6
図に示した厚さ6mm、幅40mmの耐熱鋼板
SUS310S製の桟22を並べ、その上に耐火煉瓦
28が敷き詰められていて耐火煉瓦28が桟22
で支持されている。24aは内殻24に付せられ
た補強リブで、その両側の空間を遮断しないよう
に孔24bがこれを貫通している。
As shown in FIG. 7, which shows a cross section of the high-temperature holding zone, the furnace wall is made of an inner shell 24 made of heat-resistant steel plate SUS310S with a thickness of 6 mm and a carbon steel plate with a thickness of 9 mm. It has a double structure with an outer shell 25 made of steel plate SS41, the space between them is filled with ceramic fiber 26, and an inner shell 24.
The inside is lined with firebrick 28. Further, as in the first embodiment, the hearth has a floor part of the outer shell that is inclined so that the central part in the direction perpendicular to the axis of the furnace is located at a lower level than both sides. 6
Heat-resistant steel plate with a thickness of 6 mm and a width of 40 mm as shown in the diagram
The crosspieces 22 made of SUS310S are lined up, and refractory bricks 28 are laid on top of them.
It is supported by 24a is a reinforcing rib attached to the inner shell 24, and a hole 24b passes through it so as not to block the space on both sides of the rib.

以上第一の発明に加えて、外殻25には排気孔
25aが設けられ、管29を介して通例の減圧ポ
ンプ30に連通していて、内外殻の間の空間が減
圧されるようにしてある。このような構造にして
上記空間を10-1Torrに減圧することにより、そ
の余の条件は前記実施例1と同一条件にて高温保
持帯に於けるエネルギーの大気中への放出が
460Kcal/m2.hrと前記実施例1に於ける第一の
発明のそれ(900Kcal/m2・hr)に比べて更に概
ね半減させることができた。
In addition to the first aspect of the invention, the outer shell 25 is provided with an exhaust hole 25a, which communicates with a conventional pressure reducing pump 30 via a pipe 29, so that the space between the inner and outer shells is depressurized. be. By using this structure and reducing the pressure in the space to 10 -1 Torr, the energy in the high temperature holding zone can be released into the atmosphere under the same conditions as in Example 1.
460Kcal/ m2 . hr could be further reduced by about half compared to that of the first invention in Example 1 (900 Kcal/m 2 ·hr).

6 発明の効果 以上説明したように、第一の発明に係る加熱炉
によるときは、従来の加熱炉による場合に比べて
断熱効果が著しく増大し、第二の発明に係る加熱
炉によるときは、第一の発明に係る加熱炉に比べ
て更に断熱効果が大きく、エネルギーロスが著し
く減少し、いずれも省エネルギーの観点から産業
上の利用価値は大きい。更に、炉床部の構造を、
少なくとも内殻の上面を中央部が両側縁部よりも
低位に位置するような傾斜面とし、この傾斜面と
耐火物製内張り層との間に、この内張り層を支持
するための耐熱金属製支持部材を介在せしめた構
造とすることにより、操業中に炉殻に歪が生じて
も、この歪は上記傾斜面に吸収されて上記内張り
層の表面には変形が起こらない。その結果、被加
熱物の炉内での搬送が困難になることがなく、操
業が長期間に亘つてスムーズに遂行される。
6 Effects of the invention As explained above, when using the heating furnace according to the first invention, the heat insulation effect is significantly increased compared to when using the conventional heating furnace, and when using the heating furnace according to the second invention, Compared to the heating furnace according to the first invention, the heat insulation effect is greater and energy loss is significantly reduced, and both have great industrial utility value from the viewpoint of energy conservation. Furthermore, the structure of the hearth part,
At least the upper surface of the inner shell is a sloped surface such that the center portion is located at a lower level than both side edges, and a heat-resistant metal support is provided between the sloped surface and the refractory lining layer to support the lining layer. Due to the structure in which the members are interposed, even if the furnace shell is strained during operation, this strain is absorbed by the inclined surface and the surface of the lining layer is not deformed. As a result, there is no difficulty in transporting the objects to be heated within the furnace, and operations can be carried out smoothly over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は第一の発明の実施例を説明す
るための図面で、第1図は連続加熱炉の平面図、
第2図は第1図の―線に沿う断面図、第3図
は炉内の温度曲線を示すグラフ、第4図は第1図
の―線に沿う矢視断面図、第5図は第1図の
V―V線に沿う断面図、第6図は桟の形状を示す
平面図である。第7図は第二の発明の実施例に於
ける高温保持帯の断面図である。 なお、図面に使用されている符号について、3
…炉体、3a…昇温帯、3b…高温保持帯、3c
…降温帯、19,24…内殻、20,25…外
殻、21,26…断熱材(セラミツクフアイバ)、
22…桟、23,28…耐火物製内張り(耐火煉
瓦)、25a…排気孔、29…管、30…減圧ポ
ンプ、31…トレイである。
1 to 6 are drawings for explaining an embodiment of the first invention, and FIG. 1 is a plan view of a continuous heating furnace;
Figure 2 is a sectional view taken along the line - in Figure 1, Figure 3 is a graph showing the temperature curve inside the furnace, Figure 4 is a sectional view taken along the line - in Figure 1, and Figure 5 is the 1 is a sectional view taken along line VV in FIG. 1, and FIG. 6 is a plan view showing the shape of the crosspiece. FIG. 7 is a cross-sectional view of a high-temperature holding zone in an embodiment of the second invention. Regarding the symbols used in the drawings, 3.
...Furnace body, 3a...Temperature rising zone, 3b...High temperature holding zone, 3c
...Temperature zone, 19,24...Inner shell, 20,25...Outer shell, 21,26...Insulating material (ceramic fiber),
22... Crosspiece, 23, 28... Refractory lining (firebrick), 25a... Exhaust hole, 29... Pipe, 30... Decompression pump, 31... Tray.

Claims (1)

【特許請求の範囲】 1 耐熱金属板製内殻と、この内殻の外側にこの
内殻と離間して設けられた金属板製外殻と、前記
内殻と前記外殻との間に形成される空間に充填さ
れた断熱材と、前記内殻の内側に設けられた耐火
物製内張り層とを具備する多重構造の炉壁構造を
有し、炉床側の前記内殻及び前記外殻のうちの少
なくとも内殻の上面が、中央部が両側縁部よりも
低位に位置するような傾斜面となつていて、炉床
側の前記内殻と前記内張り層との間に、この内張
り層を支持するための耐熱金属製支持部材が設け
られていることを特徴とする加熱炉。 2 耐熱金属板製内殻と、この内殻の外側にこの
内殻と離間して設けられた金属板製外殻と、前記
内殻と前記外殻との間に形成される空間に充填さ
れた断熱材と、前記内殻の内側に設けられた耐火
物製内張り層とを具備する多重構造の炉壁構造を
有し、炉床側の前記内殻及び前記外殻のうちの少
なくとも内殻の上面が、中央部が両側縁部よりも
低位に位置するような傾斜面となつていて、炉床
側の前記内殻と前記内張り層との間に、この内張
り層を支持するための耐熱金属製支持部材が設け
られ、かつ、前記内殻と前記外殻との間の空間が
この空間を減圧する減圧装置に連通していること
を特徴とする加熱炉。
[Scope of Claims] 1. An inner shell made of a heat-resistant metal plate, an outer shell made of a metal plate provided on the outside of the inner shell at a distance from the inner shell, and formed between the inner shell and the outer shell. It has a multilayer furnace wall structure comprising a heat insulating material filled in a space filled with heat, and a refractory lining layer provided inside the inner shell, and the inner shell and the outer shell on the hearth side. At least the upper surface of the inner shell is an inclined surface such that the center portion is located at a lower level than both side edges, and this lining layer is provided between the inner shell and the lining layer on the hearth side. A heating furnace characterized by being provided with a heat-resistant metal support member for supporting the heating furnace. 2. An inner shell made of a heat-resistant metal plate, an outer shell made of a metal plate provided outside the inner shell at a distance from the inner shell, and a space formed between the inner shell and the outer shell filled with It has a multi-layer furnace wall structure comprising a heat insulating material and a refractory lining layer provided inside the inner shell, and at least the inner shell of the inner shell and the outer shell on the hearth side. The upper surface is an inclined surface such that the center portion is located at a lower level than both side edges, and a heat-resistant layer is provided between the inner shell on the hearth side and the lining layer to support the lining layer. A heating furnace characterized in that a metal support member is provided, and a space between the inner shell and the outer shell communicates with a pressure reducing device that reduces the pressure in this space.
JP23846383A 1983-12-17 1983-12-17 Heating furnace Granted JPS60129591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23846383A JPS60129591A (en) 1983-12-17 1983-12-17 Heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23846383A JPS60129591A (en) 1983-12-17 1983-12-17 Heating furnace

Publications (2)

Publication Number Publication Date
JPS60129591A JPS60129591A (en) 1985-07-10
JPS6343673B2 true JPS6343673B2 (en) 1988-08-31

Family

ID=17030600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23846383A Granted JPS60129591A (en) 1983-12-17 1983-12-17 Heating furnace

Country Status (1)

Country Link
JP (1) JPS60129591A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869390A (en) * 1981-10-22 1983-04-25 大同特殊鋼株式会社 Furnace wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869390A (en) * 1981-10-22 1983-04-25 大同特殊鋼株式会社 Furnace wall

Also Published As

Publication number Publication date
JPS60129591A (en) 1985-07-10

Similar Documents

Publication Publication Date Title
CN102620559A (en) Novel tunnel-type folded-rail continuous sintering furnace and sintering method thereof
KR100440667B1 (en) Method of thermal treatment for substrates and the furnace for its continuous thermal treatment
JPH0253708B2 (en)
US3314666A (en) Fast fire tunnel kiln
US9073792B2 (en) Methods for improved atmosphere control through secondary gas pressure wave firing
CN215713205U (en) Gas furnace and gas furnace system
JPS6343673B2 (en)
CN202393206U (en) Novel tunnel type folding rail continuous sintering kiln
CN113862451A (en) Gas furnace and use method thereof
KR100411403B1 (en) Heating method and apparatus
EP0157025B1 (en) Rotary hearth finish annealing furnace
CN210532998U (en) Push plate type energy-saving tunnel furnace for sintering ceramic products
JP2706550B2 (en) Manufacturing method of carbon rod
JPS6116913B2 (en)
JP7180019B1 (en) Continuous heating furnace
JPH03158696A (en) Kiln
JP3976460B2 (en) Castable block glazing method
EP4365529A1 (en) Heat treatment apparatus for manufacturing active material for secondary battery
JPH1130485A (en) Muffle truck for burning furnace
JP3023184B2 (en) Continuous tunnel furnace
JP2522878B2 (en) Ceramic product firing furnace
JPH03152388A (en) Batch type baking furnace
JPH0345110Y2 (en)
JPH10238953A (en) Vertical moving furnace
JPS6120018Y2 (en)