JPS6343410B2 - - Google Patents

Info

Publication number
JPS6343410B2
JPS6343410B2 JP59112688A JP11268884A JPS6343410B2 JP S6343410 B2 JPS6343410 B2 JP S6343410B2 JP 59112688 A JP59112688 A JP 59112688A JP 11268884 A JP11268884 A JP 11268884A JP S6343410 B2 JPS6343410 B2 JP S6343410B2
Authority
JP
Japan
Prior art keywords
water
absorbing resin
improved
powder
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59112688A
Other languages
Japanese (ja)
Other versions
JPS60255814A (en
Inventor
Muneharu Makita
Katsuzo Tanioku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP11268884A priority Critical patent/JPS60255814A/en
Publication of JPS60255814A publication Critical patent/JPS60255814A/en
Publication of JPS6343410B2 publication Critical patent/JPS6343410B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明はゲル強度の改良された吸水性樹脂の製
法に関する。 [従来技術] 吸水性樹脂は生理用品、おむつ、使い捨て雑巾
などの衛生関係や保水剤などの農園芸関係に使用
されているほか、汚泥の凝固、建材の結露防止、
油類の脱水などの用途に用いられている。 この種の吸水性樹脂としては、カルボキシメチ
ルセルロース架橋物、ポリエチレンオキシド部分
架橋物、でんぷん―アクリロニトリルグラフト共
重合体の加水分解物、ポリアクリル酸塩部分架橋
物、ビニルアルコール―アクリル酸塩共重合体な
どが知られているが、いずれのばあいにも吸水能
が低かつたり、たとえ吸水能が高くても吸水後の
ゲル強度が弱いとか、吸水後のゲルがべとついた
感じのゲルになるなどの欠点を有している。 吸水性樹脂の吸水後のゲル強度をあげる方法と
しては、吸水性樹脂の架橋密度を高くする方法が
あるが、吸水性樹脂本来の性能である吸水能が低
下するため好ましくない。 吸水性樹脂の吸水後のゲル強度をあげる他の方
法としては、たとえば低級1価アルコールのごと
き親水性有機溶剤の存在下で吸水性樹脂に水を添
加し、吸水性樹脂に水を実質的に均一に吸収させ
た状態で架橋させ、ついで乾燥させる方法があ
る。この方法では、水を多く吸収させた状態で架
橋させることが吸水性樹脂の吸水能などの点から
好ましいと考えられるが、該方法を採用するばあ
いには水の使用量が制限され、吸水量が少ない状
態でも吸水膨潤状態の樹脂粒子相互間に凝集がお
こり、塊状となりやすく、作業性もわるく、工業
的に行なうのに適しているとはいいがたい。した
がつて該方法においては、多量の親水性有機溶剤
の存在下に少量の水を添加し、吸水性樹脂粒子を
吸水膨潤状態にせしめ、樹脂粒子間に凝集がおこ
りにくい状態にして架橋反応させることが必要で
あるため、製造コストが高い、生産性が低いなど
の問題がある。 [発明の概要] 本発明者らは上記のごとき実情に鑑み、吸水性
樹脂の吸水能および吸水速度を維持し、吸水後の
ゲル強度が大きく、吸水後のゲルがべとついた感
じにならない吸水後のゲル強度の改良された吸水
性樹脂を、効率よく容易かつ安価に製造すること
を目的として鋭意研究を重ねた結果、吸水後のゲ
ル強度の改良された吸水性樹脂の製造時に不活性
な無機質粉末を用い、架橋剤および水を噴霧添加
し、架橋させることにより、従来技術において必
要不可欠な成分であつた親水性有機溶剤をまつた
く使用することなく、前記諸目的を達成せしめう
ることを見出し、本発明を完成した。 すなわち本発明は、カルボキシレートを有する
単量体単位を重合体の構成成分として含有する吸
水性樹脂および不活性な無機質粉末の攪拌下に、
架橋剤および水(吸水性樹脂の固形分に対し70〜
200%(重量%、以下同様)に相当する)を噴霧
添加し、ついで加熱して架橋反応せしめ、そのの
ち水の留去を行なわせることを特徴とするゲル強
度の改良された吸水性樹脂の製法に関する。 なお本明細書にいうカルボキシレートとはカル
ボキシル基、カルボキシル基の塩を包含する概念
である。 [発明の実施態様] 本発明により吸水後のゲル強度が改良される吸
水性樹脂(以下、本発明により改良される吸水性
樹脂という)としては、重合体または共重合体の
構成成分中にカルボキシレートを有する単量体単
位を含有するものであればとくに限定することな
く使用される。該吸水性樹脂としては、(メタ)
アクリル酸重合体(アクリル酸重合体またはメタ
クリル酸重合体を意味する、以下同様の記載は同
様の意味である)の架橋物、多糖類―(メタ)ア
クリル酸グラフト共重合体の架橋物、(メタ)ア
クリル酸―アクリルアミド―スルホン化アクリル
アミド3元共重合体の架橋物またはこれらのアル
カリ金属塩もしくはアルカリ土類金属塩、たとえ
ばアクリル酸(塩)重合体、アクリル酸(塩)―
メタクリル酸(塩)共重合体、でんぷん―アクリ
ル酸(塩)グラフト共重合体などの架橋物;多糖
類―(メタ)アクリル酸アルキルエステルグラフ
ト共重合体のケン化物の架橋物、多糖類―アクリ
ロニトリルグラフト共重合体のケン化物の架橋
物、多糖類―アクリルアミド共重合体のケン化物
の架橋物、たとえばでんぷん―アクリル酸エチル
グラフト共重合体のケン化物、でんぷん―メタク
リル酸メチルグラフト共重合体のケン化物、でん
ぷん―アクリロニトリルグラフト共重合体のケン
化物、でんぷん―アクリルアミドグラフト共重合
体のケン化物などの架橋物;(メタ)アクリル酸
アルキルエステル―酢酸ビニル共重合体のケン化
物の架橋物、たとえばメタクリル酸エチル酢酸ビ
ニル共重合体のケン化物、アクリル酸メチル―酢
酸ビニル共重合体のケン化物などの架橋物;でん
ぷん―アクリロニトリル―アクリルアミド―2―
メチルプロパンスルホン酸グラフト共重合体のケ
ン化物の架橋物;でんぷん―アクリロニトリル―
ビニルスルホン酸グラフト共重合体のケン化物の
架橋物;ナトリウムカルボキシメチルセルロース
の架橋物などがあげられるが、これらに限定され
るものではない。これらは単独で用いてもよく、
2種以上混合して用いてもよい。 前記本発明により改良される吸水性樹脂として
好ましいものは、(メタ)アクリル酸重合体の架
橋物、多糖類―(メタ)アクリル酸グラフト共重
合体の架橋物、(メタ)アクリル酸―アクリルア
ミド―スルホン化アクリルアミド3元共重合体の
架橋物またはこれらのアルカリ金属塩もしくはア
ルカリ土類金属塩である。 本発明により改良される吸水性樹脂の粒径には
とくに限定はなく、粉末状あるいは粒子状である
限り、とくにその形状、大きさなどに制限はない
が、通常約10〜600メツシユの粒径を有するもの
が好ましい。 本発明に用いる不活性な無機質粉末としては、
たとえば含水二酸化ケイ素粉末、含水酸化アルミ
ニウム粉末、含水酸化チタン粉末、これらの無水
物またはこれらを主成分として含有するものの粉
末などがあげられ、これらは単独で用いてもよ
く、2種以上混合して用いてもよい。前記無機質
粉末の結晶系には制限はなく、たとえば酸化アル
ミニウム粉末ではα型、β型、γ型のいずれも同
様に有効に利用でき、酸化チタン粉末ではTiO,
Ti2O3,TiO2のいずれであつてもよい。さらにこ
れらの含水物粉末の含水量にもとくに限定はな
く、たとえば水酸化アルミニウム粉末では
Al2O3・H2O粉末、Al2O3・2H2O粉末、Al2O3
3H2O粉末が、酸化チタン粉末ではTiO2・H2O粉
末、TiO2・2H2O粉末などが同様に用いられる。
また前記含水もしくは無水の無機質を主成分とし
て含有する粉末としては、たとえばコロイダルシ
リカ、ホワイトカーボン、超微粒子状シリカなど
の含水二酸化ケイ素および(または)無水二酸化
ケイ素(以下、微粒子状シリカという)を主成分
とするもの、板状水和アルミナ、繊維状水和アル
ミナのように含水および無水の酸化アルミニウム
を主成分とするもの、ルチル型またはアナタース
型の含水および無水酸化チタンを主成分として含
有するものなどを例示することができる。これら
の不活性な無機質粉末のうちでは、微粒子状シリ
カ、二酸化チタン粉末およびアルミナ粉末などが
好ましい。該無機質粉末の粒径としては、平均粒
径が0.001〜10μmのものが好ましく、0.005〜1μm
のものがさらに好ましく、吸水膨潤状態における
吸水性樹脂粒子の相互間の分散性を向上させ、流
動性を改善させるような特性を有するものが好ま
しい。 本発明に用いる架橋剤とは、本発明により改良
される吸水性樹脂中に存在するカルボキシレー
ト、水酸基、スルホン基、アミノ基などの基と反
応しうる2個以上の官能基を有する架橋剤であ
り、このようなものであればとくに限定すること
なく使用することができる。前記架橋剤として
は、たとえばジグリシジルエーテル系化合物、多
価金属塩、ハロエポキシ系化合物、アルデヒド系
化合物、イソシアネート系化合物などがあげられ
る。 前記ジグリシジルエーテル系化合物としては、
たとえば(ポリ)エチレングリコールジグリシジ
ルエーテル、(ポリ)プロピレングリコールジグ
リシジルエーテル、(ポリ)グリセリンジグリシ
ジルエーテルなどのジグリシジルエーテル系化合
物が適しており、これらの中でもエチレングリコ
ールジグリシジルエーテルが最適である。 前記多価金属塩としては、吸水性樹脂のカルボ
キシレートなどとイオン反応による架橋を形成し
うる化合物があげられ、具体例としてはマグネシ
ウム、カルシウム、バリウム、亜鉛などの2価金
属またはアルミニウム、鉄などの3価金属のハロ
ゲン化物、硫酸塩、硝酸塩などであり、より具体
的には硫酸マグネシウム、硫酸アルミニウム、塩
化第2鉄、塩化カルシウム、塩化マグネシウム、
塩化アルミニウム、ポリ塩化アルミニウム、硝酸
鉄、硝酸カルシウム、硝酸アルミニウムなどがあ
げられる。 前記ハロエポキシ系化合物の具体例としては、
エピクロルヒドリン、エピブロモヒドリン、α―
メチルエピクロルヒドリンなど、アルデヒド系化
合物としては、グルタルアルデヒド、グリオキザ
ールなど、イソシアネート系化合物としては2,
4―トリレンジイソシアネート、ヘキサメチレン
ジイソシアネートなどがあげられる。 前記のような架橋剤は単独で用いてもよく、2
種以上混合して用いてもよいが、本発明により改
良される吸水性樹脂の種類によつて適切なものを
選定し、使用することが好ましい。その目的とす
るところは、改良される吸水性樹脂に再度架橋構
造を付与し、吸水能および吸水速度を維持しなが
ら吸水性樹脂の吸水後のゲル強度を改良すること
にあり、このような目的には前記架橋剤のうちで
もジグリシジルエーテル系化合物、多価金属塩ま
たはハロエポキシ系化合物が好適である。 本発明においては、本発明により改良される吸
水性樹脂100部(重量部以下、同様)に対し、不
活性な無機質粉末1〜30部、好ましくは5〜20
部、水70〜200部および架橋剤0.005〜5.0部、好
ましくは0.01〜1部が使用され、吸水後のゲル強
度の改良された吸水性樹脂が製造される。 架橋反応における水の役割は、本発明により改
良される吸水性樹脂を膨潤させ、架橋剤を該吸水
性樹脂内部まで浸透させることにより、吸水性樹
脂内部まで架橋反応をおこさせることにある。そ
れゆえ、水を多く使用すればするほどより内部に
おいても架橋反応がおこるため、水を吸収して膨
潤したのちでも吸水性樹脂が網状構造維持しやす
くなり、経日的に安定なゲル強度を有する吸水性
樹脂がえられる。 また本発明により改良される吸水性樹脂への水
の添加量を多くすると、膨潤した吸水性樹脂が凝
集し、塊状となり、吸水性樹脂と水とを均一な状
態にすることが難しいが、不活性な無機質粉末を
分散剤として用い、本発明により改良される吸水
性樹脂と該無機質粉末とを均一に攪拌し、これに
架橋剤と水とを噴霧添加すると均一な分散状態に
することが可能となり、このような状態で架橋反
応を行ない、水を留去させることによつて吸水後
のゲル強度の改良された吸水性樹脂をうることが
できる。 前記不活性な無機質粉末の使用量が、本発明に
より改良される吸水性樹脂100部に対して1部未
満になると、該吸水性樹脂および不活性な無機質
粉末の混合物に水および架橋剤を噴霧して半膨潤
状態にして攪拌したときに、吸水膨潤状態の樹脂
粒子相互間に凝集がおこり、塊状となり、架橋反
応を均質に行なわせることができなくなつたり、
架橋反応自体が進みにくくなつたりする。また該
量が30部をこえても、30部をこえて使用した量に
対する効果がほとんどえられないのみならず、吸
水後のゲル強度が改良された吸水性樹脂の重量当
りの吸水能が低下する傾向が生ずる。 前記水の使用量が本発明により改良される吸水
性樹脂100部に対して70部未満になると、架橋さ
れ、改良された吸水性樹脂の吸水後のゲル強度や
ゲルのべとつき感が充分に良好になりえず、また
200部をこえて使用すると、たとえ不活性無機質
粉末を使用しても、半膨潤状態の吸水性樹脂は該
樹脂粒子相互間に凝集がおこり、塊状となり、架
橋反応を均質に行なわせることができなくなつた
り、反応自体が進みにくくなつたりする。前記水
の使用量が70〜200部のばあいには、吸水能およ
び吸水速度を維持し、吸水後のゲル強度が大き
く、吸水してもべとついた感じにならない改良さ
れた吸水性樹脂がえられる。しかも従来法のよう
に親水性有機溶剤を使用するというようなことを
しなくても、不活性な無機質粉末のみの存在によ
つて、吸水膨潤状態の樹脂粒子が凝集し、塊状に
なることがなく、均一状態となり、充分攪拌でき
る状態で容易に架橋させることができる。さらに
前記のように、本発明においては有機溶剤をまつ
たく使用しないため、えられる改良された吸水性
樹脂の容積効率(単位体積あたりの出来高)を大
幅に向上させることができ、しかも有機溶剤の回
収、再生などの工程が不要となり、ひいては改良
された吸水性樹脂のコスト低下にも寄与しうる。 本発明における架橋剤の使用量は、架橋剤の種
類、改良される吸水性樹脂の種類、用いる水の
量、不活性な無機質粉末の種類や量あるいは改良
された吸水性樹脂の使用目的などによつて異なる
が、通常、改良される吸水性樹脂に対して0.005
〜5.0%程度が好ましく、0.01〜1.0%がさらに好
ましい。一般に架橋剤の使用量が、0.005%未満
になると、吸水後のゲルの強度を改良する効果が
ほとんどえられず、5%より多くなると、架橋度
が高くなりすぎ、吸水能が低下する傾向が生ず
る。 本発明により吸水後のゲル強度が改良された吸
水性樹脂は、たとえば本発明により改良される吸
水性樹脂に不活性な無機質粉末を混合し、ついで
攪拌下に架橋剤の水溶液を噴霧添加するか、架橋
剤と水とを別々に噴霧添加するかし、そののち反
応系内を所定温度に昇温させ、架橋反応を行ない
つつ、または行なつたのち、添加した水を常圧〜
減圧下で系外に留去させると、所望の吸水後のゲ
ル強度の改良された吸水性樹脂をうることができ
る。 前記改良された吸水性樹脂をうる他の方法とし
ては、本発明により改良される吸水性樹脂に不活
性な無機質粉末を混合し、あらかじめ所定温度に
昇温しておき、ついで攪拌下に架橋剤水溶液を噴
霧添加するか、架橋剤と水とを別々に噴霧添加す
るかのいずれかの方法により添加し、そののち所
定温度に保持して架橋反応と乾燥とを行なう方法
がある。 上記のごとき製法における架橋剤および水の添
加方法としては、これらの所定量を吸水性樹脂に
実質的に均一に添加でき、工業的にも好ましいシ
ヤワリング方式やスプレー方式により噴霧添加す
るのがよい。 本発明により改良される吸水性樹脂に架橋剤お
よび水を前記のような方法で添加する際、または
添加したのちの攪拌方法にはとくに制限はなく、
これらの成分が実質的に均一になる限りたずれの
方法をも採用でき、たとえば各種形状の攪拌羽根
をもつ攪拌機、ニーダー、パイプラインミキサー
などをそのまま用いることができる。 前記架橋反応を円滑に行なうための温度条件
は、使用する架橋剤の種類、不活性な無機質粉末
の種類および量、ゲル強度の改良された吸水性樹
脂の用途などにより異なるため一概にはきめられ
ないが、通常40〜150℃の範囲で反応させるのが
好ましい。 本発明の方法により改良された吸水性樹脂は、
吸水能および吸水速度を維持し、吸水後のゲルが
さらつとした感じでゲル強度の大きいゲルがえら
れる。また本発明の方法によると、上記のごとき
改良された吸水性樹脂が容易に、しかも効率よく
製造される。 つぎに本発明の方法を実施例にもとづき説明す
るが、本発明はこれらに限定されるものではな
い。 実施例 1 ポリアクリル酸カリウム塩架橋物の粉末(荒川
化学工業(株)製のアラソーブ)100gおよびアエロ
ジル200(平均粒径約0.012μm、日本アエロジル(株)
製の微粒子状二酸化ケイ素)8gを300mlの3つ
口セパラブルフラスコに入れ、攪拌機で充分攪拌
したのち、攪拌をつづけながら、エチレングリコ
ールジグシジルエーテル(EGDG)0.10gと水84
gとからなる溶液を噴霧添加し、均一な分散状態
にした。そののち約80℃で1時間加熱し、架橋さ
せた。ついで約120℃で水を留去させ、最後に減
圧下(約30mmHg)にて約10分間残存する水を留
去させ、吸水後のゲル強度の改良された吸水性樹
脂94gをえた。 えられた吸水性樹脂を用いて下記方法により、
吸水能、吸水速度および吸水後のゲル強度を測定
した。それらの結果を架橋反応中の吸水性樹脂の
状態とともに第1表に示す。 (吸水能) 200mlのビーカーに脱イオン水または生理食塩
水(0.9%食塩水)150gと本発明でえられた吸水
性樹脂0.12gとを加え、30分間放置してのち、
200メツシユの金網で濾別し、流出してくる水の
量を測定し、下式により吸水能を算出。 吸水能=初めに添加した水の重量−流出してきた
水の重量/吸水性樹脂の重量 (吸水速度) あらかじめ100mlビーカーに生理食塩水(0.9%
食塩水)50gと攪拌子とを入れ、マグネチツクス
ターラーにて600rpmの速度で攪拌しておき、こ
の中に吸水性樹脂2.0gを投入すると、吸水膨潤
作用にてゲル化がおこり、流動性が減少して攪拌
中心の水流渦が消える。吸水性樹脂投入から渦が
消えるばでに要した時間を測定し、吸水速度とす
る。 (ゲル強度) 生理食塩水60gと吸水性樹脂2.0gとを混合攪
拌してゲル(以下、30倍ゲルという)を作製し、
飯尾電気(株)製のネオカードメータにより1時間
後、1日後、3目後のゲルの硬さを測定。ここで
ゲルの硬さとはゲルの破断に至るまでの弾性力を
いう。 実施例2〜9ならびに比較例2〜3 第1表に示す反応系組成にて実施例1と同様に
して吸水後のゲル強度の改良された吸水性樹脂を
え、物性を評価した。それらの結果を架橋反応中
の吸水性樹脂の状態とともに第1表に示す。 比較例 1および5 第1表に示す反応組成にて、実施例1と同様に
して吸水後のゲル強度の改良された吸水性樹脂を
製造しようとしたが、反応中にブロツキングがお
り、目的物をうることができなかつた。 比較例 4 第1表に示す反応組成にて、架橋剤および水の
溶液を滴下添加した以外は実施例1と同様にし
て、吸水後のゲル強度の改良された吸水性樹脂を
製造しようとしたが、反応中にブロツキングがお
こり、目的物をうることができなかつた。
[Technical Field of the Invention] The present invention relates to a method for producing a water-absorbing resin with improved gel strength. [Prior art] Water-absorbing resins are used in sanitary products such as sanitary products, diapers, and disposable rags, as well as in agricultural and horticultural products such as water retention agents, as well as for solidifying sludge, preventing condensation on building materials,
It is used for purposes such as dehydrating oils. Examples of this type of water-absorbing resin include carboxymethylcellulose crosslinked products, polyethylene oxide partially crosslinked products, starch-acrylonitrile graft copolymer hydrolysates, polyacrylate partially crosslinked products, vinyl alcohol-acrylate copolymers, etc. However, in either case, the water absorption capacity is low, or even if the water absorption capacity is high, the gel strength after water absorption is weak, or the gel after water absorption becomes sticky. It has drawbacks such as: As a method for increasing the gel strength of a water-absorbing resin after water absorption, there is a method of increasing the crosslinking density of the water-absorbing resin, but this is not preferred because the water-absorbing ability, which is the inherent performance of the water-absorbing resin, decreases. Another method for increasing the gel strength of a water-absorbing resin after water absorption is to add water to the water-absorbing resin in the presence of a hydrophilic organic solvent such as a lower monohydric alcohol, so that water is substantially absorbed into the water-absorbing resin. There is a method in which the material is cross-linked after being uniformly absorbed, and then dried. In this method, crosslinking with a large amount of water absorbed is considered preferable from the viewpoint of the water absorption ability of the water absorbent resin, but when this method is adopted, the amount of water used is limited, and the water absorption Even in a small amount, resin particles in a swollen state after absorbing water tend to aggregate and form lumps, and the workability is poor, so it cannot be said to be suitable for industrial use. Therefore, in this method, a small amount of water is added in the presence of a large amount of a hydrophilic organic solvent to make the water-absorbing resin particles absorb water and swell, thereby making it difficult for agglomeration to occur between the resin particles and allowing the crosslinking reaction to occur. As a result, there are problems such as high manufacturing costs and low productivity. [Summary of the Invention] In view of the above-mentioned circumstances, the present inventors maintained the water absorption ability and water absorption rate of the water absorbent resin, and created a gel that has high gel strength after water absorption and does not feel sticky after water absorption. As a result of extensive research aimed at efficiently, easily, and inexpensively producing a water-absorbing resin with improved gel strength after water absorption, we found that inert By using an inorganic powder, spraying a crosslinking agent and water, and crosslinking, the above objects can be achieved without using a hydrophilic organic solvent, which was an indispensable component in the conventional technology. They discovered this and completed the present invention. That is, the present invention involves stirring a water-absorbing resin containing a monomer unit having a carboxylate as a constituent component of the polymer and an inert inorganic powder,
Crosslinking agent and water (70 to 70% based on the solid content of the water-absorbing resin)
200% (corresponding to % by weight, hereinafter the same)) is added by spraying, then heated to cause a crosslinking reaction, and then the water is distilled off. Regarding the manufacturing method. Note that the term "carboxylate" as used herein is a concept that includes carboxyl groups and salts of carboxyl groups. [Embodiments of the invention] The water-absorbing resin whose gel strength after water absorption is improved according to the present invention (hereinafter referred to as the "water-absorbing resin improved according to the present invention") is a polymer or copolymer containing carboxylic acid in its constituent components. It can be used without particular limitation as long as it contains a monomer unit having a certain rate. As the water-absorbing resin, (meth)
Crosslinked products of acrylic acid polymers (meaning acrylic acid polymers or methacrylic acid polymers, hereinafter the same descriptions have the same meanings), crosslinked products of polysaccharide-(meth)acrylic acid graft copolymers, ( meth)Acrylic acid-acrylamide-crosslinked product of sulfonated acrylamide terpolymer or alkali metal salt or alkaline earth metal salt thereof, such as acrylic acid (salt) polymer, acrylic acid (salt)-
Crosslinked products such as methacrylic acid (salt) copolymer, starch-acrylic acid (salt) graft copolymer; crosslinked product of saponified polysaccharide-(meth)acrylic acid alkyl ester graft copolymer, polysaccharide-acrylonitrile Crosslinked products of saponified graft copolymers, crosslinked products of saponified polysaccharide-acrylamide copolymers, such as saponified products of starch-ethyl acrylate graft copolymers, and saponified products of starch-methyl methacrylate graft copolymers. Crosslinked products such as saponified products of starch-acrylonitrile graft copolymers, saponified products of starch-acrylamide graft copolymers; Crosslinked products of saponified products of (meth)acrylic acid alkyl ester-vinyl acetate copolymers, such as methacrylate Crosslinked products such as saponified products of ethyl acid vinyl acetate copolymer, saponified products of methyl acrylate-vinyl acetate copolymer; starch-acrylonitrile-acrylamide-2-
Crosslinked product of saponified methylpropane sulfonic acid graft copolymer; starch-acrylonitrile-
Crosslinked products of saponified vinyl sulfonic acid graft copolymers; crosslinked products of sodium carboxymethylcellulose, etc. may be mentioned, but are not limited to these. These may be used alone,
Two or more types may be mixed and used. Preferred water-absorbing resins improved by the present invention are crosslinked products of (meth)acrylic acid polymers, crosslinked products of polysaccharide-(meth)acrylic acid graft copolymers, and (meth)acrylic acid-acrylamide- These are crosslinked products of sulfonated acrylamide terpolymer or alkali metal salts or alkaline earth metal salts thereof. The particle size of the water absorbent resin improved by the present invention is not particularly limited, and as long as it is in powder or particulate form, there are no particular restrictions on its shape or size, but the particle size is usually about 10 to 600 mesh. It is preferable to have the following. The inert inorganic powder used in the present invention includes:
Examples include hydrated silicon dioxide powder, hydrated aluminum oxide powder, hydrated titanium oxide powder, anhydrides of these, or powders containing these as main components, and these may be used alone or in combination of two or more. May be used. There is no limit to the crystal system of the inorganic powder; for example, for aluminum oxide powder, α-type, β-type, and γ-type can be used equally effectively, and for titanium oxide powder, TiO,
It may be either Ti 2 O 3 or TiO 2 . Furthermore, there is no particular limitation on the water content of these hydrated powders; for example, aluminum hydroxide powder has a
Al 2 O 3・H 2 O powder, Al 2 O 3・2H 2 O powder, Al 2 O 3
3H 2 O powder, TiO 2 .H 2 O powder, TiO 2 .2H 2 O powder, etc. are similarly used as titanium oxide powder.
In addition, the powder containing hydrated or anhydrous inorganic substances as a main component includes, for example, hydrated silicon dioxide such as colloidal silica, white carbon, ultrafine particulate silica, and/or anhydrous silicon dioxide (hereinafter referred to as fine particulate silica). Those whose main component is hydrated and anhydrous aluminum oxide, such as plate-shaped hydrated alumina and fibrous hydrated alumina, and those whose main component is rutile-type or anatase-type hydrated and anhydrous titanium oxide. For example, Among these inert inorganic powders, fine particulate silica, titanium dioxide powder, alumina powder, and the like are preferred. The average particle size of the inorganic powder is preferably 0.001 to 10 μm, preferably 0.005 to 1 μm.
More preferably, those having properties that improve the mutual dispersibility of water-absorbing resin particles in a water-absorbing and swollen state and improve fluidity are preferred. The crosslinking agent used in the present invention is a crosslinking agent having two or more functional groups that can react with groups such as carboxylate, hydroxyl group, sulfone group, and amino group present in the water absorbent resin improved by the present invention. Yes, such a material can be used without particular limitation. Examples of the crosslinking agent include diglycidyl ether compounds, polyvalent metal salts, haloepoxy compounds, aldehyde compounds, and isocyanate compounds. As the diglycidyl ether compound,
For example, diglycidyl ether compounds such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, and (poly)glycerin diglycidyl ether are suitable, and among these, ethylene glycol diglycidyl ether is most suitable. . Examples of the polyvalent metal salts include compounds that can form crosslinks with carboxylates of water-absorbing resins through ionic reactions, and specific examples include divalent metals such as magnesium, calcium, barium, and zinc, or aluminum, iron, etc. trivalent metal halides, sulfates, nitrates, etc. More specifically, magnesium sulfate, aluminum sulfate, ferric chloride, calcium chloride, magnesium chloride,
Examples include aluminum chloride, polyaluminum chloride, iron nitrate, calcium nitrate, and aluminum nitrate. Specific examples of the haloepoxy compounds include:
Epichlorohydrin, epibromohydrin, α-
Aldehyde compounds such as methyl epichlorohydrin, glutaraldehyde, glyoxal, etc., and isocyanate compounds such as 2,
Examples include 4-tolylene diisocyanate and hexamethylene diisocyanate. The above-mentioned crosslinking agents may be used alone, and 2
Although more than one type may be used in combination, it is preferable to select and use an appropriate one depending on the type of water-absorbing resin to be improved by the present invention. The purpose of this is to add a crosslinked structure to the water-absorbing resin to be improved again, and to improve the gel strength of the water-absorbing resin after water absorption while maintaining the water-absorbing ability and water absorption rate. Of the crosslinking agents mentioned above, diglycidyl ether compounds, polyvalent metal salts, and haloepoxy compounds are suitable. In the present invention, 1 to 30 parts of inert inorganic powder, preferably 5 to 20 parts of inert inorganic powder, per 100 parts (by weight or less, the same) of the water absorbent resin improved by the present invention.
70 to 200 parts of water and 0.005 to 5.0 parts, preferably 0.01 to 1 part of crosslinking agent are used to produce a water absorbent resin with improved gel strength after water absorption. The role of water in the crosslinking reaction is to swell the water absorbent resin improved by the present invention and allow the crosslinking agent to penetrate into the water absorbent resin, thereby causing the crosslinking reaction to occur inside the water absorbent resin. Therefore, the more water you use, the more cross-linking reaction will occur internally, making it easier for the water-absorbing resin to maintain its network structure even after absorbing water and swelling, resulting in stable gel strength over time. A water-absorbing resin having the following properties is obtained. Furthermore, if the amount of water added to the water-absorbing resin improved by the present invention is increased, the swollen water-absorbing resin will aggregate and form a lump, making it difficult to maintain a uniform state of the water-absorbing resin and water. Using an active inorganic powder as a dispersant, uniformly stirring the water-absorbing resin improved by the present invention and the inorganic powder, and then adding a crosslinking agent and water by spraying, it is possible to obtain a uniformly dispersed state. By carrying out the crosslinking reaction in such a state and distilling off the water, a water-absorbing resin with improved gel strength after water absorption can be obtained. When the amount of the inert inorganic powder used is less than 1 part per 100 parts of the water absorbent resin improved by the present invention, water and a crosslinking agent are sprayed onto the mixture of the water absorbent resin and the inert inorganic powder. When the resin particles are brought into a semi-swollen state and stirred, agglomeration occurs between the resin particles in the water-swollen state, resulting in a lumpy state, making it impossible to carry out the crosslinking reaction homogeneously.
The crosslinking reaction itself may become difficult to proceed. Furthermore, even if the amount exceeds 30 parts, not only will the effect of the amount exceeding 30 parts not be obtained, but the water absorption capacity per weight of the water absorbent resin with improved gel strength after water absorption will decrease. There is a tendency to When the amount of water used is less than 70 parts per 100 parts of the water absorbent resin improved by the present invention, the gel strength and sticky feeling of the gel after water absorption of the crosslinked and improved water absorbent resin are sufficiently good. can't be, and can't be
If more than 200 parts are used, even if an inert inorganic powder is used, the semi-swollen water-absorbing resin will aggregate between the resin particles and become lumpy, making it impossible to carry out the crosslinking reaction homogeneously. It may disappear or the reaction itself may become difficult to proceed. When the amount of water used is 70 to 200 parts, an improved water-absorbing resin that maintains water absorption capacity and water absorption rate, has high gel strength after water absorption, and does not feel sticky even after water absorption is used. It can be grown. Moreover, even without using a hydrophilic organic solvent as in conventional methods, the presence of only inert inorganic powder prevents resin particles in a water-absorbing and swollen state from agglomerating and forming into lumps. The mixture becomes homogeneous and can be easily crosslinked under sufficient stirring conditions. Furthermore, as mentioned above, since no organic solvent is used in the present invention, the volumetric efficiency (yield per unit volume) of the resulting improved water-absorbing resin can be greatly improved, and moreover, the volumetric efficiency (yield per unit volume) of the resulting improved water-absorbent resin can be greatly improved. Processes such as recovery and regeneration are no longer necessary, and this can also contribute to lowering the cost of the improved water-absorbing resin. The amount of crosslinking agent used in the present invention depends on the type of crosslinking agent, the type of water absorbent resin to be improved, the amount of water used, the type and amount of inert inorganic powder, the purpose of use of the improved water absorbent resin, etc. Varies depending on the situation, but typically 0.005 for the water-absorbing resin being improved.
About 5.0% is preferable, and 0.01 to 1.0% is more preferable. In general, if the amount of crosslinking agent used is less than 0.005%, there will be little effect of improving the strength of the gel after water absorption, and if it is more than 5%, the degree of crosslinking will become too high and the water absorption capacity will tend to decrease. arise. The water-absorbing resin with improved gel strength after water absorption according to the present invention can be obtained, for example, by mixing an inert inorganic powder with the water-absorbing resin improved according to the present invention, and then spraying and adding an aqueous solution of a crosslinking agent while stirring. The crosslinking agent and water are added separately by spraying, then the reaction system is heated to a predetermined temperature, and while or after the crosslinking reaction is carried out, the added water is heated to normal pressure to
By distilling it out of the system under reduced pressure, a water-absorbing resin with the desired improved gel strength after water absorption can be obtained. Another method for obtaining the improved water-absorbent resin is to mix an inert inorganic powder with the water-absorbent resin improved by the present invention, raise the temperature to a predetermined temperature in advance, and then mix the crosslinking agent with stirring. There is a method in which the aqueous solution is added by spraying, or the crosslinking agent and water are added by spraying separately, and then the crosslinking reaction and drying are carried out by holding at a predetermined temperature. As for the method of adding the crosslinking agent and water in the above manufacturing method, it is preferable to add the predetermined amount of these to the water-absorbing resin by spraying using a shearing method or a spray method, which can be added substantially uniformly and is industrially preferable. There are no particular restrictions on the stirring method used when adding the crosslinking agent and water to the water-absorbent resin improved by the present invention by the method described above, or after adding the crosslinking agent and water.
Any other method can be used as long as these components are substantially uniform, and for example, agitators with stirring blades of various shapes, kneaders, pipeline mixers, etc. can be used as they are. The temperature conditions for smoothly carrying out the crosslinking reaction cannot be determined unconditionally because they vary depending on the type of crosslinking agent used, the type and amount of inert inorganic powder, the use of the water absorbent resin with improved gel strength, etc. However, it is usually preferable to carry out the reaction at a temperature in the range of 40 to 150°C. The water absorbent resin improved by the method of the present invention is
It maintains the water absorption capacity and water absorption rate, and provides a gel with high gel strength and a smooth feeling after water absorption. Furthermore, according to the method of the present invention, the improved water-absorbing resin described above can be easily and efficiently produced. Next, the method of the present invention will be explained based on Examples, but the present invention is not limited thereto. Example 1 100 g of powder of a cross-linked polyacrylic acid potassium salt (Arasorb manufactured by Arakawa Chemical Co., Ltd.) and Aerosil 200 (average particle size of about 0.012 μm, manufactured by Nippon Aerosil Co., Ltd.)
Place 8 g of fine particulate silicon dioxide) into a 300 ml three-necked separable flask, stir thoroughly with a stirrer, and while continuing to stir, add 0.10 g of ethylene glycol digidyl ether (EGDG) and 84 g of water.
A solution consisting of g was added by spraying to obtain a uniformly dispersed state. Thereafter, it was heated at about 80°C for 1 hour to effect crosslinking. Water was then distilled off at about 120°C, and finally remaining water was distilled off under reduced pressure (about 30 mmHg) for about 10 minutes to obtain 94 g of a water-absorbing resin with improved gel strength after water absorption. By the following method using the obtained water absorbent resin,
Water absorption capacity, water absorption rate, and gel strength after water absorption were measured. The results are shown in Table 1 along with the state of the water absorbent resin during the crosslinking reaction. (Water absorption capacity) Add 150 g of deionized water or physiological saline (0.9% saline) and 0.12 g of the water absorbent resin obtained according to the present invention to a 200 ml beaker, and leave it for 30 minutes.
Filter through a 200-mesh wire mesh, measure the amount of water flowing out, and calculate the water absorption capacity using the formula below. Water absorption capacity = Weight of water initially added - Weight of water flowing out / Weight of water absorbent resin (water absorption rate) Physiological saline (0.9%) was placed in a 100ml beaker in advance.
Add 50g of saline solution and a stirrer, stir at a speed of 600rpm with a magnetic stirrer, and add 2.0g of water-absorbing resin into the mixture.Gellation occurs due to water absorption and swelling, resulting in poor fluidity. The water flow vortex at the stirring center disappears. The time required for the vortex to disappear after the introduction of the water-absorbing resin is measured and determined as the water absorption rate. (Gel strength) A gel (hereinafter referred to as 30x gel) was prepared by mixing and stirring 60 g of physiological saline and 2.0 g of water absorbent resin.
The hardness of the gel was measured after 1 hour, 1 day, and 3 days using a Neocard meter manufactured by Iio Electric Co., Ltd. Here, the hardness of a gel refers to the elastic force required to break the gel. Examples 2 to 9 and Comparative Examples 2 to 3 Water absorbent resins with improved gel strength after water absorption were obtained in the same manner as in Example 1 using the reaction system compositions shown in Table 1, and their physical properties were evaluated. The results are shown in Table 1 along with the state of the water absorbent resin during the crosslinking reaction. Comparative Examples 1 and 5 An attempt was made to produce a water absorbent resin with improved gel strength after water absorption using the reaction composition shown in Table 1 in the same manner as in Example 1, but blocking occurred during the reaction and the desired product was not produced. I couldn't get it. Comparative Example 4 An attempt was made to produce a water absorbent resin with improved gel strength after water absorption using the reaction composition shown in Table 1 in the same manner as in Example 1 except that a crosslinking agent and water solution were added dropwise. However, blocking occurred during the reaction and the desired product could not be obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 カルボキシレートを有する単量体単位を重合
体の構成成分として含有する吸水性樹脂および不
活性な無機質粉末の攪拌下に、架橋剤および水
(吸水性樹脂の固形分に対し70〜200重量%に相当
する)を噴霧添加し、ついで加熱して架橋反応せ
しめ、そののち水の留去を行なわせることを特徴
とするゲル強度の改良された吸水性樹脂の製法。 2 前記吸水性樹脂が(メタ)アクリル酸重合体
の架橋物、多糖類―(メタ)アクリル酸グラフト
共重合体の架橋物、(メタ)アクリル酸―アクリ
ルアミド―スルホン化アクリルアミド3元共重合
体の架橋物およびこれらのアルカリ金属塩または
アルカリ土類金属塩よりなる群からえらばれた少
なくとも1種である特許請求の範囲第1項記載の
製法。 3 前記の不活性な無機質粉末が微粒子状シリ
カ、二酸化チタン粉末およびアルミナ粉末よりな
る群から選ばれた少なくとも1種である特許請求
の範囲第1項記載の製法。 4 前記架橋剤がジグリシジルエーテル系化合
物、多価金属塩およびハロエポキシ系化合物より
なる群から選ばれた少なくとも1種である特許請
求の範囲第1項記載の製法。
[Claims] 1. While stirring a water-absorbing resin containing a monomer unit having a carboxylate as a component of the polymer and an inert inorganic powder, a crosslinking agent and water (based on the solid content of the water-absorbing resin) are added. A method for producing a water-absorbing resin with improved gel strength, which comprises spraying and adding 70 to 200% by weight of a water-absorbing resin, followed by heating to cause a crosslinking reaction, and then distilling off water. 2 The water-absorbing resin is a crosslinked product of a (meth)acrylic acid polymer, a crosslinked product of a polysaccharide-(meth)acrylic acid graft copolymer, or a crosslinked product of a (meth)acrylic acid-acrylamide-sulfonated acrylamide terpolymer. The method according to claim 1, which is at least one selected from the group consisting of crosslinked products and their alkali metal salts or alkaline earth metal salts. 3. The manufacturing method according to claim 1, wherein the inert inorganic powder is at least one selected from the group consisting of particulate silica, titanium dioxide powder, and alumina powder. 4. The method according to claim 1, wherein the crosslinking agent is at least one selected from the group consisting of diglycidyl ether compounds, polyvalent metal salts, and haloepoxy compounds.
JP11268884A 1984-05-31 1984-05-31 Production of water-absorptive resin of improved gel strength Granted JPS60255814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11268884A JPS60255814A (en) 1984-05-31 1984-05-31 Production of water-absorptive resin of improved gel strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11268884A JPS60255814A (en) 1984-05-31 1984-05-31 Production of water-absorptive resin of improved gel strength

Publications (2)

Publication Number Publication Date
JPS60255814A JPS60255814A (en) 1985-12-17
JPS6343410B2 true JPS6343410B2 (en) 1988-08-30

Family

ID=14592990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11268884A Granted JPS60255814A (en) 1984-05-31 1984-05-31 Production of water-absorptive resin of improved gel strength

Country Status (1)

Country Link
JP (1) JPS60255814A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627745A (en) * 1985-07-03 1987-01-14 Sanyo Chem Ind Ltd Water-absorptive resin composition its production and water-absorptive and retentive agent
US4783510A (en) * 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
JP2538213B2 (en) * 1986-07-31 1996-09-25 ダイセル化学工業株式会社 Super absorbent composition
JPH0745593B2 (en) * 1986-08-01 1995-05-17 株式会社竹中工務店 Reinforcing method of gel polymer
JPS63118308A (en) * 1986-11-06 1988-05-23 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
US4826880B1 (en) 1987-09-21 2000-04-25 Johnson & Johnson Inc Immobilizing particulate absorbents by conversion to hydrates
US5122544A (en) * 1988-05-31 1992-06-16 Nalco Chemical Company Process for producing improved superabsorbent polymer aggregates from fines
US5124188A (en) * 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
US5180622A (en) * 1990-04-02 1993-01-19 The Procter & Gamble Company Absorbent members containing interparticle crosslinked aggregates
US5300565A (en) * 1990-04-02 1994-04-05 The Procter & Gamble Company Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates
US5492962A (en) * 1990-04-02 1996-02-20 The Procter & Gamble Company Method for producing compositions containing interparticle crosslinked aggregates
US5149334A (en) * 1990-04-02 1992-09-22 The Procter & Gamble Company Absorbent articles containing interparticle crosslinked aggregates
DE69133620D1 (en) * 1990-12-21 2009-09-10 Nippon Catalytic Chem Ind Water-absorbing material and process for its preparation and water-absorbent articles and process for its preparation
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
DE69939048D1 (en) 1998-11-05 2008-08-21 Nippon Catalytic Chem Ind Water-absorbent resin and process for its preparation
DE60216911T2 (en) 2001-06-08 2007-09-06 Nippon Shokubai Co. Ltd. WATER ABSORPTION, PRODUCTION AND SANITARY ARTICLES
JP4694810B2 (en) * 2004-09-08 2011-06-08 株式会社日本触媒 Water-retaining material for plant growth mainly composed of water-absorbent resin
JPWO2011065368A1 (en) 2009-11-27 2013-04-11 住友精化株式会社 Water-absorbing resin particle manufacturing method, water-absorbing resin particle, water-stopping material, and absorbent article
TWI625355B (en) 2017-03-31 2018-06-01 臺灣塑膠工業股份有限公司 superabsorbent polymer and the method of fabricating the same
TWI642713B (en) 2017-03-31 2018-12-01 臺灣塑膠工業股份有限公司 Superabsorbent polymer and the method of fabricating the same
TWI761904B (en) 2020-08-10 2022-04-21 臺灣塑膠工業股份有限公司 Superabsorbent polymer and method for producing the same
TWI805461B (en) 2022-08-04 2023-06-11 臺灣塑膠工業股份有限公司 Superabsorbent polymer and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507842A (en) * 1972-11-06 1975-01-27
JPS5842602A (en) * 1981-09-07 1983-03-12 Sanyo Chem Ind Ltd Production of water-absorbing resin
JPS58117222A (en) * 1981-12-30 1983-07-12 Seitetsu Kagaku Co Ltd Improvement in water absorptivity of water-absorbing resin
JPS58183754A (en) * 1982-04-20 1983-10-27 Sanyo Chem Ind Ltd Water absorbing resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507842A (en) * 1972-11-06 1975-01-27
JPS5842602A (en) * 1981-09-07 1983-03-12 Sanyo Chem Ind Ltd Production of water-absorbing resin
JPS58117222A (en) * 1981-12-30 1983-07-12 Seitetsu Kagaku Co Ltd Improvement in water absorptivity of water-absorbing resin
JPS58183754A (en) * 1982-04-20 1983-10-27 Sanyo Chem Ind Ltd Water absorbing resin composition

Also Published As

Publication number Publication date
JPS60255814A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
JPH0153974B2 (en)
JPS6343410B2 (en)
JPH0423650B2 (en)
JP5362212B2 (en) Water-absorbing agent composition and method for producing the same
KR940000965B1 (en) Water-absorbent resin and process for producing the same
US4734478A (en) Water absorbing agent
JPS6025045B2 (en) Method for producing acrylic acid polymer with excellent salt water absorption ability
JPH0117411B2 (en)
JPS58180233A (en) Absorbing agent
JP4428729B2 (en) Water-swellable crosslinked polymer composition and process for producing the same
JPH0615574B2 (en) Method for producing water absorbent resin
CN1120203C (en) Superabsorbent resin composition and method for producing the same
JPS5842602A (en) Production of water-absorbing resin
JPS60147475A (en) Manufacture of water-absorptive resin
JPH04501877A (en) Manufacturing method of super absorbent resin
JPH0639486B2 (en) Super absorbent resin manufacturing method
JPS63270741A (en) Production of water-absorptive polyacrylic acid resin
AU1788492A (en) Crystalline coated particulate polymeric compositions and methods of making and using them
JP3847371B2 (en) Water-absorbent resin composition, method for producing the same, and hygiene article using the same
JPH021841B2 (en)
JPH01144404A (en) Production of water-absorbing resin
JPH0362745B2 (en)
JP4704559B2 (en) Manufacturing method of basic water-absorbing resin, manufacturing method of water-absorbing agent, and use thereof
JP2001220415A (en) Method for producing water absorbing resin
JPH08217909A (en) Production of water-absorbing resin composition