JPS63433A - Low thermal expansion and high damping capacity cv cast iron - Google Patents

Low thermal expansion and high damping capacity cv cast iron

Info

Publication number
JPS63433A
JPS63433A JP14459486A JP14459486A JPS63433A JP S63433 A JPS63433 A JP S63433A JP 14459486 A JP14459486 A JP 14459486A JP 14459486 A JP14459486 A JP 14459486A JP S63433 A JPS63433 A JP S63433A
Authority
JP
Japan
Prior art keywords
thermal expansion
cast iron
graphite
low thermal
damping capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14459486A
Other languages
Japanese (ja)
Inventor
Makoto Suenaga
末永 允
Fumio Obata
文雄 小幡
Eiji Nakano
英治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP14459486A priority Critical patent/JPS63433A/en
Publication of JPS63433A publication Critical patent/JPS63433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To give the excellent tensile strength and the high logarithmic decrement by adding Mg and RE elements into molten CV cast iron having the specific composition, low thermal expansion and high damping capacity and controlling spheroidal ratio of the graphite. CONSTITUTION:Mg and RE elements are added into the molten metal, of which the finish chemical composition is by wt% of 1.4-2.6% C, 0.8-3.0% Si, 30-40% Ni, <1.0% Mn, <3.0% Cr, <1.0% Ti, and so CV cast iron having 30-70% spheroidal ratio of graphite, low thermal expansion and high damping capacity is cast. As rough aim for residual contents of Mg and RE, Mg+RE is about 0.010-0.033wt% in case of >=25mm thickness and it is about 0.012-0.055% in case of >=50mm thickness. In this way, tensile strength exceed that of flake graphite cast irons and the logarithmic decrement is higher than that of spheroidal graphite series cast iron and CV cast iron having low thermal expansion is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超精密加工用工作機部材等に用いるのに適した
低熱膨張・高減衰能CVSR鉄に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to low thermal expansion and high damping capacity CVSR iron suitable for use in ultra-precision machining machine tool members and the like.

〔従来の技術〕[Conventional technology]

従来、工作機用ベッドなどには片状黒鉛鋳鉄が使用され
ていた。この材質の機械的及び物理的性質性質は引張強
さが10〜20 kgf / mm” 、熱膨張係数が
10〜12X10−’程度で、比較的減衰能の大きいも
の(対数減衰率2.0〜5.○XLO’−2)であった
。近年、工作機による加工精度の要求が飛費的に厳しく
なり、これに伴って工作機を構成する材料も気温による
寸法変化の少い低熱膨張材が要求されるようになってい
る。
Traditionally, flake graphite cast iron has been used for machine tool beds. The mechanical and physical properties of this material include a tensile strength of 10 to 20 kgf/mm'', a thermal expansion coefficient of approximately 10 to 12 x 10-', and a relatively large damping capacity (logarithmic damping rate of 2.0 to 2.0). 5.○ is now required.

これらの要求に応える熱膨張係数が5.0〜6゜0XI
O−1′程度の鋳鉄材料は、片状黒鉛系としてはミノ−
パー鋳鉄、球状黒鉛系としてはニレジスト鋳鉄(D−5
)などがか既に存在する。
The thermal expansion coefficient is 5.0~6゜0XI to meet these requirements.
Cast iron materials with a grade of O-1' are minnow-based as flaky graphite.
Par cast iron, Niresist cast iron (D-5
) etc. already exist.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、片状黒鉛系材質は減衰能は対数減衰率で2.5
〜4.5X10””程度であるが引張強さが20kgf
/mm2以下と低く、20kgf/mm2以上の要求機
能部品には適用困難である。
However, the damping capacity of flaky graphite material is 2.5 in terms of logarithmic damping rate.
〜4.5X10'' but the tensile strength is 20kgf
/mm2 or less, making it difficult to apply to functional parts requiring 20kgf/mm2 or more.

一方1球状黒鉛鋳鉄系は引張強さこそ25kgf/mm
2以上と高い値を示すが、工作機部品に屡々要求される
減衰能が対数減衰率で1.0〜1.5x IQ−2と低
いために要求に応え得ない場合がある。
On the other hand, the tensile strength of 1 spheroidal graphite cast iron is 25 kgf/mm.
Although it shows a high value of 2 or more, the damping capacity often required for machine tool parts is as low as 1.0 to 1.5x IQ-2 in terms of logarithmic damping rate, so it may not be able to meet the demand.

本発明のl」的は、I)ii述せる従来技術の欠点を解
消し、引張強さが片状黒鉛鋳鉄より優れ、対数減衰率は
球状黒鉛系鋳鉄より大きく、シかも熱膨張係数がきわめ
て低い低熱膨張・高減衰能CV鋳鉄を提供するものであ
る。
The object of the present invention is to eliminate the drawbacks of the prior art described in I) ii, have a tensile strength superior to flaky graphite cast iron, a logarithmic damping rate greater than spheroidal graphite cast iron, and a very low coefficient of thermal expansion. This provides CV cast iron with low thermal expansion and high damping capacity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の低熱膨張・高減衰能CVU鉄は、最終化学組成
が1重量%でC1,4〜2.6%、SLo。
The low thermal expansion/high damping capacity CVU iron of the present invention has a final chemical composition of 1% by weight, C1.4-2.6%, and SLo.

8〜3.0%、Ni30〜40%+ M n (1−0
%。
8-3.0%, Ni30-40%+M n (1-0
%.

Cr<3.0%、Ti(1,0%となるような溶湯にM
g及び/又はRE元素を添加する事により、黒鉛の球状
化率が30%〜70%であることを特徴とするものであ
る。
M is added to the molten metal such that Cr<3.0% and Ti (1.0%).
The graphite is characterized in that the spheroidization rate of graphite is 30% to 70% by adding g and/or RE elements.

次に本発明の低熱膨張・高減衰能CV鋳鉄の化学組成数
値限定理由について説明する。
Next, the reason for limiting the numerical value of the chemical composition of the low thermal expansion/high damping capacity CV cast iron of the present invention will be explained.

C:1.4%未満では組織中の黒鉛量が著しく減少し、
このために減衰能が低下する。また鋳造性も悪くなる6
2.6%を超えると特に厚肉紡物においてキッシュ黒3
イ)が多量に晶出し、鋳造欠陥の発生による引張強さの
低下をもたらす。
C: If it is less than 1.4%, the amount of graphite in the structure will decrease significantly,
This reduces the damping ability. Castability also deteriorates6.
If it exceeds 2.6%, quiche black 3 will occur, especially in thick-walled fabrics.
B) crystallizes in large quantities, resulting in a decrease in tensile strength due to the occurrence of casting defects.

Si:0.8%未満では本来の黒鉛化促進機能が発揮さ
れず組織中の黒鉛量が著しく減少する。
Si: If it is less than 0.8%, the original graphitization promoting function will not be exhibited and the amount of graphite in the structure will decrease significantly.

3.0%を超えると靭性が低下し硬度が上るたやに切削
性が低下する。また熱膨張係数も大きくなる。
If it exceeds 3.0%, toughness decreases, hardness increases, and machinability decreases. The coefficient of thermal expansion also increases.

Ni:30%未満では他の元素との関連もあるが、熱膨
張係数が9X10−6以上となり低熱膨張の目的に反す
ることになる。また40%を超えると熱膨張係数が高く
なってくると同時に製造原価も高くなる。
Ni: If it is less than 30%, the coefficient of thermal expansion becomes 9X10-6 or more, which goes against the purpose of low thermal expansion, although there is a relationship with other elements. Moreover, if it exceeds 40%, the coefficient of thermal expansion becomes high and at the same time, the manufacturing cost also becomes high.

Mn:’Mnは肪鉄溶湯を清浄にし、鋳造欠陥を防止す
るために必要な元素であるが、1%を超えると熱膨張係
数が9X10”−’以上となり目的に合致しない。
Mn: 'Mn is an element necessary to clean the molten fat iron and prevent casting defects, but if it exceeds 1%, the coefficient of thermal expansion becomes 9X10''-' or more, which does not meet the purpose.

Cr:Crは耐食性を向上するが3%を超えると黒鉛の
晶出が著しく困難になり、減衰能の低下とともに硬度が
上昇し切削性が低下する。
Cr: Cr improves corrosion resistance, but if it exceeds 3%, it becomes extremely difficult to crystallize graphite, and the damping capacity decreases, hardness increases, and machinability decreases.

Ti:Tiは黒鉛の形状を安定してCv化するに有効な
元素であるが、1%を超えると黒鉛の晶出を阻害し減衰
能を低下させる。
Ti: Ti is an effective element for stably converting the shape of graphite into Cv, but if it exceeds 1%, it inhibits crystallization of graphite and reduces the damping ability.

尚、最終化学組成がこのようになる溶湯をMg及び/又
はREを含む合金で処理して黒鉛形状が球状化率30〜
70%の材質を得るのであるが、球状化率が30%未満
では引張り強さを常に20kgf / mm2以上に保
つことが困難であり、70%を超えると対数減衰率を2
.0X10−2以上に保つことが困難となる。
In addition, by treating the molten metal with the final chemical composition as described above with an alloy containing Mg and/or RE, the graphite shape becomes spheroidized at a rate of 30 to 30.
However, if the spheroidization rate is less than 30%, it is difficult to maintain the tensile strength at 20 kgf/mm2 or more, and if it exceeds 70%, the logarithmic attenuation rate will be 2.
.. It becomes difficult to maintain the temperature at 0x10-2 or higher.

黒鉛の球状化率を30〜70%に制御するためのMg及
び/又はREの残留量は溶湯の熔解プロセス及び製品の
肉厚によって幅があるが大略の目安は肉厚が25111
111以下ではMg+RE=0.010−0.033w
t%、肉厚が50+nm以上になるとMg+RE=0.
012〜0.055wt%である。
The residual amount of Mg and/or RE to control the spheroidization rate of graphite to 30 to 70% varies depending on the melting process of the molten metal and the wall thickness of the product, but as a rough guide, the wall thickness is 25111.
Below 111, Mg+RE=0.010-0.033w
t%, and when the wall thickness is 50+nm or more, Mg+RE=0.
012 to 0.055 wt%.

以下本発明の実施例をさらに詳細に説明する。Examples of the present invention will be described in more detail below.

〔実施例、1〕 原料を高周波炉にて熔解し、Fe−SiFe−5i−合
金にてCV化焙処理俊、Fe−5iにて接種し肉厚25
mmのYブロックを鋳造し試験に供した。
[Example 1] Raw materials were melted in a high-frequency furnace, CV roasted with Fe-SiFe-5i alloy, and inoculated with Fe-5i to a thickness of 25 mm.
A Y block of mm was cast and tested.

本試料の黒鉛球状化率は62%であった。The graphite spheroidization rate of this sample was 62%.

試料の分析結果は、鉄と不可避的不純物と第1表に示す
通りであった。
The analysis results of the sample were as shown in Table 1, including iron and inevitable impurities.

第1表      (wt%) 第2表に熱膨張係数及び対数減衰率を、第3表に機械的
性質を示す。
Table 1 (wt%) Table 2 shows the thermal expansion coefficient and logarithmic attenuation rate, and Table 3 shows the mechanical properties.

第2表 熱膨張係数の測定温度はO℃〜50℃ 対数減衰率の測定温度は20℃である。Table 2 Measurement temperature of thermal expansion coefficient is 0℃~50℃ The temperature at which the logarithmic decay rate was measured was 20°C.

第3表 〔実施例、2〕 EC料を高周波炉にて熔解し、Fe−8iFe−8i−
合金にてCV化焙処理後、Fe−5iにて接種し肉厚7
5mmのYブロックを鋳造し試験に供した。
Table 3 [Example 2] The EC material was melted in a high frequency furnace and Fe-8iFe-8i-
After CV heat treatment with alloy, inoculation with Fe-5i and wall thickness 7
A 5 mm Y block was cast and tested.

本試料の黒鉛球状化率は48%であった。The graphite spheroidization rate of this sample was 48%.

試料の分析結果は、鉄と不可避的不純物と第4表に示す
通りであった。
The analysis results of the sample were as shown in Table 4, including iron and inevitable impurities.

第4表      (wt%) 第5表に熱膨張係数及び対数減衰率を、第6表に機械的
性質を示す。
Table 4 (wt%) Table 5 shows the thermal expansion coefficient and logarithmic attenuation rate, and Table 6 shows the mechanical properties.

第5表 熱膨張係数の測定温度は0℃〜50℃ 対数減衰率の測定温度は20℃である。Table 5 Measurement temperature of thermal expansion coefficient is 0℃~50℃ The temperature at which the logarithmic decay rate was measured was 20°C.

第6表 〔発明の効果〕 以上、製品肉厚の異なる2例のCV!5鉄の例を挙げた
が、何れも熱膨張係数は従来の片状黒鉛系および球状黒
鉛系低熱膨張鋳鉄と同等以下であり引張り強さは何れも
25kgf/mm2以上と片状黒鉛鋳鉄系の引張り強さ
を大幅に越え、しかも対数減衰率は3.9〜4.4X1
0−”と球状黒鉛鋳鉄系の対数減衰率を大幅に越え片状
点2イ)鋳鉄系に近い値を示し所期の性質を得ることが
できた。
Table 6 [Effects of the invention] Above are the CVs of two examples with different product wall thicknesses! The thermal expansion coefficients of all five irons are equal to or lower than those of conventional flaky graphite-based and spheroidal graphite-based low thermal expansion cast irons, and the tensile strength of both flaky graphite-based cast irons is 25 kgf/mm2 or higher, which is higher than that of flake graphite-based cast irons. Significantly exceeds the tensile strength and has a logarithmic decay rate of 3.9 to 4.4X1
0-'', which significantly exceeded the logarithmic attenuation rate of the spheroidal graphite cast iron system, and showed a value close to that of the cast iron system, indicating that the desired properties could be obtained.

Claims (1)

【特許請求の範囲】[Claims] 最終化学組成が、重量%でC1.4〜2.6%、Si0
.8〜3.0%、Ni30〜40%、Mn<1.0%、
Cr<3.0%、Ti<1.0%となるような溶湯にM
g及び/又はRE元素を添加する事により、黒鉛の球状
化率が30%〜70%であることを特徴とする低熱膨張
・高減衰能CV鋳鉄。
The final chemical composition is C1.4-2.6% by weight, Si0
.. 8-3.0%, Ni30-40%, Mn<1.0%,
M is added to the molten metal such that Cr<3.0% and Ti<1.0%.
CV cast iron with low thermal expansion and high damping capacity, characterized in that the spheroidization rate of graphite is 30% to 70% by adding g and/or RE elements.
JP14459486A 1986-06-20 1986-06-20 Low thermal expansion and high damping capacity cv cast iron Pending JPS63433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14459486A JPS63433A (en) 1986-06-20 1986-06-20 Low thermal expansion and high damping capacity cv cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14459486A JPS63433A (en) 1986-06-20 1986-06-20 Low thermal expansion and high damping capacity cv cast iron

Publications (1)

Publication Number Publication Date
JPS63433A true JPS63433A (en) 1988-01-05

Family

ID=15365694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14459486A Pending JPS63433A (en) 1986-06-20 1986-06-20 Low thermal expansion and high damping capacity cv cast iron

Country Status (1)

Country Link
JP (1) JPS63433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081065U (en) * 1991-04-03 1996-07-02 日立ツール株式会社 Tool holder
US6110305A (en) * 1992-12-15 2000-08-29 Kabushiki Kaisha Toshiba Method for production of high-strength low-expansion cast iron
JP2005298887A (en) * 2004-04-09 2005-10-27 Ito Tekko Kk Low thermal expansion cast iron material
CN108179349A (en) * 2018-01-04 2018-06-19 湖州中杭轧辊有限公司 A kind of novel spheroidal graphite cast-iron deformed steel polishing roll and its production technology
CN109457172A (en) * 2018-11-01 2019-03-12 苏州市海威特铸造厂 A kind of low linear expansion coefficient casting and its casting technique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081065U (en) * 1991-04-03 1996-07-02 日立ツール株式会社 Tool holder
US6110305A (en) * 1992-12-15 2000-08-29 Kabushiki Kaisha Toshiba Method for production of high-strength low-expansion cast iron
JP2005298887A (en) * 2004-04-09 2005-10-27 Ito Tekko Kk Low thermal expansion cast iron material
JP4578847B2 (en) * 2004-04-09 2010-11-10 伊藤鉄工株式会社 Low thermal expansion cast iron
CN108179349A (en) * 2018-01-04 2018-06-19 湖州中杭轧辊有限公司 A kind of novel spheroidal graphite cast-iron deformed steel polishing roll and its production technology
CN109457172A (en) * 2018-11-01 2019-03-12 苏州市海威特铸造厂 A kind of low linear expansion coefficient casting and its casting technique

Similar Documents

Publication Publication Date Title
JP2003535213A (en) Corrosion resistant austenitic stainless steel
GB2071148A (en) Ferritic stainless steel having excellent formability
EP0076701B1 (en) Heat-resistant spheroidal graphite cast iron
US5238645A (en) Iron-aluminum alloys having high room-temperature and method for making same
JPH0321622B2 (en)
JPS63433A (en) Low thermal expansion and high damping capacity cv cast iron
JPH0321623B2 (en)
GB2073249A (en) Ferrite Free Precipitation Hardenable Stainless Steel
US4179285A (en) Ferritic stainless steel
US4242131A (en) Copper base alloy containing manganese and iron
US3936323A (en) Method for producing ferritic stainless steel having high anisotropy
US3997373A (en) Ferritic stainless steel having high anisotropy
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
US4131457A (en) High-strength, high-expansion manganese alloy
JPS5932540B2 (en) High manganese nonmagnetic steel with excellent high temperature strength
SU1636471A1 (en) Cast iron for rolls
JPS6130653A (en) High strength spring steel
US1732202A (en) Air-toughened alloy steel
JPS6360255A (en) Low thermal expansion cast iron and its manufacture
JPH01283342A (en) Cobalt-containing austenitic low thermal expansion cast iron
JPS63114936A (en) Low thermal expansion cast iron and its production
US3926692A (en) Drawability of deoxidized steels by the addition of phosphorus and silicon
KR960701230A (en) Beryllium-copper alloy excellent in strength, workability and heat resistance, and a method of manufacturing the same
JPS5827951A (en) Nodular graphite austenite cast iron with heat resistance
US4816218A (en) Process of using an iron-nickel-chromium alloy in an oxidation attacking environment