JPS6343388A - External resonator type semiconductor laser device - Google Patents

External resonator type semiconductor laser device

Info

Publication number
JPS6343388A
JPS6343388A JP18759686A JP18759686A JPS6343388A JP S6343388 A JPS6343388 A JP S6343388A JP 18759686 A JP18759686 A JP 18759686A JP 18759686 A JP18759686 A JP 18759686A JP S6343388 A JPS6343388 A JP S6343388A
Authority
JP
Japan
Prior art keywords
semiconductor laser
mode
linear expansion
axial mode
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18759686A
Other languages
Japanese (ja)
Inventor
Shusuke Kasai
秀典 河西
Osamu Yamamoto
修 山本
Nobuyuki Miyauchi
宮内 伸幸
Shigeki Maei
茂樹 前井
Hiroshi Hayashi
寛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18759686A priority Critical patent/JPS6343388A/en
Publication of JPS6343388A publication Critical patent/JPS6343388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enlarge the temperature range in which the same axial mode is kept, by forming a base member, on which a semiconductor laser element and a reflecting member are placed, out of material having a linear expansion coefficient smaller than copper. CONSTITUTION:A semiconductor laser element 1 and a chip 2 forming a total reflection mirror 3 so as to feed back the backward outgoing beams of the element 1 to the element 1 are mounted onto a base plate 4. In such constitution, BeO, SiC, Si, etc. having a linear expansion coefficient smaller than copper are used as a material for the base plate 4. The linear expansion coefficient of the base plate 4 must be reduced in order to enlarged temperature range in which the same axial mode is maintained, and the temperature range in which the same axial mode is kept can be enlarged when the material having the linear expansion coefficient smaller than at least copper is employed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、半導体レーザの後方出射光を外部反射部材
(ミラー)によって帰還させる外部共振器形半導体レー
ザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application This invention relates to an external cavity type semiconductor laser device that returns back emitted light from a semiconductor laser by an external reflecting member (mirror).

(ロ)従来の技術 従来の半導体レーザの発振軸モードは、レーザ媒質の利
得分布と、レーザ共振器の透過特性によって選択される
。第6図は、従来の半導体レーザの発振軸モード選択性
を表わす図であり、第6図(ωは波長(横軸)に対する
レーザ媒質の利得分布を、同図(b)は波長に対する各
軸モードのスペクトルを、同図fc)は上記(ωと(b
)とを重畳させたスーパーラディアント状態のスペクト
ルをそれぞれ模式的に示している。レーザの各軸モード
のうち、利得分布のビーク(R大値)に近い波長のもの
が最大の利得を得て発振軸モードとなるが、周囲温度が
変化すると、半導体のバンドギャップが変化するため利
得分布のピーク波長は2〜3人/ deaの割合で長波
長側へ変化する。また、媒質の屈折率が変化する上にレ
ーザ素子自体も熱膨脹するため、レーザ共振器の実効的
な光学長が変わり、それによって各軸モードは約3人の
間隔を保ちながら0.7人/ deQ程度の割合で長波
長側へ変化する。
(B) Prior Art The oscillation axis mode of a conventional semiconductor laser is selected depending on the gain distribution of the laser medium and the transmission characteristics of the laser resonator. Figure 6 is a diagram showing the oscillation axis mode selectivity of a conventional semiconductor laser. The spectrum of the mode (fc) is shown above (ω and (b)
) are schematically shown in the superradiant state spectra superimposed on each other. Among the various axial modes of the laser, the one with a wavelength close to the peak of the gain distribution (large R value) gains the maximum gain and becomes the oscillation axial mode, but as the ambient temperature changes, the band gap of the semiconductor changes. The peak wavelength of the gain distribution changes toward longer wavelengths at a rate of 2 to 3 persons/dea. Furthermore, since the refractive index of the medium changes and the laser element itself also thermally expands, the effective optical length of the laser resonator changes, and as a result, each axial mode maintains a distance of about 3 people, while maintaining a distance of 0.7 people/year. It changes to the longer wavelength side at a rate of about deQ.

従って、ある状態より温度を上昇させると、利得分布の
変化聞が軸モードの変化囲よりも大きいため、しばらく
は発成波長は連続変化をするが、やがてモードホッピン
グをおこし、以後、第8図に示すように連続変化とモー
ドホッピングをくり返し、階段状に変化する。また、半
導体レーザを駆動する電流値によっても波長は変化する
ため・将来に期待される波長多重光通信や高分解能の分
光の光源としての応用を妨げてきた。
Therefore, when the temperature is raised beyond a certain state, the change range of the gain distribution is larger than the change range of the axial mode, so the emission wavelength changes continuously for a while, but mode hopping eventually occurs, and from then on, as shown in Figure 8. As shown in the figure, continuous changes and mode hopping are repeated, resulting in step-like changes. In addition, the wavelength changes depending on the current value used to drive the semiconductor laser, which has hindered its application as a light source for wavelength-multiplexed optical communications and high-resolution spectroscopy, which are expected in the future.

そこで、SECレーザ(S hort  E xter
nalCavity L aser diode)が発
明されたが、これは半導体レーザの後方出射光を外部ミ
ラーにより半導体レーザ本体に帰還させるもので、この
場合の発振軸モードは、通常のレーザの利得分布とレー
ザ軸モードと外部共振器による波長選択性の3つの要因
により選択される。この様子を模式的に第6図に対応さ
せて示したのが第7図であり、第7図(のは波長に対す
るレーザ媒質の利得分布を、同図(b+は波長に対する
各軸モードのスペクトルを、同図(C)は波長に対する
外部共振器の共振特性を、同図+cbは上記(ω(b+
 (C)を重畳したスーパーラディアント状態のスペク
トルを示している。スーパーラディアント状態でのスペ
クトルの包絡線は第6図の場合と異なり、第7図(小の
ようにリップルを有している。この場合、包絡線のピー
クの温度特性は、外部共振器長、すなわち、半導体レー
ザと外部ミラーとのギャップ長を変えることにより制御
できるため、モードホップを抑制し、単一の軸モードを
広い温度範囲にわたって維持することが可能となる。
Therefore, SEC laser (Short Exter
nalCavity Laser diode) was invented, which returns the rear emitted light of the semiconductor laser to the semiconductor laser body using an external mirror.In this case, the oscillation axis mode is the same as the gain distribution of the normal laser The selection is made based on three factors: and the wavelength selectivity of the external resonator. Figure 7 schematically shows this situation in correspondence with Figure 6. Figure 7 (shows the gain distribution of the laser medium with respect to wavelength, , the figure (C) shows the resonance characteristics of the external resonator with respect to the wavelength, and the figure +cb shows the above (ω(b+
(C) shows the superradiant state spectrum superimposed. The envelope of the spectrum in the super radiant state differs from that shown in Figure 6 and has ripples as shown in Figure 7 (small).In this case, the temperature characteristics of the peak of the envelope are That is, since it can be controlled by changing the gap length between the semiconductor laser and the external mirror, mode hops can be suppressed and a single axial mode can be maintained over a wide temperature range.

このSECレーザの温度に対する発振波長の特性の一例
を第9図に示すが、△【という温度虻囲では同一の軸モ
ードがH持され、Δ丁という温度範囲では、第7図(d
)に示すスペクトルの包絡線の同一の山において順次軸
モードが最大利得を得て発振軸モードとなる。つまり、
発振波長はΔ【ごとに発振軸モードが隣接する軸モード
に移行して小さなモードホップを生じ、Δ下ごとに発振
軸モードが包絡線の次の山のピークに移行して大きいモ
ードホップを生じる。
An example of the characteristics of the oscillation wavelength with respect to temperature of this SEC laser is shown in Fig. 9. In the temperature range of △[, the same axial mode H is maintained, and in the temperature range of ∆T, as shown in Fig. 7 (d
) The axial mode sequentially obtains the maximum gain at the same peak of the spectrum envelope shown in ) and becomes the oscillation axial mode. In other words,
The oscillation wavelength is such that for every Δ, the oscillation axial mode shifts to an adjacent axial mode, causing a small mode hop, and for every Δ below, the oscillation axial mode shifts to the next peak of the envelope, producing a large mode hop. .

(ハ)発明が解決しようとする問題点 従来のSECレーザは、GaAs基板上にGa As 
−Ga AI As −DH(ダブルへテロ)構造を有
するVSIS型半導体レーザと全反射ミラーとしてAl
2O3コーティングを施したGa Asチップとを、C
uを材質とする載置台に、所定の外部共振器長く半導体
レーザの出射端面とミラー反射面との間隔ンだけ離して
固定したものである。このSECレーザの外部共振器長
りと、第9図に示す温度範囲Δ丁との特性を示したのが
第3図(Cu)である。また、スペクトルの包絡線のピ
ーク波長の温度係数dλ/ dTはしに対して第4図(
Cut’)のような特性を示す。
(c) Problems to be solved by the invention Conventional SEC lasers use GaAs on a GaAs substrate.
-Ga AI As -VSIS type semiconductor laser with -DH (double hetero) structure and Al as a total reflection mirror
2O3 coated GaAs chip and C
A predetermined external resonator is fixed to a mounting table made of u material at a distance equal to the distance between the emitting end face of the semiconductor laser and the reflecting surface of the mirror. FIG. 3 (Cu) shows the characteristics of the external cavity length of this SEC laser and the temperature range Δd shown in FIG. 9. In addition, the temperature coefficient dλ/dT of the peak wavelength of the spectrum envelope curve is shown in Figure 4 (
Cut').

ところで、前述のように軸モードの温度係数は0.7人
/ deQである。従って、dλ/dTハ、しが50P
71より小さくなると、軸モードの温度係数よりも大き
くなるため、Δ下の範囲内で長波長側に小さなモードホ
ップをおこし、Lが50膚より大きいと軸モードの温度
係数よりも小さくなるため、句波長側に小さなモードホ
ップをおこすことになる。そのため、第10図のように
完全に同一軸モードを維持するためには、つまりΔ丁=
△でとす゛  るためには、dλ/ dTが軸モードの
温度係数(0,7人/clec)’)に一致するように
l = 50.aとする必要があるが、このときのΔ王
は、第3図かられかるようにわずか35℃にすぎない。
By the way, as mentioned above, the temperature coefficient of the axial mode is 0.7 people/deQ. Therefore, dλ/dT is 50P
When L is smaller than 71, it becomes larger than the temperature coefficient of the axial mode, so a small mode hop occurs to the long wavelength side within the range below Δ, and when L is larger than 50, the temperature coefficient becomes smaller than the temperature coefficient of the axial mode. This results in a small mode hop to the wavelength side. Therefore, in order to maintain the coaxial mode completely as shown in Fig. 10, in other words, Δd =
In order to stay at △, l = 50. so that dλ/dT matches the temperature coefficient of the axial mode (0.7 persons/clec)'). It is necessary to set the temperature to a, but the ΔK in this case is only 35°C, as seen from Figure 3.

この発明は、このような事情を考慮してなされたもので
、この△tをさらに大きくすることが可能な外部共振器
形半導体レーザ装置を提供するものである。
The present invention has been made in consideration of these circumstances, and it is an object of the present invention to provide an external cavity type semiconductor laser device that can further increase this Δt.

(ニ)問題点を解決するための手段 この発明は、半導体レーザ素子と、この半導体レーザ素
子の一方の出射端面から出射されたレーザ光を前記半導
体レーザ素子に帰還させる反射部材と、前記半導体レー
ザ素子および前記反射部材とを載置固定する載置部材と
を備え、がっ、その載置部材が銅の線膨張係数よりも小
さい線膨張係数を有してなる外部共振器形半導体レーザ
装置である。
(D) Means for Solving Problems This invention provides a semiconductor laser device, a reflecting member for returning laser light emitted from one emission end facet of the semiconductor laser device to the semiconductor laser device, and a semiconductor laser device. An external cavity type semiconductor laser device comprising a mounting member for mounting and fixing an element and the reflecting member, the mounting member having a linear expansion coefficient smaller than that of copper. be.

上記載置部材には、SlやSiC又はBeOが構成材料
として使用される。
The above mounting member uses Sl, SiC, or BeO as a constituent material.

(ホ)作 用 第7図(a)の利得分布の温度係数は2〜3人/deg
 、同図<b+の軸モードの温度係数は0.7人/de
g程度であり、利得分布の温度係数は軸モードのそれに
比較して3〜4倍大きい。従って、第7図(小の包絡線
のピーク波長の温度係数dλ/ (ITを小さくして軸
モードの温度係数との差を縮めるほど、モードホップが
生じにくく第10図における△Tは大きくなる。ところ
で、dλ/ dTは利得分布の温度係数(2〜3人/ 
deg一定)と外部共振器の共振特性(第7図(C))
のピーク波長λの温度係数dλ/d Tとによって決定
されるためdλ/ dTが小さいはどdT/dTと軸モ
ードの温度係数との差が縮まる。
(e) Effect The temperature coefficient of the gain distribution in Figure 7 (a) is 2 to 3 people/deg.
, the temperature coefficient of the axis mode for <b+ in the same figure is 0.7 people/de
g, and the temperature coefficient of the gain distribution is 3 to 4 times larger than that of the axial mode. Therefore, as shown in Fig. 7 (temperature coefficient dλ/(temperature coefficient of the peak wavelength of the small envelope), the smaller the IT and the smaller the difference from the temperature coefficient of the axial mode, the less likely mode hop will occur, the larger △T in Fig. 10. By the way, dλ/dT is the temperature coefficient of the gain distribution (2 to 3 people/
deg constant) and the resonance characteristics of the external resonator (Figure 7 (C))
Since the temperature coefficient dλ/dT of the peak wavelength λ is determined by the temperature coefficient dλ/dT, the smaller dλ/dT, the smaller the difference between dT/dT and the temperature coefficient of the axial mode.

外部共振器長しは、温度上昇による載置部材の彫版のた
め変化するが、外部共振器の共振特性のピーク波長λの
温度係数dλ/ dTは、一般に、(たずし、Loはλ
0を共振波長とする任意の外部共振器長)で表わされ、
外部共振器長りの温度係数dL/ dTが小さいほどd
λ/ dTが小ざくなる。
Although the external resonator length changes due to the engraving of the mounting member due to temperature rise, the temperature coefficient dλ/dT of the peak wavelength λ of the resonance characteristics of the external resonator is generally (Tazushi, Lo is λ
expressed as an arbitrary external resonator length with 0 as the resonant wavelength),
The smaller the temperature coefficient dL/dT of the external resonator length, the more d
λ/dT becomes smaller.

従って、載置部材に線膨張係数が銅の線膨張係数より小
さい材料を用いると、載置部材に銅を用いた場合にくら
べてdλ/ dTと軸モードの温度係数との差が縮まる
ので、第10図における△Tがそれに対応して大きくな
る。
Therefore, if a material with a coefficient of linear expansion smaller than that of copper is used for the mounting member, the difference between dλ/dT and the temperature coefficient of the axial mode will be smaller than when copper is used for the mounting member. ΔT in FIG. 10 increases correspondingly.

(へ)実施例 以下、図面に示す実施例に基づいてこの発明を詳述する
。なお、これによってこの発明が限定されるものではな
い。
(f) Examples Hereinafter, the present invention will be described in detail based on examples shown in the drawings. Note that this invention is not limited to this.

第1図はこの発明の一実施例を示す斜視図、第2図は第
1図の側面図である。
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a side view of FIG. 1.

これらの図において、1はGa As基板上にQa A
s −Ga AI AS −DH構造を有するVSIs
型半導体レーザ、2はGa ASチップ、3は半導体レ
ーザ1の後方出射光を半導体レーザ1へ帰還させるよう
Qa Asチップ2の一つの面にAl2O3をコーティ
ングして形成した全反射ミラー、4は半導体レーザ1と
Ga Asチップ2を設置する載置板、5は半導体レー
ザ1への給電用リード線、laは半導体レーザ1の長さ
、Lbはチップ2の長さ、Lは半導体レーザ1の出射端
面からミラー3の反射面までの距離(外部共振器長〉で
ある。
In these figures, 1 is QaA on a GaAs substrate.
VSIs with s -Ga AI AS -DH structure
2 is a Ga AS chip, 3 is a total reflection mirror formed by coating one surface of the Qa As chip 2 with Al2O3 so as to return the rear emitted light of the semiconductor laser 1 to the semiconductor laser 1, and 4 is a semiconductor A mounting plate on which the laser 1 and the GaAs chip 2 are installed, 5 is a lead wire for power supply to the semiconductor laser 1, la is the length of the semiconductor laser 1, Lb is the length of the chip 2, and L is the emission of the semiconductor laser 1. This is the distance from the end face to the reflective surface of the mirror 3 (external resonator length).

このような構成において、とくに、載置板4の材料とし
てCuと、Cuよりも線膨張係数の小さいBe○、Si
 CおよびSlを用い、載置板4の寸法を1.5mmX
 3.0mmX 1.0mm <厚さ)とすると共に、
La = Lb = 250.aとし、外部共振器長し
に対する△T(第10図)およびdλ/ dTを実測し
た。その測定結果を第3図および第4図に示す。
In such a configuration, in particular, Cu, Be○, and Si, which have a smaller coefficient of linear expansion than Cu, are used as the material for the mounting plate 4.
Using C and Sl, the dimensions of the mounting plate 4 are 1.5 mm
3.0mmX 1.0mm <thickness) and
La=Lb=250. ΔT (Fig. 10) and dλ/dT with respect to the external resonator length were measured. The measurement results are shown in FIGS. 3 and 4.

第7図+d+に示す包絡線ビーク波長の温度係数dT/
dTを軸モードの温度係数0.7に一致させるためには
、載置板4がCD  (線膨張係数17.0X10’ 
deg ’ )の場合には、第3図および第4図から外
部共振器長を50fimとする必要があり、このとき△
T=35℃となり、Si  C線彫版係数2.4×10
’ deg−” )の場合には外部共振器長を14.π
として、△T=80℃となる。さらに、線膨張係数が各
々7.6x 10’ deg ’ 、  3.7x 1
0’ deg−’であるBe O,Si Cについても
△Tはそれぞれ48℃。
Temperature coefficient dT/ of the envelope peak wavelength shown in Figure 7 +d+
In order to make dT match the temperature coefficient of 0.7 in the axial mode, the mounting plate 4 must have a linear expansion coefficient of CD (linear expansion coefficient 17.0X10').
deg'), the external resonator length needs to be 50fim from Figures 3 and 4, and in this case, △
T=35℃, Si C line engraving coefficient 2.4×10
'deg-''), the external cavity length is set to 14.π
Therefore, ΔT=80°C. Furthermore, the linear expansion coefficients are 7.6x 10'deg' and 3.7x 1, respectively.
ΔT is also 48°C for Be O and Si C, which are 0'deg-'.

62℃となり、これらの結果から線膨張係数に対する八
Tの関係は第5図となる。
62° C. From these results, the relationship of 8T to the coefficient of linear expansion is shown in FIG.

第5図は、6丁を大きくするためには、載置板4の線膨
張係数を小さくする必要があることを示し、また、これ
から少くともCOの線膨張係数よりも小ざい材料を使用
すれば6丁を従来より大きくすることができることがわ
かる。
Figure 5 shows that in order to increase the size of the 6-piece, it is necessary to reduce the linear expansion coefficient of the mounting plate 4, and it is also necessary to use a material with a linear expansion coefficient smaller than that of CO. It can be seen that the 6-piece can be made larger than before.

(ト)発明の効果 この発明によれば、同一軸モードが維持される温度範囲
を大幅に拡大することが可能となり、通常の使用条件で
は全くモードホップを生じることのない半導体レーザが
提供される。
(G) Effects of the Invention According to this invention, it is possible to significantly expand the temperature range in which the coaxial mode is maintained, and a semiconductor laser that does not cause mode hops at all under normal usage conditions is provided. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す斜視図、第2図は第
1図の側面図、第3図は外部共振器長りと大きいモード
ホップのない温度範囲へTとの関係を示すグラフ、第4
図は外部共振器長しと軸モードスペクトルの包絡線のピ
ーク波長温度佳数dλ/ dTとの関係を示すグラフ、
第5図は線膨張係数とモードホップのない温度範囲との
関係暮示すグラフ、第6図は従来の半導体レーザの発振
軸モードの選択性を示す説明図、第7図はこの発明に係
るSEC半導体レーザの発振軸モードの選択性を示す説
明図、第8図は従来の半導体レーザの発振波長の温度特
性を示すグラフ、第9図は一般的なSEC半導体レーザ
の発振波長の温度特性を示すグラフ、第10図はこの発
明に係るSEC半導体レーザの発振波長の温度特性を示
すグラフである。 1・・・・・・半導体レーザ素子、2・・・・・・チッ
プ、3・・・・・・ミラー、      4・・・・・
・載置板、5・・・・・・給電用リード線。 第1図 術2図 線順)張係数(X70’deg−’ )講6図 →2〜3人/deg 第7図 一2〜3人/deg −0,7人/deg
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 shows the relationship between the external resonator length and the temperature range without large mode hops. graph, 4th
The figure is a graph showing the relationship between the external cavity length and the peak wavelength temperature fraction dλ/dT of the envelope of the axial mode spectrum.
FIG. 5 is a graph showing the relationship between the coefficient of linear expansion and the temperature range without mode hop, FIG. 6 is an explanatory diagram showing the selectivity of the oscillation axis mode of a conventional semiconductor laser, and FIG. 7 is an SEC according to the present invention. An explanatory diagram showing the selectivity of the oscillation axis mode of a semiconductor laser, Fig. 8 is a graph showing the temperature characteristics of the oscillation wavelength of a conventional semiconductor laser, and Fig. 9 shows the temperature characteristics of the oscillation wavelength of a general SEC semiconductor laser. FIG. 10 is a graph showing the temperature characteristics of the oscillation wavelength of the SEC semiconductor laser according to the present invention. 1... Semiconductor laser element, 2... Chip, 3... Mirror, 4...
・Placement plate, 5...Lead wire for power supply. Figure 1 Figure 2 line order) Tension coefficient (X70'deg-') Figure 6 → 2-3 people/deg Figure 7-1 2-3 people/deg -0,7 people/deg

Claims (1)

【特許請求の範囲】[Claims] 1、半導体レーザ素子と、この半導体レーザ素子の一方
の出射端面から出射されたレーザ光を前記半導体レーザ
素子に帰還させる反射部材と、前記半導体レーザ素子お
よび前記反射部材とを載置固定する載置部材とを備え、
かつ、その載置部材が銅の線膨張係数よりも小さい線膨
張係数を有してなる外部共振器形半導体レーザ装置。
1. A mounting for mounting and fixing a semiconductor laser element, a reflecting member that returns laser light emitted from one emission end face of the semiconductor laser element to the semiconductor laser element, and the semiconductor laser element and the reflecting member. and a member;
An external cavity semiconductor laser device, wherein the mounting member has a linear expansion coefficient smaller than that of copper.
JP18759686A 1986-08-09 1986-08-09 External resonator type semiconductor laser device Pending JPS6343388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18759686A JPS6343388A (en) 1986-08-09 1986-08-09 External resonator type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18759686A JPS6343388A (en) 1986-08-09 1986-08-09 External resonator type semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6343388A true JPS6343388A (en) 1988-02-24

Family

ID=16208875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18759686A Pending JPS6343388A (en) 1986-08-09 1986-08-09 External resonator type semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6343388A (en)

Similar Documents

Publication Publication Date Title
US4583227A (en) Temperature compensating semiconductor lasers
JP3542694B2 (en) How to generate light from a laser
US5434874A (en) Method and apparatus for optimizing output characteristics of a tunable external cavity laser
US20050018741A1 (en) Semiconductor laser
US5056099A (en) Rugate filter on diode laser for temperature stabilized emission wavelength
US20150147020A1 (en) External Resonator Type Light Emitting System
JPH06112583A (en) External resonator type semiconductor laser light source
US20150103854A1 (en) Wavelength-stabilized microcrystal laser
JP2000082864A (en) Laser device
JPH0533838B2 (en)
JPS6343389A (en) External resonator type semiconductor laser device
JPH1098230A (en) Frequency stabilized laser
US20070189349A1 (en) Single mode laser
JPS6043680B2 (en) Temperature stabilized laser device
US5629954A (en) Semiconductor laser diode with integrated etalon
JPS6343388A (en) External resonator type semiconductor laser device
JP2003515938A (en) Mode-selective facet layers for pump lasers
GB2413697A (en) Uncooled semiconductor laser
JP2020167359A (en) Wavelength-tunable light source and wavelength control method thereof
US20030103541A1 (en) Fabry-Perot laser
US4864585A (en) External cavity type semiconductor laser apparatus
US11848539B2 (en) Narrow linewidth semiconductor laser device
Andrews Enhanced thermal stability of single longitudinal mode coupled cavity lasers
WO2015108197A1 (en) External resonator type light emitting device
JPS63229889A (en) External cavity type semiconductor laser device