JPS6343379B2 - - Google Patents

Info

Publication number
JPS6343379B2
JPS6343379B2 JP53025834A JP2583478A JPS6343379B2 JP S6343379 B2 JPS6343379 B2 JP S6343379B2 JP 53025834 A JP53025834 A JP 53025834A JP 2583478 A JP2583478 A JP 2583478A JP S6343379 B2 JPS6343379 B2 JP S6343379B2
Authority
JP
Japan
Prior art keywords
formula
acid
group
ether
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53025834A
Other languages
Japanese (ja)
Other versions
JPS54119436A (en
Inventor
Yoshio Katsuta
Yoshihiro Namite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2583478A priority Critical patent/JPS54119436A/en
Priority to US05/960,638 priority patent/US4431668A/en
Priority to CA000316312A priority patent/CA1197856A/en
Priority to GB7845132A priority patent/GB2010262B/en
Priority to AR274529A priority patent/AR225736A1/en
Priority to DE2851428A priority patent/DE2851428C2/en
Priority to PH21854A priority patent/PH14381A/en
Priority to FR7833669A priority patent/FR2410639A1/en
Priority to AU42093/78A priority patent/AU507268B1/en
Priority to AU42093/78D priority patent/AU4209378A/en
Priority to NLAANVRAGE7811808,A priority patent/NL180415C/en
Priority to MX787567U priority patent/MX5752E/en
Publication of JPS54119436A publication Critical patent/JPS54119436A/en
Publication of JPS6343379B2 publication Critical patent/JPS6343379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 (式中、R1は炭素数1〜6のアルキル基を示し、
R2はメチル基又は塩素原子を示す。)で表わされ
る置換シクロプロパンカルボン酸及びその光学な
らびに幾何異性体、及びその製造法に関する。 第一菊酸エステルのアルコール成分については
種々のものが研究され、実用に供されているが、
光によつて酸化分解を起こしやすく屋外での使用
に制約を受けてきた。最近酸成分の研究が盛んに
なり、イソブテニル基のメチル基をハロゲン原子
に置換することによつて従来のピレスロイドに較
べ光に安定な化合物が発見された。本発明者等は
さらにシクロプロパンカルボン酸の光による酸化
分解に強い置換基について種々検討した結果、上
記式()で示されるアルコキシ基を持つ置換シ
クロプロパンカルボン酸を酸成分とするエステル
が殺虫成分として種々の衛生害虫及び農園芸害虫
に極めて優れた殺虫効果を奏する一方、温血動物
に対する毒性が極めて低く、光に対し従来のピレ
スロイドに較べ非常に安定であることを知つた。 本発明の置換シクロプロパンカルボン酸は新規
の化合物であり、この製造方法について種種研究
の結果、従来のシクロプロパンカルボン酸の製造
法がそのまま利用出来ることが確認出来た。 すなわち、次の3方法が本発明の目的に適合し
た。 (1) 一般式 (式中、R1、R2は前記と同じ意味を示す。)で
表わされるエーテルとジアゾ酢酸エステルとを
反応させて、置換シクロプロパンカルボン酸エ
ステルとし、ついで加水分解して置換シクロプ
ロパンカルボン酸を得る方法。 (2) 一般式 (式中、R1は前記と同じ意味を示し、Xはハ
ロゲン原子を示す。)で表わされるエーテルに
ベンゼンスルフイン酸ナトリウムを反応させて
フエニルアルコキシアルキルスルホンとし、つ
いで一般式 (式中、R2は前記と同じ意味を示し、R4はメ
チル基又はエチル基を示す。)で表わされる置
換アクリル酸エステルを反応させ、さらに加水
分解させて置換シクロプロパンカルボン酸を得
る方法。 (3) 一般式 (式中、R1は前記と同じ意味を示し、R5はメ
チル基、エチル基又は第三級ブチル基を示す。)
で表わされるエステルにジメチルジアゾメタン
又はカリウム第三級ブチラートの存在下クロロ
ホルムを反応させ、ついで加水分解して置換シ
クロプロパンカルボン酸を得る方法。 次に本発明の製造法に使用する原料は、例えば
(1)及び(2)の方法のエーテルはアルコールとアルデ
ヒドをハロゲン化水素のもとで反応させ、アルキ
ルハロアルキルエーテルを得る。このものは製造
法(2)の原料となり、このものを適当な塩基と反応
させて脱ハロゲン化水素することによりアルキル
アルケニルエーテルとし(1)の方法の原料を得るこ
とができる。又アルカリ金属のアルコラートとβ
−メチルアリルハライドを反応させ、ついで異性
化させてアルキルアルケニルエーテルを得る方法
もある。(3)の出原原料となるエステルはβ−ハロ
ゲン酸のエステルとアルカリ金属のアルコラート
とを反応させて容易に得ることができる。 本発明の置換シクロプロパンカルボン酸は種種
の誘導体としてアルコールとのエステルの製造に
使用されるものであり、その際は(1)、(2)、(3)の方
法で得られる置換シクロプロパンカルボン酸エス
テルはそのまま使用出来、他に酸ハライド、酸無
水物、アルカリ金属塩が使用できる。本発明の酸
はこれらのものに容易に変換できるものである。 本発明の置換シクロプロパンカルボン酸の代表
例を示せば次のものがあげられる。 (1) 2,2,3−トリメチル−3−メトキシシク
ロプロパンカルボン酸 n20 D1.4497 (2) 2,2,3−トリメチル−3−n−プロポキ
シシクロプロパンカルボン酸 n20 D1.4523 (3) 2,2−ジクロロ−3−メチル−3−n−ブ
トキシシクロプロパンカルボン酸 n20 D1.4540 (4) 2,2,3−トリメチル−3−イソブトキシ
シクロプロパンカルボン酸 n20 D1.4543 (5) 2,2−ジクロロ−3−メチル−3−n−ア
ミルオキシシクロプロパンカルボン酸
n20 D1.4598 次に本発明の製造法について各反応条件につい
て説明する。 (1) アルキルアルケニルエーテルとジアゾ酢酸エ
チルとの反応は溶媒を使用せずにアルキルアル
ケニルエーテルを溶媒の代り過剰に使用し、
100℃以上の加熱条件下で窒素ガスの発生が連
続的に生じる条件下で行う。なお反応を円滑に
進めるため硫酸銅又は銅の存在下に反応を行う
こともできる。 (2) アルキルハロアルキルエーテルとベンゼンス
ルフイン酸との反応はメタノール又はエタノー
ル中で、かつ塩基性剤、例えばアルカリ金属カ
ーボネート又はアセテートの存在下反応させて
フエニルアルコキシアルキルスルホンを得、こ
れを置換アクリル酸エステルを不活性溶媒中、
例えばベンゼン、トルエン、テトラヒドロフラ
ン、好ましくはジメチルホルムアミド、ジメチ
ルスルホキシド、アセトニトリル中塩基性剤の
存在下無水状態で行なう。塩基性剤としてはア
ルカリアミド、アルカリ金属水素化物、又はア
ルコラートがよく、好ましくはナトリウムメチ
ラート、カリウム第三級ブチラートがよい。 (3) 置換アクリル酸エステルとジメチルジアゾメ
タンの反応は(1)のアルキルアルケニルエーテル
とジアゾ酢酸エチルと同様に置換アクリル酸エ
ステルを過剰に使用し、銅又は硫酸銅の存在
下、加熱して反応を行う。又置換アクリル酸エ
ステルとカリウム第三級ブチラートの存在下ク
ロロホルムとの反応は不活性溶媒中、例えばベ
ンゼン中カリウム第三級ブチラートの存在下置
換アクリル酸エステルとクロロホルムを反応さ
せて置換シクロプロパンカルボン酸エステルを
得、ついで加水分解して置換シクロプロパンカ
ルボン酸を得る。 加水分解は(1)、(2)、(3)とも同様であるが、アル
カリ加水分解で容易に酸とすることができる。 次に本発明の実施例で詳細に説明する。 実施例 1 メチル−1−メチル−1−イソブテニルエーテ
ル20gと硫酸銅1gを300mlの三口フラスコに入
れ、ジアゾ酢酸エチル0.5gを加える。混合物を
約120℃に加熱し、窒素が連続的に発生して反応
が始まつたら、ジアゾ酢酸エチル11gを徐々に滴
下し、温度は120℃前後に保つ。反応終了後過
し、液を減圧下に蒸留して2,2,3−トリメ
チル−3−メトキシシクロプロパンカルボン酸の
エチルエステル(bp85〜88℃/20mmHg)11.4g
を得た。これに2Nの水酸化ナトリウムメタノー
ル溶液100mlを加え加熱し、還流を30分間行つた
のち、減圧下にメタノールを除き、水を加え、さ
らに濃塩酸を加えて酸性とし、クロロホルム50ml
で3回抽出してクロロホルム層を合せ、無水硫酸
ナトリウムで乾燥後、減圧下にクロロホルムを留
去し、2,2,3−トリメチル−3−メトキシシ
クロプロパンカルボン酸10.2gを得た。 実施例 2 n−ブチル−1−メチル−2,2−ジクロロビ
ニールエーテル37.2gと銅粉1.5gを300mlの三口
フラスコに入れ、ジアソ酢酸メチル0.5gを加え
る。混合物を約130℃に加熱し、窒素が連続的に
発生し始めたら、ジアゾ酢酸メチル16gとn−ブ
チル−1−メチル−2,2−ジクロロビニルエー
テル18.7gの混合物を徐々に滴下する。温度は
140℃前後に保ち、窒素の発生が連続的に起こる
ように滴下を行う。滴下後30分加熱を続けたのち
冷却し、ベンゼン50mlを加えて溶かし、過す
る。液を減圧下にベンゼンを留去したのち、蒸
留して2,2−ジクロロ−3−メチル−3−n−
ブトキシシクロプロパンカルボン酸のメチルエス
テル(bp121〜126℃/8mmHg)28.1gを得た。
これをメタノール100mlに溶解し、水酸化カリウ
ム20gを水50mlに溶かした液を加え、1時間還流
加熱を行う。冷却後メタノールを減圧下留去した
後、水50mlを加え、濃塩酸を加えて酸性とし、ク
ロロホルム50mlで3回抽出する。クロロホルム層
を合せて無水硫酸で乾燥後減圧下にクロロホルム
を留去し、2,2−ジクロロ−3−メチル−3−
n−ブトキシシクロプロパンカルボン酸26.3gを
得た。 実施例 3 メタノール100ml中に炭酸ナトリウム2gとフ
エニルスルフイン酸ナトリウム18gとを加えた懸
濁物に室温で1−n−プロポキシエチルブロマイ
ド16.3gを約30分間で滴下する。室温で約2時間
撹拌し、この反応混合物を氷水中に注ぎ込み、エ
ーテル100mlで3回抽出する。エーテル層を合せ
て無水硫酸ナトリウムで乾燥し、減圧下にエーテ
ルを留去し、フエニル−1−n−プロポキシエチ
ルスルホン21.5gを得た。ジメチルホルムアミド
200ml中にカリウム第三級ブチラート23gを加え
て溶かした液にフエニル−1−n−プロポキシエ
チルスルホン21.5gを加えて30分間撹拌する。つ
いでβ−ジメチルアクリル酸のエチルエステル
25.6gを滴下する。室温で2時間撹拌し、0℃ま
で冷却後氷と希塩酸溶液の混合物中に注ぎ入れ、
エーテル100mlで3回抽出し、エーテル層を合せ
る。このエーテル溶液を食塩水、重曹水再び食塩
水の順で洗浄し、無水硫酸ナトリウムで乾燥減圧
下にエーテルを留去し、蒸留して2,2,3−ト
リメチル−3−n−プロポキシシクロプロパンカ
ルボン酸のエチルエステル(bp106〜109℃/15
mmHg)18.4gを得た。これをメタノール50mlに
溶解し、40%の水酸化ナトリウム溶液20mlを加え
て還流下に1時間加熱し、冷却後減圧下にメタノ
ールを留去する。水50mlを加え、さらに塩酸を加
えて酸性としてクロロホルム50mlで3回抽出す
る。クロロホルム層を合せ、無水硫酸ナトリウム
で乾燥後、減圧下にクロロホルムを留去し、2,
2,3−トリメチル−3−n−プロポキシシクロ
プロパンカルボン酸16.0gを得た。 実施例 4 β−イソブトキシ−β−メチルアクリル酸のエ
チルエステル30gと硫酸銅2gを300mlの三口フ
ラスコに入れ、ジメチルジアゾメタン約0.5gを
加える。混合物を約100℃に加熱し、窒素が連続
的に発生して反応の始まるのを確認してから、ジ
メチルジアゾメタン6.5gとβ−イソブトキシ−
β−メチルアクリル酸のエチルエステル9gの混
合物を徐々に滴下する。温度は100℃前後に保ち、
窒素の発生が続いていることを確認しながら行
う。反応終了後ベンゼン100mlを加えて混合物を
溶かし、過する。液を減圧下にベンゼンを留
去し、蒸留して2,2,3−トリメチル−3−イ
ソブトキシシクロプロパンカルボン酸のエチルエ
ステル(bp133〜137℃/12mmHg)20.9gを得た。
これをメタノール100mlに溶解し、40%水酸化ナ
トリウム溶液20mlを加え、1時間還流下に加熱す
る。冷却後、減圧下にメタノールを留去する。残
留液に水60mlを加え、塩酸で酸性としてクロロホ
ルム50mlで3回抽出する。クロロホルム層を合
せ、無水硫酸ナトリウムで乾燥後減圧下にクロロ
ホルムを留去して2,2,3−トリメチル−3−
イソブトキシシクロプロパンカルボン酸18.4gを
得た。 実施例 5 無水ベンゼン100ml中にカリウム第三級ブチラ
ート16.8gを懸濁した溶液にβ−n−アミルオキ
シ−β−メチルアクリル酸の第三級ブチルエステ
ル60gを加える。この溶液にクロロホルム18gを
10℃で約1時間をかけて滴下する。滴下終了後3
時間室温で撹拌した後、水中に注ぎ込み、エーテ
ル100mlで3回抽出する。エーテル層を合せ、水
で洗浄後、無水硫酸ナトリウムで乾燥する。減圧
下にエーテルを留去し、蒸留して2,2−ジクロ
ロ−3−メチル−3−n−アミルオキシシクロプ
ロパンカルボン酸の第三級ブチルエステル
(bp129〜132℃/5mmHg)30.1gを得た。これを
メタノール100mlに溶解し、30%水酸化カリウム
溶液30mlを加えて還流下に1時間加熱する。冷却
後減圧下にメタノールを留去し、残留液に水50ml
を加え、塩酸を加えて酸性とし、クロロホルム50
mlで3回抽出する。クロロホルム層を合せ、無水
硫酸ナトリウムで乾燥し、減圧下にクロロホルム
を留去して、2,2−ジクロロ−3−メチル−3
−n−アミルオキシシクロプロパンカルボン酸
23.6gを得た。 こうして調製された置換シクロプロパンカルボ
ン酸 (式中、R1は炭素数1〜6のアルキル基を示し、
R2はメチル基又は塩素原子を示す。)又はその反
応性誘導体は、エステル製造の一般方法に準じ
て、 一般式 HO−R6 ……() (式中、R4は式()、()、()、()で表
わされる基を示す。 ここにXは酸素原子又は(−CH=CH−)グ
ループを示し、R9はアリル基、プロパルギル基、
ベンジル基、フエノキシ基又は2,2−ジクロロ
ビニルオキシ基を表わし、R8は水素原子、メチ
ル基又はハロゲン原子を示す。R9は水素原子、
シアノ基、エチニル基又はトリフルオロメチル基
であり、mは1〜2の整数を示す。R10はアリル
基又はペンタジエニル基を表わす。Yは酸素原子
又はメチレン基であり、R11は水素原子、メチル
基、アリル基又はハロゲン原子を表わす。)で表
わされるアルコール又はその反応性誘導体とを反
応させることによつて容易にピレスロイド化合物
に導くことができる。 カルボン酸の反応性誘導体としては例えば、酸
ハライド、酸無水物、低級アルキルエステル、ア
ルカリ金属塩などがあげられる。アルコールの反
応性誘導体としては例えばクロライドがあげられ
る。反応は適当な溶媒中で必要により、脱酸剤ま
たは触媒としての有機または無機塩基、又は酸の
存在下に必要により加熱下に行なわれる。 有用なピレスロイド化合物の代表例をあげると
次のとおりであるがこれらに限定されるものでは
ない。
The present invention is based on the general formula (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
R 2 represents a methyl group or a chlorine atom. ), its optical and geometric isomers, and its production method. Various alcohol components of primary chrysanthemum esters have been studied and put into practical use.
It is susceptible to oxidative decomposition due to light, which has limited its use outdoors. Recently, research into acid components has become active, and a compound that is more stable to light than conventional pyrethroids was discovered by replacing the methyl group of the isobutenyl group with a halogen atom. The present inventors further investigated various substituents of cyclopropanecarboxylic acid that are resistant to oxidative decomposition by light, and found that an ester having a substituted cyclopropanecarboxylic acid having an alkoxy group represented by the above formula () as an acid component is an insecticidal ingredient. It has been found that it has extremely excellent insecticidal effects against various sanitary pests and agricultural and horticultural pests, has extremely low toxicity to warm-blooded animals, and is much more stable against light than conventional pyrethroids. The substituted cyclopropanecarboxylic acid of the present invention is a new compound, and as a result of various studies on its production method, it has been confirmed that the conventional method for producing cyclopropanecarboxylic acid can be used as is. That is, the following three methods were suitable for the purpose of the present invention. (1) General formula (In the formula, R 1 and R 2 have the same meanings as above.) The ether represented by the formula (R 1 and R 2 have the same meanings as above) is reacted with a diazoacetate to form a substituted cyclopropane carboxylic acid ester, which is then hydrolyzed to produce a substituted cyclopropane carboxylic acid ester. How to get. (2) General formula (In the formula, R 1 has the same meaning as above, and X represents a halogen atom.) The ether represented by (In the formula, R 2 has the same meaning as above, and R 4 represents a methyl group or an ethyl group.) A method of reacting a substituted acrylic acid ester represented by the formula and further hydrolyzing it to obtain a substituted cyclopropane carboxylic acid. . (3) General formula (In the formula, R 1 has the same meaning as above, and R 5 represents a methyl group, ethyl group, or tertiary butyl group.)
A method in which the ester represented by is reacted with chloroform in the presence of dimethyldiazomethane or potassium tertiary butyrate, and then hydrolyzed to obtain a substituted cyclopropanecarboxylic acid. Next, the raw materials used in the production method of the present invention are, for example,
Ethers in methods (1) and (2) are obtained by reacting alcohol and aldehyde in the presence of hydrogen halide to obtain alkyl haloalkyl ether. This product becomes a raw material for production method (2), and by reacting this product with an appropriate base and dehydrohalogenating it, an alkyl alkenyl ether can be obtained as a raw material for method (1). Also, alkali metal alcoholates and β
- There is also a method of reacting methyl allyl halide and then isomerizing it to obtain an alkyl alkenyl ether. The ester serving as the starting material for (3) can be easily obtained by reacting a β-halogen acid ester with an alkali metal alcoholate. The substituted cyclopropane carboxylic acids of the present invention are used as various derivatives to produce esters with alcohols, and in this case, the substituted cyclopropane carboxylic acids obtained by methods (1), (2), and (3) Acid esters can be used as they are, and acid halides, acid anhydrides, and alkali metal salts can also be used. The acids of the present invention can be easily converted into these acids. Representative examples of the substituted cyclopropanecarboxylic acids of the present invention include the following. (1) 2,2,3-trimethyl-3-methoxycyclopropanecarboxylic acid n 20 D 1.4497 (2) 2,2,3-trimethyl-3-n-propoxycyclopropanecarboxylic acid n 20 D 1.4523 (3) 2 ,2-dichloro-3-methyl-3-n-butoxycyclopropanecarboxylic acid n 20 D 1.4540 (4) 2,2,3-trimethyl-3-isobutoxycyclopropanecarboxylic acid n 20 D 1.4543 (5) 2, 2-dichloro-3-methyl-3-n-amyloxycyclopropanecarboxylic acid
n 20 D 1.4598 Next, each reaction condition for the production method of the present invention will be explained. (1) In the reaction between alkyl alkenyl ether and ethyl diazoacetate, an excess amount of alkyl alkenyl ether is used instead of the solvent without using a solvent.
The test is carried out under heating conditions of 100°C or higher, under which nitrogen gas is continuously generated. Note that the reaction can also be carried out in the presence of copper sulfate or copper in order to advance the reaction smoothly. (2) The reaction between an alkyl haloalkyl ether and benzene sulfuric acid is carried out in methanol or ethanol in the presence of a basic agent such as an alkali metal carbonate or acetate to obtain a phenyl alkoxyalkyl sulfone, which is then converted into a substituted acrylic acid. acid ester in an inert solvent,
For example, the reaction is carried out in benzene, toluene, tetrahydrofuran, preferably dimethylformamide, dimethylsulfoxide or acetonitrile in the presence of a basic agent in an anhydrous state. The basic agent is preferably an alkali amide, an alkali metal hydride, or an alcoholate, preferably sodium methylate or potassium tertiary butylate. (3) The reaction between substituted acrylic ester and dimethyldiazomethane is carried out by using an excess of substituted acrylic ester and heating in the presence of copper or copper sulfate, as in the case of alkyl alkenyl ether and ethyl diazoacetate in (1). conduct. In addition, the reaction between a substituted acrylic ester and chloroform in the presence of potassium tertiary butyrate is performed by reacting the substituted acrylic ester with chloroform in the presence of potassium tertiary butyrate in an inert solvent, for example, benzene, to form a substituted cyclopropanecarboxylic acid. The ester is obtained and then hydrolyzed to obtain the substituted cyclopropane carboxylic acid. Hydrolysis is the same for (1), (2), and (3), but it can be easily converted to an acid by alkaline hydrolysis. Next, the present invention will be explained in detail in Examples. Example 1 20 g of methyl-1-methyl-1-isobutenyl ether and 1 g of copper sulfate are placed in a 300 ml three-necked flask, and 0.5 g of ethyl diazoacetate is added. The mixture is heated to about 120°C, and when the reaction begins with continuous evolution of nitrogen, 11 g of ethyl diazoacetate is slowly added dropwise, keeping the temperature around 120°C. After the reaction was completed, the solution was filtered and distilled under reduced pressure to obtain 11.4 g of ethyl ester of 2,2,3-trimethyl-3-methoxycyclopropanecarboxylic acid (bp85-88℃/20mmHg).
I got it. Add 100ml of 2N sodium hydroxide methanol solution to this, heat, reflux for 30 minutes, remove methanol under reduced pressure, add water, make acidic by adding concentrated hydrochloric acid, and 50ml of chloroform.
The chloroform layers were combined, dried over anhydrous sodium sulfate, and then chloroform was distilled off under reduced pressure to obtain 10.2 g of 2,2,3-trimethyl-3-methoxycyclopropanecarboxylic acid. Example 2 37.2 g of n-butyl-1-methyl-2,2-dichlorovinyl ether and 1.5 g of copper powder are placed in a 300 ml three-necked flask, and 0.5 g of methyl diasoacetate is added. The mixture is heated to about 130 DEG C., and when nitrogen begins to evolve continuously, a mixture of 16 g of methyl diazoacetate and 18.7 g of n-butyl-1-methyl-2,2-dichlorovinyl ether is slowly added dropwise. The temperature is
The temperature is maintained at around 140℃, and the dropping is performed so that nitrogen generation occurs continuously. After dropping, continue heating for 30 minutes, cool, add 50 ml of benzene to dissolve, and filter. After removing benzene from the liquid under reduced pressure, it was distilled to give 2,2-dichloro-3-methyl-3-n-
28.1 g of methyl ester of butoxycyclopropanecarboxylic acid (bp 121-126°C/8 mmHg) was obtained.
Dissolve this in 100 ml of methanol, add 20 g of potassium hydroxide dissolved in 50 ml of water, and heat under reflux for 1 hour. After cooling, methanol is distilled off under reduced pressure, 50 ml of water is added, concentrated hydrochloric acid is added to make the mixture acidic, and the mixture is extracted three times with 50 ml of chloroform. The chloroform layers were combined and dried over anhydrous sulfuric acid, and the chloroform was distilled off under reduced pressure to give 2,2-dichloro-3-methyl-3-
26.3 g of n-butoxycyclopropanecarboxylic acid was obtained. Example 3 To a suspension of 2 g of sodium carbonate and 18 g of sodium phenylsulfinate in 100 ml of methanol, 16.3 g of 1-n-propoxyethyl bromide is added dropwise over about 30 minutes at room temperature. After stirring at room temperature for about 2 hours, the reaction mixture is poured into ice water and extracted three times with 100 ml of ether. The ether layers were combined and dried over anhydrous sodium sulfate, and the ether was distilled off under reduced pressure to obtain 21.5 g of phenyl-1-n-propoxyethyl sulfone. dimethylformamide
Add 21.5 g of phenyl-1-n-propoxyethyl sulfone to a solution prepared by adding 23 g of potassium tert-butyrate to 200 ml and stir for 30 minutes. Then ethyl ester of β-dimethylacrylic acid
Drop 25.6g. Stir at room temperature for 2 hours, cool to 0°C, and pour into a mixture of ice and dilute hydrochloric acid solution.
Extract three times with 100 ml of ether and combine the ether layers. This ether solution was washed with brine, then with sodium bicarbonate, and again with brine, dried over anhydrous sodium sulfate, the ether was distilled off under reduced pressure, and 2,2,3-trimethyl-3-n-propoxycyclopropane was distilled. Ethyl ester of carboxylic acid (bp106-109℃/15
mmHg) 18.4g was obtained. Dissolve this in 50 ml of methanol, add 20 ml of 40% sodium hydroxide solution, heat under reflux for 1 hour, and after cooling, methanol is distilled off under reduced pressure. Add 50 ml of water, then acidify with hydrochloric acid and extract three times with 50 ml of chloroform. The chloroform layers were combined, dried over anhydrous sodium sulfate, and chloroform was distilled off under reduced pressure.
16.0 g of 2,3-trimethyl-3-n-propoxycyclopropanecarboxylic acid was obtained. Example 4 30 g of ethyl ester of β-isobutoxy-β-methylacrylic acid and 2 g of copper sulfate are placed in a 300 ml three-necked flask, and about 0.5 g of dimethyldiazomethane is added. Heat the mixture to about 100°C, confirm that the reaction begins with continuous evolution of nitrogen, and then add 6.5 g of dimethyldiazomethane and β-isobutoxy-
A mixture of 9 g of ethyl ester of β-methylacrylic acid is slowly added dropwise. Keep the temperature around 100℃,
Perform this while making sure that nitrogen continues to be generated. After the reaction is complete, add 100 ml of benzene to dissolve the mixture and filter. Benzene was distilled off from the liquid under reduced pressure, and 20.9 g of ethyl ester of 2,2,3-trimethyl-3-isobutoxycyclopropanecarboxylic acid (bp 133-137°C/12 mmHg) was obtained.
Dissolve this in 100 ml of methanol, add 20 ml of 40% sodium hydroxide solution and heat under reflux for 1 hour. After cooling, methanol is distilled off under reduced pressure. Add 60 ml of water to the residual solution, acidify with hydrochloric acid, and extract three times with 50 ml of chloroform. The chloroform layers were combined, dried over anhydrous sodium sulfate, and chloroform was distilled off under reduced pressure to give 2,2,3-trimethyl-3-
18.4 g of isobutoxycyclopropanecarboxylic acid was obtained. Example 5 60 g of tertiary butyl ester of β-n-amyloxy-β-methylacrylic acid are added to a suspension of 16.8 g of potassium tert-butyrate in 100 ml of anhydrous benzene. Add 18g of chloroform to this solution.
Add dropwise over approximately 1 hour at 10°C. After dripping 3
After stirring at room temperature for an hour, it is poured into water and extracted three times with 100 ml of ether. The ether layers are combined, washed with water, and dried over anhydrous sodium sulfate. Ether was removed under reduced pressure and distilled to obtain 30.1 g of tertiary butyl ester of 2,2-dichloro-3-methyl-3-n-amyloxycyclopropanecarboxylic acid (bp 129-132°C/5 mmHg). Ta. Dissolve this in 100 ml of methanol, add 30 ml of 30% potassium hydroxide solution, and heat under reflux for 1 hour. After cooling, methanol is distilled off under reduced pressure and 50ml of water is added to the residual liquid.
, add hydrochloric acid to make acidic, and add chloroform 50
Extract 3 times with ml. The chloroform layers were combined, dried over anhydrous sodium sulfate, chloroform was distilled off under reduced pressure, and 2,2-dichloro-3-methyl-3
-n-amyloxycyclopropanecarboxylic acid
23.6g was obtained. Substituted cyclopropanecarboxylic acid thus prepared (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
R 2 represents a methyl group or a chlorine atom. ) or its reactive derivative can be prepared using the general formula HO−R 6 ...() (wherein R 4 is a group represented by the formula (), (), (), ()) according to the general method for ester production. shows. Here, X represents an oxygen atom or a (-CH=CH-) group, and R9 represents an allyl group, a propargyl group,
It represents a benzyl group, a phenoxy group or a 2,2-dichlorovinyloxy group, and R 8 represents a hydrogen atom, a methyl group or a halogen atom. R 9 is a hydrogen atom,
They are a cyano group, an ethynyl group, or a trifluoromethyl group, and m represents an integer of 1 to 2. R 10 represents an allyl group or a pentadienyl group. Y is an oxygen atom or a methylene group, and R 11 represents a hydrogen atom, a methyl group, an allyl group, or a halogen atom. ) can be easily converted into a pyrethroid compound by reacting with an alcohol represented by the following formula or a reactive derivative thereof. Examples of reactive derivatives of carboxylic acids include acid halides, acid anhydrides, lower alkyl esters, and alkali metal salts. Examples of reactive derivatives of alcohol include chloride. The reaction is carried out in a suitable solvent, optionally in the presence of an organic or inorganic base as a deoxidizing agent or catalyst, or an acid, and optionally with heating. Representative examples of useful pyrethroid compounds include, but are not limited to, the following.

【表】【table】

【表】【table】

【表】 なお、前記ピレスロイド化合物の合成具体例を
示すと次の如くである。 合成例 1 2,2,3−トリメチル−3−イソブトキシシ
クロプロパンカルボン酸3.9gをジメチルホルム
アミド50mlに溶解し、これに3−フエノキシ−α
−トリフルオロメチルベンジルクロライド5.4g
を加える。撹拌下にトリエチルアミン4mlを加え
60〜80℃で3時間反応させたのちエーテルで溶解
し、エーテル溶液を希塩酸、重曹水、食塩水で充
分洗浄後ぼう硝で乾燥しエーテルを減圧下に留去
して3′−フエノキシ−α′−トリフルオロメチルベ
ンジル2,2,3−トリメチル−3−イソブトキ
シシクロプロパンカルボキシレート7.0gを得た。 合成例 2 2,2,3−トリメチル−3−エトキシ−シク
ロプロパンカルボン酸3.4gと3,4,5,6−
テトラヒドロフタルイミドメチロール3.7gとを
50mlの乾燥ベンゼンに溶解し、6.2gのジシクロ
ヘキシルカルボジイミドを添加して一晩放置し
た。翌日4時間加熱還流して反応を完結させ、冷
却後析出したジシクロヘキシル尿素をろ別した。
ろ液を濃縮して得られた油状物質を100gのシリ
カゲルカラムに流下させて、3′,4′,5′,6′−テ
トラヒドロフタルイミドメチル 2,2,3−ト
リメチル−3−エトキシ−シクロプロパンカルボ
キシレート5.4gを得た。 合成例 3 2,2−ジクロロ−3−メチル−3−n−ヘキ
シルオキシシクロプロパンカルボン酸クロライド
4.7gを乾燥ベンゼン15mlに溶解し、これに5−
ベンジル−α−エチニル−2−フリルメチルアル
コール4.2gを乾燥ベンゼン20mlに溶解したもの
を加え、さらに縮合助剤として乾燥ピリジン3ml
を加えるとピリジン塩酸塩の結晶が析出する。密
栓して室温で一夜放置後ピリジン塩酸塩の結晶を
別した後、ベンゼン溶液をぼう硝で乾燥しベン
ゼンを減圧下に留去して5′−ベンジル−α′−エチ
ニル−2′−フリルメチル 2,2−ジクロ−3−
メチル−3−n−ヘキシルオキシ−シクロプロパ
ンカルボキシレート6.4gを得た。 次に本発明中間体を用いて得られる最終生成ピ
レスロイド化合物が非常に有用なものであること
をより明確にするため、殺虫試験成績及び安定性
試験成績を示す。 試験例 1 散布による殺虫試験 前記ピレスロイド化合物例10種の0.2%白灯溶
液(A)、0.2%とピペロニルブトキサイド0.8%の白
灯溶液(B)、0.1%とフタールスリン0.1%の白灯溶
液(C)、およびアレスリン、フタールスリンの夫々
0.2%白灯溶液につきイエバエを用いて噴霧降下
法に従いイエバエの落下仰転率を求め、供試薬剤
の相対有効度を算出し、更に24時間後の致死率を
求めたところ次の如くである。
[Table] A specific example of the synthesis of the pyrethroid compound is as follows. Synthesis Example 1 3.9 g of 2,2,3-trimethyl-3-isobutoxycyclopropanecarboxylic acid was dissolved in 50 ml of dimethylformamide, and 3-phenoxy-α
-Trifluoromethylbenzyl chloride 5.4g
Add. Add 4ml of triethylamine while stirring.
After reacting at 60 to 80°C for 3 hours, it was dissolved in ether, the ether solution was thoroughly washed with dilute hydrochloric acid, aqueous sodium bicarbonate, and brine, dried over nitric acid, and the ether was distilled off under reduced pressure to give 3'-phenoxy-α. 7.0 g of '-trifluoromethylbenzyl 2,2,3-trimethyl-3-isobutoxycyclopropanecarboxylate was obtained. Synthesis Example 2 3.4 g of 2,2,3-trimethyl-3-ethoxy-cyclopropanecarboxylic acid and 3,4,5,6-
and 3.7g of tetrahydrophthalimidomethylol.
Dissolved in 50 ml of dry benzene, 6.2 g of dicyclohexylcarbodiimide was added and left overnight. The next day, the reaction was completed by heating under reflux for 4 hours, and after cooling, the precipitated dicyclohexyl urea was filtered off.
The oily substance obtained by concentrating the filtrate was poured down a 100 g silica gel column to obtain 3',4',5',6'-tetrahydrophthalimidomethyl 2,2,3-trimethyl-3-ethoxy-cyclopropane. 5.4 g of carboxylate was obtained. Synthesis Example 3 2,2-dichloro-3-methyl-3-n-hexyloxycyclopropanecarboxylic acid chloride
Dissolve 4.7g in 15ml of dry benzene and add 5-
Add 4.2 g of benzyl-α-ethynyl-2-furyl methyl alcohol dissolved in 20 ml of dry benzene, and add 3 ml of dry pyridine as a condensation aid.
When added, crystals of pyridine hydrochloride precipitate. After sealing the cap and leaving it overnight at room temperature, the crystals of pyridine hydrochloride were separated, and the benzene solution was dried with sulfuric acid and the benzene was distilled off under reduced pressure to give 5'-benzyl-α'-ethynyl-2'-furylmethyl. 2,2-dichloro-3-
6.4 g of methyl-3-n-hexyloxy-cyclopropanecarboxylate were obtained. Next, in order to make it clearer that the final pyrethroid compound obtained using the intermediate of the present invention is extremely useful, insecticidal test results and stability test results will be shown. Test Example 1 Insecticidal test by spraying A 0.2% white light solution of the 10 pyrethroid compounds (A), a white light solution of 0.2% and 0.8% piperonyl butoxide (B), a white light solution of 0.1% and phthalthrine 0.1% Solution (C), and each of allethrin and phthalthrin
Using house flies with a 0.2% white light solution, the falling and turning rate of house flies was determined using the spray drop method, the relative effectiveness of the test drug was calculated, and the mortality rate after 24 hours was determined as follows. .

【表】【table】

【表】 試験の結果、本発明中間体から得られるピレス
ロイド化合物は従来のピレスロイド アレスリ
ン、フタールスリンに比べて高いノツクダウン効
果と致死効果を示した。 試験例 2 安定性試験 試験はサンプル10mgをガラスシヤーレ(36cm2
にうすく拡げ、4月の晴れた日に屋外で日光にさ
らし一定時間後の化合物残存量をガスクロマトグ
ラフイで定量することによつて行なつた。供試薬
剤番号は前記ピレスロイド化合物例と同一であ
り、対照薬剤として従来のいくつかのピレスロイ
ドを用いた。
[Table] As a result of the test, the pyrethroid compound obtained from the intermediate of the present invention showed a higher knockdown effect and lethal effect than the conventional pyrethroid allethrin and phthalthrin. Test example 2 Stability test For testing, 10 mg of sample was placed in a glass shear dish (36 cm 2 )
This was done by spreading the mixture thinly, exposing it to sunlight outdoors on a sunny day in April, and quantifying the amount of the compound remaining after a certain period of time using gas chromatography. The test drug numbers were the same as those in the pyrethroid compound examples, and several conventional pyrethroids were used as control drugs.

【表】 試験の結果、本発明中間体から得られるピレス
ロイド化合物は従来のピレスロイドに比べ耐光性
が非常にすぐれていることが認められた。
[Table] As a result of the test, it was found that the pyrethroid compound obtained from the intermediate of the present invention has extremely superior light resistance compared to conventional pyrethroids.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1は炭素数1〜6のアルキル基を示し、
R2はメチル基又は塩素原子を示す。)で表わされ
る置換シクロプロパンカルボン酸及びその光学な
らびに幾何異性体。 2 一般式 (式中、R1は炭素数1〜6のアルキル基を示し、
R2はメチル基又は塩素原子を示す。)で表わされ
るエーテルとジアゾ酢酸エステルとを反応させて
置換シクロプロパンカルボン酸エステルとし、つ
いで加水分解させることを特徴とする置換シクロ
プロパンカルボン酸の製造法。 3 一般式 (式中、R1は炭素数1〜6のアルキル基を示し、
Xはハロゲン原子を示す。)で表わされるエーテ
ルにベンゼンスルフイン酸ナトリウムを反応させ
てフエニルアルコキシアルキルスルホンとし、つ
いで一般式 (式中、R2はメチル基又は塩素原子を示し、R4
はメチル基又はエチル基を示す。)で表わされる
置換アクリル酸エステルを反応させ、さらに加水
分解させることを特徴とする置換シクロプロパン
カルボン酸の製造法。 4 一般式 (式中、R1は炭素数1〜6のアルキル基を示し、
R5はメチル基、エチル基又は第三級ブチル基を
示す。)で表わされるエステルにジメチルジアゾ
メタン又はカリウム第三級ブチラートの存在下ク
ロロホルムを反応させ、ついで加水分解させるこ
とを特徴とする置換シクロプロパンカルボン酸の
製造法。
[Claims] 1. General formula (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
R 2 represents a methyl group or a chlorine atom. ) and its optical and geometric isomers. 2 General formula (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
R 2 represents a methyl group or a chlorine atom. ) A method for producing a substituted cyclopropanecarboxylic acid, which comprises reacting an ether represented by the following formula with a diazoacetate to obtain a substituted cyclopropanecarboxylic acid ester, and then hydrolyzing the ether. 3 General formula (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
X represents a halogen atom. ) is reacted with sodium benzenesulfinate to form phenylalkoxyalkylsulfone, and then the general formula (In the formula, R 2 represents a methyl group or a chlorine atom, and R 4
represents a methyl group or an ethyl group. ) A method for producing substituted cyclopropanecarboxylic acid, which comprises reacting a substituted acrylic ester represented by the following formula and further hydrolyzing it. 4 General formula (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms,
R 5 represents a methyl group, an ethyl group or a tertiary butyl group. 1. A process for producing substituted cyclopropanecarboxylic acids, which comprises reacting an ester represented by () with chloroform in the presence of dimethyldiazomethane or potassium tertiary butyrate, followed by hydrolysis.
JP2583478A 1977-12-01 1978-03-07 Substituted cyclopropane carboxylic acid and its manufacture Granted JPS54119436A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2583478A JPS54119436A (en) 1978-03-07 1978-03-07 Substituted cyclopropane carboxylic acid and its manufacture
US05/960,638 US4431668A (en) 1977-12-01 1978-11-14 Cyclopropane carboxylic acid ester derivatives
CA000316312A CA1197856A (en) 1977-12-01 1978-11-16 Cyclopropane carboxylic aci derivatives
GB7845132A GB2010262B (en) 1977-12-01 1978-11-17 Cycloptopane carboxylic acid ester derivatives
AR274529A AR225736A1 (en) 1977-12-01 1978-11-22 ESTERS DERIVED FROM CYCLOPROPANOCARBOXYLIC ACID, PROCEDURE TO PREPARE IT AND INSECTICIDE COMPOSITIONS THAT CONTAIN THEM
DE2851428A DE2851428C2 (en) 1977-12-01 1978-11-28 Cyclopropanecarboxylic acid ester derivatives. Process for their preparation and insecticidal preparations containing them
PH21854A PH14381A (en) 1977-12-01 1978-11-28 Cyclopropane carboxylic acid ester derivatives
FR7833669A FR2410639A1 (en) 1977-12-01 1978-11-29 CYCLOPROPANE CARBOXYLIC ACID ESTERS, THEIR PREPARATION PROCESS AND THEIR APPLICATION AS AN INSECTICIDE
AU42093/78A AU507268B1 (en) 1977-12-01 1978-11-30 Cyclopropane carboxylic acid ester
AU42093/78D AU4209378A (en) 1977-12-01 1978-11-30 Cyclopropane carboxylic acid ester
NLAANVRAGE7811808,A NL180415C (en) 1977-12-01 1978-12-01 ESTERS OF 2,2-DIMETHYLCYCLOPROPANIC CARBONIC ACID AND INSECTICIDE PREPARATION.
MX787567U MX5752E (en) 1977-12-01 1978-12-01 PROCEDURE FOR THE PREPARATION OF A CYCLOPROPAN CARBOXYLIC ACID DERIVATIVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2583478A JPS54119436A (en) 1978-03-07 1978-03-07 Substituted cyclopropane carboxylic acid and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57162733A Division JPS58131937A (en) 1982-09-18 1982-09-18 Substituted cyclopropanecarboxylic acid and its preparation

Publications (2)

Publication Number Publication Date
JPS54119436A JPS54119436A (en) 1979-09-17
JPS6343379B2 true JPS6343379B2 (en) 1988-08-30

Family

ID=12176879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2583478A Granted JPS54119436A (en) 1977-12-01 1978-03-07 Substituted cyclopropane carboxylic acid and its manufacture

Country Status (1)

Country Link
JP (1) JPS54119436A (en)

Also Published As

Publication number Publication date
JPS54119436A (en) 1979-09-17

Similar Documents

Publication Publication Date Title
US3973036A (en) Cyclopropanecarboxylic acid esters
JPS63211250A (en) D-(alpha-phenoxy)-propionic acid derivative, manufacture and herbicide
JPH0341039A (en) New compound
JPH0222741B2 (en)
JPS6229422B2 (en)
US4479005A (en) Selective preparation of isomers and enantiomers of cyclopropane carboxylic acids
JPS6343379B2 (en)
US4874887A (en) Process for the preparation of pyrethroid type ester compounds
US4198527A (en) Ether substituted cyclopropanecarboxylic acids and esters
US4567265A (en) Cyclopropanoid cyanoesters and method of making same
US4393008A (en) 2-Cyano-2-(3-phenoxy-phenyl)-propionic acid amide and preparation thereof
JPH0556330B2 (en)
US4500733A (en) Process for preparing dihalovinylcyclopropanecarboxylic acids
US4522749A (en) Process for augmenting or enhancing the aroma of a fragrance by adding a vinylcyclopropane compound
JPS6133142A (en) Novel halogenated vinylbenzyl ester, manufacture and insecticide
JPS6330452A (en) Fluorobenzyl ester compound, manufacture and insecticidal miticidal composition
IL32391A (en) Substituted furylmethyl or thienylmethyl cyclopropane carboxylates
US4556409A (en) 2-Vinyl- and 2-ethylcyclopropane monocarboxylates as plant growth modifiers
JPH0240642B2 (en)
US4255351A (en) Sulfonic acid esters of 2,2,2-trichloroethylhydroxycyclobutanones
JPH0528214B2 (en)
JPS63132860A (en) Cyclopropane compound, manufacture and insecticidal composition
US4515956A (en) Selective preparation of isomers and enantiomers of cyclopropane carboxylic acids
KR820000803B1 (en) Process for preparation of 2,2-dimethyl-ayclopropane carboxylic aster
JPS60120841A (en) P-hydroxybenzoic acid derivative