JPS634335B2 - - Google Patents

Info

Publication number
JPS634335B2
JPS634335B2 JP55082637A JP8263780A JPS634335B2 JP S634335 B2 JPS634335 B2 JP S634335B2 JP 55082637 A JP55082637 A JP 55082637A JP 8263780 A JP8263780 A JP 8263780A JP S634335 B2 JPS634335 B2 JP S634335B2
Authority
JP
Japan
Prior art keywords
range
metal
temperature
treatment
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55082637A
Other languages
Japanese (ja)
Other versions
JPS577916A (en
Inventor
Katsuhiko Honjo
Hiromitsu Tagi
Norya Sato
Makoto Ogawa
Shoji Kuroda
Kusuo Kuguhara
Hiroyuki Hoashi
Kenichi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8263780A priority Critical patent/JPS577916A/en
Publication of JPS577916A publication Critical patent/JPS577916A/en
Publication of JPS634335B2 publication Critical patent/JPS634335B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Ceramic Capacitors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は諸特性の安定したセラミツク電子部品
を容易にかつ安価に製造することができる方法に
関するものである。 従来から、誘電体素子や圧電素子、半導体素子
等の機能特性を利用したセラミツク電子部品の電
極には、磁器素体の表面にAg、Ag−Pd、Ag−
Pt、Ag−Ni等の貴金属を主体とした焼付電極が
使用されている。しかし、近年の貴金属の価格高
騰に伴ない、メツキによる電極の形成法が種々開
発されつつある。しかしながら、これら方法にも
多くの欠点がある。たとえば、セラミツク素体表
面にガラスフリツトが含まれている焼付銀電極を
形成し、その後ニツケル電極または銅電極を電解
メツキ法等により形成することも可能であるが、
この方法には、焼付金属層表面が粗面で多くの小
孔が存在しているために、メツキ処理の際にメツ
キ液がこの小孔内部に浸透し、焼付金属層とセラ
ミツク素体の付着強度を劣化させるという欠点が
あつた。他の方法としては無電解ニツケルメツキ
法が用いられており、これは最初に塩化錫と塩化
パラジウムを反応させて、素体表面に触媒活性化
処理を施すことが一般的であつた。しかし、この
方法にはセラミツク電子部品用の電極として使用
する場合には多くの問題がある。すなわち、電極
材料や関連材料の種類および取付方法によつて引
張強度が低下する(銀焼付け電極に比べて1/2に
低下)だけでなく、電気的特性寿命試験によれ
ば、製品特性等がいちぢるしく劣化するものであ
つた。たとえば、セラミツク電子部品素体に無電
解ニツケルメツキする方法は、その工法の性質
上、基板全周表面上に形成されやすく、その場合
には周側面のメツキ膜を研削除去して対向電極を
形成するのであるが、沿面耐電圧距離が基板の厚
みで決定され、電極周端部における電界の集中に
よつて絶縁破壊が起こりやすく、基板をあまり薄
くすることができなかつた。また、これらの方法
に代えて部分メツキ法の使用も考えられる。これ
は、セラミツク素体表面に所要パターンの金属層
を形成するに際し、あらかじめセラミツク素体表
面の所要個所にメツキレジストを付与しておき、
ついでその表面を活性化したのち、メツキレジス
トを除去し、その後無電解メツキを施してセラミ
ツク素体表面に金属層を形成する方法である。こ
れ以外にも、真空蒸着法やフオトエツチング法等
種々の方法があるが、いずれの方法によつてもセ
ラミツク電子部品用電極としては満足する結果が
得られていない。すなわち、従来から知られてい
るメツキ付与方法では、メツキの密着性が悪く、
特にまた、コンデンサを例にとつた場合、小型化
を目的としたコンデンサの素体厚みは0.1〜0.3mm
と薄く、その直径が4.5〜16mmと種々あり、量産
性を考慮した場合、実施困難なものであつた。さ
らに容量値を少しでも大きく得るために、素体の
対向する二つの面全体にそれぞれ電極を形成した
場合には、上述したように寿命特性が極度に悪
く、信頼性上から問題点が多かつた。 本発明は、このような従来の方法にあつた数多
くの欠点を除去し、寿命特性がいちぢるしく安定
しているセラミツク電子部品の製造方法を提供す
るものである。すなわち、本発明の方法はセラミ
ツク基板の必要局部個所にCo、Ni、Fe等の化合
物の一種またはそれ以上を含むペーストを付与し
た後、350〜900℃の範囲内の温度で焼付けし、そ
の後、非酸化性雰囲気中において350〜900℃の範
囲内の温度で熱処理を施し、基板上にCo、Ni、
Feの金属またはその合金の粒子を析出させ、そ
の後、PdまたはPtイオンの少なくともいずれか
一方が含まれている溶液中で上記金属または合金
の表面をPdまたはPtの少なくとも一方に置換す
る置換処理してから、無電解メツキ法により、ニ
ツケル、コバルト、銅の電極を形成するものであ
る。この方法によつて得られた電極は、非常に良
好な特性を有し、十分な機能を得ることができる
ものである。 以下、本発明の方法について、実施例をあげて
説明する。 まず、セラミツク基板としてBaTiO3
BaZrO3系の誘電体セラミツク素体を用いた。そ
の厚さは0.3mm、直径は12mmである。この基板の
両面に1mmの縁(端面部)が残るようなマスクを
用い、吹付法または印刷法によつてペーストをそ
れぞれ付与した。なお、セラミツク表面と電極と
の接着強度、特性向上を目的として、セラミツク
表子面をあらかじめ化学的処理、または機械的処
理により粗くしておくこともよい方法である。な
お、Co、Ni、Feの化合物が含まれているペース
トはCo、Ni、Feの硝酸塩、酢酸塩、しゆう酸
塩、あるいナフテン酸塩等、アミド系、フエノー
ル系またはセルローズ系等の有機バインダー成
分、エチルセロソルブ、ブチルカルビトールまた
はアルコール等の溶剤を用い、印刷用としては粘
度40000C・S・P、吹付用としては粘度100〜
300C・S・Pに調整して作製した。なお、その
成分割分は、金属成分が0.01〜7.5重量%、有機
バインダー成分が3〜35重量%、溶剤成分が70〜
97重量%である。これをセラミツク基板の裏表に
膜厚1〜15μmで付与した。その後、80〜300℃
の温度で乾燥させた後、電気炉を用い、350〜900
℃の範囲内の温度で焼付け、その後非酸化性雰囲
気中で350〜900℃の範囲内の温度で熱処理して、
Co、Fe、Niの金属または合金の微粒子を形成し
た。その後、0.01%のPdまたはPtイオンが含ま
れている溶液で置換処理をした後、硫酸ニツケル
に次亜燐酸ナトリウムを含むメツキ液に浸漬し
て、ニツケル膜を形成した。なお、PdまたはPt
溶液はPdCl2またはH2PtCl6・6H2OをHClまたは
水、アルコールに溶解させ、さらに水で希釈して
作製した。 次にSn−Pb系主体の半田材料を用いて浸漬法
によりリード線を取付け、その後、フエノール系
被覆樹脂、ワツクス含浸を行なつて完成品とし
た。 本発明において、Co、Ni、Feの化合物の成分
を含むペーストを付与し、その後非酸化性雰囲気
中で熱処理することの必要性は、セラミツク基板
面に安定したCo、Ni、Feの金属または合金の微
粒子を形成するためである。また、350〜900℃の
範囲内の温度で焼付けするのは、350℃より低い
温度では樹脂成分が残り、金属電極の均一な形成
が困難になるだけでなく、その接着強度も低下す
るので好ましくないためであり、また、900℃よ
り高い温度では、誘電特性や寿命特性が悪化する
ので好ましくないためである。 熱処理によりCo、Ni、Feの金属あるいは合金
粒子を析出させた後、さらに、0.0005〜3重量%
の範囲内のPd、Pt化合物が含まれる溶液中で置
換処理を施すのは、置換処理なしあるいは上記範
囲外の置換処理ではその後のNi、Co、Cu等の無
電解メツキの立上りが遅く、均一なメツキ皮膜が
得られにくく、誘電特性等の諸特性が悪く、また
大きなばらつきを生じるからである。 上述の説明においては、Co、Ni、Feの化合物
としての硝酸塩、酢酸塩、しゆう酸塩、ナフテン
酸塩等を用いたが、焼付後に金属微粒子層として
残るものであれば、それ以外の化合物であつても
問題はない。また、金属微粒子層の形成後、Pd、
Pt置換し、無電解メツキにより、ニツケル、銅、
コバルトの電極を形成した後、200〜400℃の範囲
内の温度で熱処理を行うことによつて、接着強度
を高めることができる。さらに、希弗化水素酸な
どによる化学的処理や、機械的処理により表面を
粗くしたセラミツク基板を用いることによつて、
メツキ皮膜の密着強度を高めることができた。 ニツケルメツキ法はニツケルイオンから還元剤
を用いてニツケル金属を析出させるのであるが、
還元剤には次亜燐酸ナトリウム以外にも水素化硼
素化合物を用いることができる。そして、リード
線等の端子付けにおいては燐成分を含有している
Niメツキ面にはPb成分が50%〜75%、Sn成分が
50%〜25%とPb成分が多い半田材料を用いれば
よく、また硼素成分を含有しているNiメツキ面
にはPb成分が50〜25%、Sn成分が50〜75%とSn
成分の多い半田材料を用いればよい。 銅メツキには、たとえば、金属塩として硫酸銅
を、また還元剤としてホルマリンを、錯化剤とし
てEDTAを、アルカリ剤として水酸化ナトリウ
ムを用いればよい。 下表に、本発明の方法の実施例と比較例を対比
させて示す。表の誘電特性としての誘電率εおよ
び誘電正接tanδは、20℃の温度下において1KHz
の周波数で測定した値で示しており、また寿命試
験は温度85℃、相対湿度85%の高温高湿雰囲気中
において、直流電圧1000Vを1000時間印加すると
いう条件で実施した。
The present invention relates to a method for easily and inexpensively manufacturing ceramic electronic components with stable properties. Conventionally, electrodes of ceramic electronic components that utilize the functional characteristics of dielectric elements, piezoelectric elements, semiconductor elements, etc. have been made using Ag, Ag-Pd, Ag-
Baked electrodes mainly made of noble metals such as Pt and Ag-Ni are used. However, with the recent rise in the price of precious metals, various methods of forming electrodes by plating are being developed. However, these methods also have many drawbacks. For example, it is possible to form a baked silver electrode containing glass frit on the surface of a ceramic body, and then form a nickel electrode or a copper electrode by electrolytic plating or the like.
In this method, since the surface of the baked metal layer is rough and has many small pores, the plating liquid penetrates into the small pores during the plating process, resulting in the adhesion of the baked metal layer and the ceramic body. It had the disadvantage of deteriorating strength. Another method used is the electroless nickel plating method, which generally involves first reacting tin chloride and palladium chloride to subject the surface of the element to a catalytic activation treatment. However, this method has many problems when used as electrodes for ceramic electronic components. In other words, not only does the tensile strength decrease depending on the type and mounting method of the electrode material and related materials (reduced to 1/2 compared to a silver-baked electrode), but also the product characteristics etc. It deteriorated rapidly. For example, in the method of electroless nickel plating on a ceramic electronic component body, due to the nature of the method, nickel is likely to be formed on the entire circumferential surface of the substrate, and in that case, the plating film on the circumferential side is ground away to form a counter electrode. However, the creepage withstand voltage distance is determined by the thickness of the substrate, and dielectric breakdown is likely to occur due to concentration of the electric field at the peripheral edge of the electrode, making it impossible to make the substrate very thin. Furthermore, instead of these methods, it is also possible to use a partial plating method. When forming a metal layer with a desired pattern on the surface of a ceramic body, a plating resist is applied to the required locations on the surface of the ceramic body in advance.
This method then activates the surface, removes the plating resist, and then performs electroless plating to form a metal layer on the surface of the ceramic body. There are various other methods such as vacuum evaporation and photoetching, but none of these methods has been able to produce satisfactory results as electrodes for ceramic electronic components. In other words, with conventionally known plating methods, the adhesion of the plating is poor;
In particular, if we take a capacitor as an example, the thickness of the capacitor body for the purpose of miniaturization is 0.1 to 0.3 mm.
It is thin and varies in diameter from 4.5 to 16 mm, making it difficult to implement when considering mass production. Furthermore, in order to obtain as large a capacitance value as possible, if electrodes were formed on the entire two opposing surfaces of the element body, the life characteristics would be extremely poor as described above, and there would be many problems in terms of reliability. Ta. The present invention eliminates many of the drawbacks of the conventional methods and provides a method for manufacturing ceramic electronic components with significantly stable life characteristics. That is, in the method of the present invention, a paste containing one or more of compounds such as Co, Ni, and Fe is applied to necessary localized areas of a ceramic substrate, and then baked at a temperature within the range of 350 to 900°C, and then, Co, Ni, Co, Ni,
A substitution treatment in which particles of Fe metal or its alloy are precipitated, and then the surface of the metal or alloy is replaced with at least one of Pd or Pt in a solution containing at least one of Pd or Pt ions. Then, electrodes of nickel, cobalt, and copper are formed by electroless plating. The electrode obtained by this method has very good characteristics and can provide sufficient functionality. The method of the present invention will be described below with reference to Examples. First, BaTiO 3 − was used as a ceramic substrate.
A BaZrO 3 -based dielectric ceramic body was used. Its thickness is 0.3mm and diameter is 12mm. The paste was applied by spraying or printing using a mask that left edges (edges) of 1 mm on both sides of this substrate. In addition, for the purpose of improving the adhesive strength and characteristics between the ceramic surface and the electrode, it is also a good method to roughen the ceramic surface by chemical treatment or mechanical treatment in advance. Note that pastes containing Co, Ni, and Fe compounds include nitrates, acetates, oxalates, and naphthenates of Co, Ni, and Fe, and organic compounds such as amide, phenolic, and cellulose. Using a binder component, a solvent such as ethyl cellosolve, butyl carbitol, or alcohol, the viscosity is 40,000C/S/P for printing, and the viscosity is 100~100 for spraying.
It was made by adjusting to 300C/S/P. The components are 0.01 to 7.5% by weight of the metal component, 3 to 35% by weight of the organic binder component, and 70 to 7.5% of the solvent component.
It is 97% by weight. This was applied to the front and back surfaces of a ceramic substrate in a film thickness of 1 to 15 μm. Then 80~300℃
After drying at a temperature of 350 to 900 using an electric furnace,
Baking at a temperature within the range of 350-900 °C in a non-oxidizing atmosphere,
Formed fine particles of Co, Fe, Ni metals or alloys. Thereafter, a substitution treatment was performed with a solution containing 0.01% Pd or Pt ions, and then immersed in a plating solution containing nickel sulfate and sodium hypophosphite to form a nickel film. In addition, Pd or Pt
Solutions were prepared by dissolving PdCl 2 or H 2 PtCl 6 .6H 2 O in HCl, water, or alcohol, and further diluting with water. Next, lead wires were attached using a dipping method using a solder material mainly based on Sn--Pb, and then impregnated with a phenol-based coating resin and wax to obtain a finished product. In the present invention, it is necessary to apply a paste containing components of Co, Ni, and Fe compounds and then heat treat it in a non-oxidizing atmosphere. This is to form fine particles. Also, it is preferable to bake at a temperature within the range of 350 to 900 degrees Celsius, because at temperatures lower than 350 degrees Celsius, resin components will remain, making it difficult to form a metal electrode uniformly and reducing its adhesive strength. This is because the temperature is higher than 900° C., which is not preferable because the dielectric properties and life characteristics deteriorate. After precipitating Co, Ni, and Fe metal or alloy particles by heat treatment, 0.0005 to 3% by weight is added.
If the substitution treatment is performed in a solution containing Pd or Pt compounds within the above range, no substitution treatment or substitution treatment outside the above range will cause the subsequent electroless plating of Ni, Co, Cu, etc. to rise slowly and uniformly. This is because it is difficult to obtain a plating film with good quality, the dielectric properties and other properties are poor, and large variations occur. In the above explanation, nitrates, acetates, oxalates, naphthenates, etc. as compounds of Co, Ni, and Fe were used, but other compounds may be used as long as they remain as a metal fine particle layer after baking. There is no problem even if it is. In addition, after forming the metal fine particle layer, Pd,
By Pt substitution and electroless plating, nickel, copper,
After forming the cobalt electrode, the adhesive strength can be increased by performing heat treatment at a temperature within the range of 200 to 400°C. Furthermore, by using a ceramic substrate whose surface has been roughened by chemical treatment with diluted hydrofluoric acid or by mechanical treatment,
It was possible to increase the adhesion strength of the plating film. The Nickelmetski method uses a reducing agent to precipitate nickel metal from nickel ions,
In addition to sodium hypophosphite, a boron hydride compound can be used as the reducing agent. Additionally, terminal attachments such as lead wires contain phosphorus components.
The Ni plating surface has a Pb component of 50% to 75% and a Sn component of
It is sufficient to use a solder material with a high Pb component of 50% to 25%, and the Ni plating surface containing a boron component should have a Pb component of 50 to 25% and a Sn component of 50 to 75%.
A solder material with many components may be used. For copper plating, for example, copper sulfate may be used as a metal salt, formalin as a reducing agent, EDTA as a complexing agent, and sodium hydroxide as an alkali agent. The table below shows a comparison of Examples and Comparative Examples of the method of the present invention. The dielectric constant ε and dielectric loss tangent tan δ as dielectric properties in the table are 1KHz at a temperature of 20℃.
The life test was conducted under the conditions of applying a DC voltage of 1000V for 1000 hours in a high-temperature, high-humidity atmosphere with a temperature of 85°C and a relative humidity of 85%.

【表】【table】

【表】 上表において、試料No.1、8、9、14、15、
19、20は本発明の範囲外の比較例である。試料No.
1〜8は焼付温度を600℃一定とし、硝酸ニツケ
ルの含有量を変化させたものである。表より明ら
かなように、試料No.2〜7は良好な特性を示して
おり、特に試料No.4、5は寿命試験後においても
著しく良好な特性を示している。 試料No.9〜14は硝酸ニツケルの量を1.5重量%
一定とし、焼付温度を変化させたもので、本発明
の範囲内の実施例は非常に良好である。 試料No.15〜21は置換処理液中の塩化パラジウム
の含有量を変化させたものであり、本発明範囲内
の塩化パラジウムを含む置換溶液で処理すること
によつて特性が向上している。 また、PbTiO3−PbZrO3系の圧電材料、
BaTiO3系半導体材料においても、本発明の方法
は良好な特性を示した。 このように、従来から使用している銀焼付電極
材料に比べて、本発明の方法によつて得られる電
極は全く遜色なく、特に価格的には、1/20以下で
済み、特性的にも著しく安定であり、本発明の方
法は工業的量産化に適合した産業価値の大なる方
法である。
[Table] In the above table, sample No. 1, 8, 9, 14, 15,
Nos. 19 and 20 are comparative examples outside the scope of the present invention. Sample No.
In Nos. 1 to 8, the baking temperature was kept constant at 600°C and the content of nickel nitrate was varied. As is clear from the table, Samples Nos. 2 to 7 exhibit good properties, and Samples Nos. 4 and 5 in particular exhibit extremely good properties even after the life test. Samples No. 9 to 14 contained 1.5% by weight of nickel nitrate.
Examples within the scope of the present invention, in which the baking temperature is kept constant and the baking temperature is varied, are very good. Samples Nos. 15 to 21 were samples in which the content of palladium chloride in the replacement treatment solution was changed, and the characteristics were improved by treatment with a replacement solution containing palladium chloride within the range of the present invention. In addition, PbTiO 3 −PbZrO 3 based piezoelectric materials,
The method of the present invention also showed good characteristics for BaTiO 3 -based semiconductor materials. In this way, compared to conventionally used silver-baked electrode materials, the electrodes obtained by the method of the present invention are completely comparable, especially in terms of price, which is less than 1/20, and in terms of characteristics. It is extremely stable, and the method of the present invention is suitable for industrial mass production and has great industrial value.

Claims (1)

【特許請求の範囲】 1 印刷あるいは吹付可能な樹脂ペースト中に金
属成分に換算して0.01〜7.5重量%の範囲内のNi、
Fe、Coの化合物の少なくとも1種の成分を含む
ペーストを用い、セラミツク基板上に付与した
後、350〜900℃の範囲内の温度で焼付けし、その
後非酸化性雰囲気中で350〜900℃の範囲内の温度
で熱処理を施してNi、Fe、Coの少なくとも1種
の金属または合金の粒子を析出させ、さらに金属
成分に換算して0.0005〜3重量%の範囲内のPdま
たはPtの少なくとも一方の化合物が含まれる溶
液中で上記金属または合金の表面をPdまたはPt
の少なくとも一方に置換する置換処理を施した
後、無電解メツキ法により金属電極を形成するこ
とを特徴とするセラミツク電子部品の製造方法。 2 化学的処理、機械的処理により表面を粗くし
たセラミツク基板を用いることを特徴とする特許
請求の範囲第1項記載のセラミツク電子部品の製
造方法。
[Claims] 1. Ni in the range of 0.01 to 7.5% by weight in terms of metal components in a printable or sprayable resin paste;
A paste containing at least one component of Fe, Co compounds is used, and after being applied onto a ceramic substrate, it is baked at a temperature in the range of 350 to 900°C, and then heated at a temperature in the range of 350 to 900°C in a non-oxidizing atmosphere. Heat treatment is performed at a temperature within a range to precipitate particles of at least one metal or alloy of Ni, Fe, and Co, and further, at least one of Pd or Pt in a range of 0.0005 to 3% by weight calculated as a metal component. The surface of the above metal or alloy is coated with Pd or Pt in a solution containing a compound of
1. A method of manufacturing a ceramic electronic component, which comprises performing a substitution treatment to replace at least one of the following, and then forming a metal electrode by an electroless plating method. 2. A method of manufacturing a ceramic electronic component according to claim 1, characterized in that a ceramic substrate whose surface has been roughened by chemical treatment or mechanical treatment is used.
JP8263780A 1980-06-17 1980-06-17 Method of producing ceramic electronic part Granted JPS577916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8263780A JPS577916A (en) 1980-06-17 1980-06-17 Method of producing ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8263780A JPS577916A (en) 1980-06-17 1980-06-17 Method of producing ceramic electronic part

Publications (2)

Publication Number Publication Date
JPS577916A JPS577916A (en) 1982-01-16
JPS634335B2 true JPS634335B2 (en) 1988-01-28

Family

ID=13779934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8263780A Granted JPS577916A (en) 1980-06-17 1980-06-17 Method of producing ceramic electronic part

Country Status (1)

Country Link
JP (1) JPS577916A (en)

Also Published As

Publication number Publication date
JPS577916A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
US4735676A (en) Method for forming electric circuits on a base board
US4510179A (en) Electrode on heat-resisting and isolating substrate and the manufacturing process for it
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
EP0183399A2 (en) Method and composition for producing terminations in multilayer ceramic capacitors
JPS634332B2 (en)
JPS634327B2 (en)
JPS634335B2 (en)
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JPS629204B2 (en)
JP2574383B2 (en) Electrode forming method for ceramic electronic parts
JPS634329B2 (en)
JPS634336B2 (en)
JPS6225748B2 (en)
JPS634331B2 (en)
JPS634338B2 (en)
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPS631728B2 (en)
JPS58161759A (en) Method for plating on aluminum base plate
JPS5948950B2 (en) Active metal material paste for electroless plating and plating method using it
JPS646530B2 (en)
JPS634330B2 (en)
JPS631729B2 (en)
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPS634328B2 (en)
JPS631726B2 (en)