JPS6343354B2 - - Google Patents

Info

Publication number
JPS6343354B2
JPS6343354B2 JP11340980A JP11340980A JPS6343354B2 JP S6343354 B2 JPS6343354 B2 JP S6343354B2 JP 11340980 A JP11340980 A JP 11340980A JP 11340980 A JP11340980 A JP 11340980A JP S6343354 B2 JPS6343354 B2 JP S6343354B2
Authority
JP
Japan
Prior art keywords
ammonium nitrate
water
granular ammonium
producing granular
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11340980A
Other languages
Japanese (ja)
Other versions
JPS5738393A (en
Inventor
Kyoshi Higa
Yasushi Sasaki
Shinichi Kanai
Chisato Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11340980A priority Critical patent/JPS5738393A/en
Publication of JPS5738393A publication Critical patent/JPS5738393A/en
Publication of JPS6343354B2 publication Critical patent/JPS6343354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硝安油剤爆薬(以下、ANFOとい
う)に用いられる粒状硝安の製造方法に関する。 近年、石灰石や採石作業において、ANFO爆
薬の流し込み装填中に静電気が原因と思われる暴
発事故が発生し、保安上重要な問題となつてい
る。ANFO爆薬装填時の静電気対策として、爆
薬粒子の帯電を低減し、装填の際の静電気の発生
を減少させる為に、ANFO爆薬にカーボンブラ
ツクを添加する(特公昭43−12440号)、高級脂肪
酸の金属塩、無機金属塩、けい酸塩等を添加する
(特公昭43−837号)、及び、各種の界面活性剤を
添加する(特公昭41−7478号、特公昭43−9678
号、特開昭55−56088号、特開昭55−60086号、公
開昭55−51794号)等が開示されている。しかし
ながら、これらの帯電防止剤のうち、カーボンブ
ラツクは爆薬取扱時に衣類や手を汚す等の問題が
あると共に、日本国内における一般的なANFO
爆薬の着色(赤色)が損なわれる。また無機塩等
は、効果的な帯電防止を発揮させる為にはその添
加量を多くする必要があり、ANFO爆薬の爆発
性能の低下を招くと共に流動性が低下する。さら
に帯電防止剤として用いられる各種の界面活性剤
の働きとして、空気中の水イオンをANFO爆薬
によびこむことにより帯電を防止しようとするも
のが多く、高温多湿の環境においては該爆薬が吸
湿し、固結をひきおこす恐れもある。以上のよう
に、従来の帯電防止剤はANFO爆薬の品質に問
題を与えているほかに、カーボンブラツクや高級
脂肪酸の金属塩、無機金属塩、けい酸塩等を添加
する場合には、硝酸アンモニウム粒子に充分油を
浸透させた後、これらの帯電防止剤を添加させる
ために、従来の設備に加えて新たに添加設備を必
要としたり、場合によつては、粉麈の飛散防止設
備を必要とする。また、界面活性剤を添加する場
合には、通常、油と界面活性剤を混合したものを
硝酸アンモニウム粒子と混ぜることによつて帯電
性の少ないANFO爆薬が得られるが、場合によ
つては、油と界面活性剤の調合設備を必要とす
る。 本発明者等は、上記従来の帯電防止剤がもたら
す該爆薬の品質上の問題を解決するとともに、製
造時において単に硝安粒子と油剤を混合するだけ
で他に何ら特別の処理を講じることなく帯電防止
効果を付与することができる粒状硝安の製造方法
を見出し、本発明を完成した。即ち、本発明は、
粒状硝安の製造工程において乾燥粒子に適当なバ
インダーと共に非晶質硅酸を少量添加し、該非晶
質硅酸を硝安粒子表面に付着せしめることを特徴
とするANFO爆薬用粒状硝安の製造方法である。 本発明に用いられる非晶質珪酸とは、農業や医
薬等に助剤として使用される化学式〔SiO2
(H2O)o〕で示される単位粒径15〜25mμの白色
微粉状物であり、具体的には無定形珪酸である。
その使用量は粒状硝安に対し、外割で0.05〜1.0
重量%であり、好ましくは0.2〜0.5重量%であ
る。添加量が0.05重量%以下では、ANFO爆薬の
所期の帯電防止効果が発揮されず、使用量が1.0
重量%以上では、非晶質珪酸へ油剤の浸透が増加
する効果、ANFO爆薬の流動性が低下してボア
ホールへの装填効率が低下する。非晶質珪酸の添
加時期としては、造粒、乾燥後の少なくとも0.3
%以下の低含水量の硝安粒子に添加することが好
ましく、乾燥工程以前に添加した場合には、硝安
粒子の硬度、吸油性等の諸特性がANFO爆薬用
硝安として不適となり、爆発威力の低いANFO
爆薬が得られる。非晶質珪酸の添加設備としては
通常の回転ドラムや流動層装置でよく、硝安粒子
への付着効果を増すために適度の粘度を有したバ
インダーが非晶質珪酸と等量以下の割合で同時に
噴霧添加される。硝安粒子に非晶質珪酸を付着せ
しめるためのバインダーの添加方法として、硝安
粒子と非晶質珪酸とを回転機内で混合しながらバ
インダーを添加する方法もあるが、回転機内の硝
安粒子全体にバインダーを均一に噴霧して硝安粒
子表面がバインダーでぬれた時点で非晶質珪酸を
添加する方法が最も好ましい。この方法によれば
非晶質硅酸の粉塵発生が少なくなり付着率が増す
効果を有する。 本発明に用いられるバインダーとしては、常温
下で100〜800CPの液体粘度を示すパラフイン系
炭化水素、潤滑油、動植物油、無機材料、又は非
水溶性界面活性剤等が用いられる。具体的には流
動パラフイン、スピンドルオイル等のプロセスオ
イル、オリーブ油、水ガラス等の外に、常温で液
体であるアルキルアミン塩や第4級アンモニウム
塩等の陽イオン性界面活性剤も有効である。ま
た、硝安の固結防止剤として使用される高級脂肪
族アミンを熔融状態で硝安に添加する時、バイン
ダーとしての機能を併用させることが出来る。但
しグリセリンやポリエチレングリコールの如き水
溶性物質、又は、脂肪酸エステルのごとき水溶性
界面活性剤は硝安の固結や粉化を招きやすいので
バインダーとして不適である。この場合、バイン
ダーはANFO爆薬の品質を特徴ずけるものでは
なく、帯電防止性を付与するところの非晶質珪酸
を粒状硝安に付着せしめる機能を有する。 本発明の方法によつて得られた非晶質珪酸付着
粒状硝安はその後、単に軽油を添加混合するのみ
で容易に帯電防止性ANFO爆薬が得られる上に、
帯電防止剤としての非晶質珪酸を含有しているの
で、従来の帯電防止性ANFO爆薬が有する種々
の品質上の問題点を解消することが出来る。 以下、実施例により本発明を詳細に説明する。
なお、実施例において記載した硬度、吸油性、貯
蔵性等の試験は、すべて次の方法によつて行なつ
たものである。 (1) 硬度測定法:35メツシユ以上の粒状硝安100
gを4.0Kg/cm2の圧縮エヤーと共に、内径12mmの
ノズルより225mm離れた金属容器に吹付けた後
に回収する。回収硝安を35メツシユのふるいで
篩粉し35メツシユ以下の壊れた硝安粒子量を計
算する。単位はg/100g硝安。 (2) 吸油量測定法:100gの粒状硝安をガラスフ
イルターに採り、上部より過剰の軽油を注ぎ入
れた後、軽油が粒状硝安の中に充分浸入するま
で放置し、その後粒子間に存在する軽油をフイ
ルターを通して真空ポンプで吸引し、粒状硝安
中に含まれている軽油の量を測定して吸油量と
する。単位はg/100g硝安。 (3) 貯蔵試験:1Kgの粒状硝安をポリエチレン袋
に入れ、10Kgの荷重の下に常温下で放置する。 実施例 1 硝安溶融液を造粒乾燥し、固結防止剤を添加し
て得たANFO爆薬用粒状硝安20Kgを1バツチと
して、回転ドラムに3Kg/minの割合で連続的に
投入すると共に、非晶質珪酸微粉(徳山ソーダ
製、商品名:トクシール、平均粒径15〜25mμ)
を外割で0.1重量%、0.3重量%、0.5重量%、及び
1.0重量%の割合で投入し、同時に流動パラフイ
ンをトクシールと等量以下の割合で添加したもの
と無添加品と合せて5種類の粒状硝安を得た。こ
の粒状硝安について品質特性を求めた。その結果
を表―1に示す。更に上記の粒状硝安94部に軽油
6部を加えて混合し、ANFO爆薬各5Kgと比較
のため従来使用されているカーボン、ソルビタン
脂肪酸エステル、ケイ酸カルシウムの帯電防止剤
を従来のANFO爆薬の製造方法に従つて各々5
Kgを製造した。ついで70mmφ、長さ9.5mのポリ
エチレンチコーブが内挿された外径80mm、長さ9
mの硬質塩化ビニール管が傾斜角70゜に置かれ、
かつ、その下部に通常フアラデイケージと呼ばれ
る絶縁性金属容器が置かれた装置の硬質塩化ビニ
ール管の上部開口部より、上記8種類の爆発組成
物各々5Kgを流下させて、絶縁性金属容器に受
け、この容器が帯びる静電電位を集電型電位計
(春日電気製、KS―325型)で測定した。また製
造直後、および製造3ケ月後における該爆薬組成
物の爆轟速度、外観及び固結度を測定した。その
結果を表―2に示す。
The present invention relates to a method for producing granular ammonium nitrate used in ammonium nitrate explosives (hereinafter referred to as ANFO). In recent years, explosive accidents have occurred during limestone and quarrying operations, believed to be caused by static electricity, during pouring and loading of ANFO explosives, and this has become an important safety issue. As a countermeasure against static electricity when loading ANFO explosives, carbon black is added to ANFO explosives in order to reduce the charge on the explosive particles and reduce the generation of static electricity during loading (Special Publication No. 12440/1973). Adding metal salts, inorganic metal salts, silicates, etc. (Japanese Patent Publication No. 43-837), and adding various surfactants (Japanese Patent Publication No. 41-7478, Japanese Patent Publication No. 43-9678)
JP-A-55-56088, JP-A-55-60086, JP-A-55-51794), etc. However, among these antistatic agents, carbon black has problems such as staining clothes and hands when handling explosives, and is also commonly used in ANFO in Japan.
The coloring (red) of the explosive is damaged. In addition, it is necessary to increase the amount of inorganic salts added in order to exhibit effective antistatic properties, which leads to a decrease in the explosive performance of ANFO explosives and a decrease in fluidity. Furthermore, many of the various surfactants used as antistatic agents try to prevent charging by introducing water ions from the air into ANFO explosives, and in hot and humid environments, the explosives absorb moisture. There is also a risk of causing caking. As mentioned above, conventional antistatic agents pose problems to the quality of ANFO explosives, and when carbon black, metal salts of higher fatty acids, inorganic metal salts, silicates, etc. are added, ammonium nitrate particles In order to add these antistatic agents after sufficiently permeating the oil, new addition equipment may be required in addition to the existing equipment, and in some cases, equipment to prevent powder from scattering may be required. do. In addition, when adding a surfactant, a less electrostatically charged ANFO explosive can usually be obtained by mixing a mixture of oil and surfactant with ammonium nitrate particles, but in some cases, oil and surfactant preparation equipment. The present inventors have solved the quality problems of the above-mentioned conventional antistatic agents, and the inventors have solved the problem of the quality of the explosives caused by the conventional antistatic agents, and at the same time, the inventors have solved the problem of charging the explosives by simply mixing ammonium nitrate particles and an oil agent at the time of manufacturing, without taking any other special treatment. We have discovered a method for producing granular ammonium nitrate that can provide a preventive effect, and completed the present invention. That is, the present invention
A method for producing granular ammonium nitrate for ANFO explosives, which is characterized by adding a small amount of amorphous silicic acid together with a suitable binder to dry particles in the production process of granular ammonium nitrate, and causing the amorphous silicic acid to adhere to the surface of the ammonium nitrate particles. . The amorphous silicic acid used in the present invention has the chemical formula [SiO 2
( H2O ) o ] and has a unit particle size of 15 to 25 mμ, and is specifically amorphous silicic acid.
The amount used is 0.05 to 1.0 in terms of granular ammonium nitrate.
% by weight, preferably 0.2-0.5% by weight. If the amount added is less than 0.05% by weight, the expected antistatic effect of ANFO explosives will not be achieved, and the amount used will be 1.0% or less.
If the content exceeds the weight percentage, the penetration of the oil agent into the amorphous silicic acid increases, the fluidity of the ANFO explosive decreases, and the loading efficiency into the borehole decreases. The timing of adding amorphous silicic acid is at least 0.3% after granulation and drying.
It is preferable to add it to ammonium nitrate particles with a low water content of % or less. If it is added before the drying process, the properties such as hardness and oil absorption of the ammonium nitrate particles will become unsuitable as ammonium nitrate for ANFO explosives, and the explosive power will be low. ANFO
Obtains explosives. The equipment for adding amorphous silicic acid may be an ordinary rotating drum or fluidized bed equipment, and in order to increase the adhesion effect to the ammonium nitrate particles, a binder with an appropriate viscosity is simultaneously added to the amorphous silicic acid in an equal or less proportion. Added by spraying. One method of adding a binder to attach amorphous silicic acid to ammonium nitrate particles is to add the binder while mixing the ammonium nitrate particles and amorphous silicic acid in a rotating machine. The most preferred method is to uniformly spray ammonium nitrate particles and add amorphous silicic acid once the surfaces of the ammonium nitrate particles are wetted with the binder. This method has the effect of reducing dust generation of amorphous silicic acid and increasing the adhesion rate. As the binder used in the present invention, paraffin hydrocarbons, lubricating oils, animal and vegetable oils, inorganic materials, or water-insoluble surfactants, which exhibit a liquid viscosity of 100 to 800 CP at room temperature, are used. Specifically, in addition to process oils such as liquid paraffin and spindle oil, olive oil, and water glass, cationic surfactants such as alkylamine salts and quaternary ammonium salts that are liquid at room temperature are also effective. Further, when a higher aliphatic amine used as an anti-caking agent for ammonium nitrate is added to ammonium nitrate in a molten state, it can also function as a binder. However, water-soluble substances such as glycerin and polyethylene glycol, or water-soluble surfactants such as fatty acid esters are unsuitable as binders because they tend to cause ammonium nitrate to solidify or powder. In this case, the binder does not characterize the quality of the ANFO explosive, but has the function of attaching amorphous silicic acid, which imparts antistatic properties, to the granular ammonium nitrate. The amorphous silicic acid-adhered granular ammonium nitrate obtained by the method of the present invention can then be easily obtained into an antistatic ANFO explosive by simply adding and mixing light oil.
Since it contains amorphous silicic acid as an antistatic agent, it can solve various quality problems that conventional antistatic ANFO explosives have. Hereinafter, the present invention will be explained in detail with reference to Examples.
All tests for hardness, oil absorption, storage stability, etc. described in the Examples were conducted by the following methods. (1) Hardness measurement method: Granular ammonium nitrate 100 with a mesh size of 35 or more
g was blown with 4.0 Kg/cm 2 of compressed air into a metal container 225 mm away from a nozzle with an inner diameter of 12 mm, and then collected. Sieve the recovered ammonium nitrate through a 35 mesh sieve and calculate the amount of broken ammonium nitrate particles of 35 mesh or less. The unit is g/100g ammonium nitrate. (2) Oil absorption measurement method: 100g of granular ammonium nitrate is placed in a glass filter, excess light oil is poured from the top, and the light oil is left until it has sufficiently permeated into the granular ammonium nitrate. is sucked through a filter using a vacuum pump, and the amount of light oil contained in the granular ammonium nitrate is measured and determined as the oil absorption amount. The unit is g/100g ammonium nitrate. (3) Storage test: Place 1 kg of granular ammonium nitrate in a polyethylene bag and leave it at room temperature under a load of 10 kg. Example 1 One batch of 20 kg of granulated ammonium nitrate for ANFO explosives obtained by granulating and drying an ammonium nitrate melt and adding an anti-caking agent was continuously charged into a rotating drum at a rate of 3 kg/min. Crystalline silicic acid fine powder (manufactured by Tokuyama Soda, product name: Tokusil, average particle size 15-25 mμ)
0.1% by weight, 0.3% by weight, 0.5% by weight, and
Five types of granular ammonium nitrate were obtained, including those in which liquid paraffin was added at a ratio of 1.0% by weight and at the same time liquid paraffin was added in an amount equal to or less than that of Tokusil, and products without additives. The quality characteristics of this granular ammonium nitrate were determined. The results are shown in Table-1. Further, 94 parts of the above granular ammonium nitrate was added and mixed with 6 parts of light oil, and for comparison, antistatic agents of carbon, sorbitan fatty acid ester, and calcium silicate, which were conventionally used in the production of ANFO explosives, were added to each 5 kg of ANFO explosives. 5 each according to the method
Kg was produced. Next, a polyethylene coating with a diameter of 70 mm and a length of 9.5 m was inserted into a tube with an outer diameter of 80 mm and a length of 9.
m rigid vinyl chloride pipe is placed at an angle of inclination of 70°,
In addition, 5 kg of each of the eight types of explosive compositions described above were allowed to flow down from the upper opening of the hard vinyl chloride pipe of the device, which had an insulating metal container called a Faraday cage placed at the bottom thereof, and was received in the insulating metal container. The electrostatic potential of this container was measured using a current collector electrometer (manufactured by Kasuga Electric, Model KS-325). In addition, the detonation rate, appearance, and degree of consolidation of the explosive composition were measured immediately after production and three months after production. The results are shown in Table-2.

【表】【table】

【表】【table】

【表】 注2 非イオン性界面活性剤のソルビタン脂肪酸エス
テルは、水溶性界面活性剤である。
実施例 2 硝安溶融液を、造粒乾燥後固結防止剤を添加し
たANFO爆薬用粒状硝安20Kgを1バツチとして、
回転ドラムに1Kg/minの割合で連続的に投入し、
それに合せて、実施例1で述べた非晶質珪酸微粉
を外割で0.3重量%投入し、同時に常温で液状の
スピンドルオイル、水ガラス、グリセリン、熔融
アルキルアミン塩をバインダーとして外割で0.3
重量%添加したものと無添加品と合せて5種類の
粒状硝安を得た。この粒状硝安について品質特性
を測定した。その結果を表―3に示す。また、実
施例1と同じ様にこの粒状硝安に軽油を加え、
ANFO爆薬とした後、実施例1と同じ測定装置
及び方法により静電電位を測定した。その結果を
表―4に示す。
[Table] Note 2 Sorbitan fatty acid ester, a nonionic surfactant, is a water-soluble surfactant.
Example 2 After granulating and drying the ammonium nitrate melt, one batch of 20 kg of granulated ammonium nitrate for ANFO explosives was added with an anti-caking agent.
Continuously feed it into a rotating drum at a rate of 1 kg/min,
Accordingly, 0.3% by weight of the amorphous silicic acid fine powder described in Example 1 was added, and at the same time 0.3% by weight of spindle oil, water glass, glycerin, and molten alkylamine salt, which are liquid at room temperature, were used as binders.
Five types of granular ammonium nitrate were obtained, including those with added weight percent and those without additives. The quality characteristics of this granular ammonium nitrate were measured. The results are shown in Table-3. Also, in the same way as in Example 1, light oil was added to this granular ammonium nitrate,
After being made into an ANFO explosive, the electrostatic potential was measured using the same measuring device and method as in Example 1. The results are shown in Table 4.

【表】【table】

【表】 注2 熔融アルキルアミン塩は、固結防止剤として使
われており、非水溶性である。
[Table] Note 2: Molten alkylamine salts are used as anti-caking agents and are water-insoluble.

Claims (1)

【特許請求の範囲】 1 粒状硝安に、非水溶性の液状バインダーを用
いて非晶質珪酸を添加し、付着させることを特徴
とする、硝安油剤爆薬用粒状硝安の製造方法。 2 粒状硝安が、含水量0.3重量%以下の粒状硝
安であることを特徴とする特許請求の範囲第1項
記載の硝安油剤爆薬用粒状硝安の製造方法。 3 0.05〜1.0重量%(外割)の非晶質珪酸を添
加し、付着させることを特徴とする特許請求の範
囲第1項記載の硝安油剤爆薬用粒状硝安の製造方
法。 4 非水溶性の液状バインダーが、100〜800CP
の粘度を有する液状バインダーであることを特徴
とする特許請求の範囲第1項記載の硝安油剤爆薬
用粒状硝安の製造方法。 5 非水溶性の液状バインダーが、パラフイン系
炭化水素、潤滑油、動植物油、水ガラス、非水溶
性の陽イオン、界面活性剤のアルキルアミン塩及
び第4級アンモニウム塩から選ばれた少なくとも
一つである特許請求の範囲第1項記載の粒状硝安
の製造方法。 6 非水溶性の液状バインダーが、溶融状態の非
水溶性固結防止剤であることを特徴とする特許請
求の範囲第1項記載の硝安油剤爆薬用粒状硝安の
製造方法。 7 熔融状態の非水溶性固結防止剤が、高級脂肪
族アミンである特許請求の範囲第6項記載の硝安
油剤爆薬用粒状硝安の製造方法。
[Scope of Claims] 1. A method for producing granular ammonium nitrate for use in ammonium nitrate oil explosives, which comprises adding and adhering amorphous silicic acid to granular ammonium nitrate using a water-insoluble liquid binder. 2. The method for producing granular ammonium nitrate for use in ammonium nitrate oil explosives according to claim 1, wherein the granular ammonium nitrate has a water content of 0.3% by weight or less. 3. The method for producing granular ammonium nitrate for use in ammonium nitrate oil explosives according to claim 1, characterized in that 0.05 to 1.0% by weight (external) of amorphous silicic acid is added and deposited. 4 Water-insoluble liquid binder is 100 to 800CP
The method for producing granular ammonium nitrate for use in ammonium nitrate explosives according to claim 1, wherein the liquid binder has a viscosity of . 5 The water-insoluble liquid binder is at least one selected from paraffinic hydrocarbons, lubricating oils, animal and vegetable oils, water glass, water-insoluble cations, alkylamine salts of surfactants, and quaternary ammonium salts. A method for producing granular ammonium nitrate according to claim 1. 6. The method for producing granular ammonium nitrate for ammonium nitrate oil explosives according to claim 1, wherein the water-insoluble liquid binder is a molten water-insoluble anti-caking agent. 7. The method for producing granular ammonium nitrate for ammonium nitrate oil explosives according to claim 6, wherein the water-insoluble anti-caking agent in a molten state is a higher aliphatic amine.
JP11340980A 1980-08-20 1980-08-20 Manufacture of ammonium nitrate forammonium nitrate oil explosives Granted JPS5738393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11340980A JPS5738393A (en) 1980-08-20 1980-08-20 Manufacture of ammonium nitrate forammonium nitrate oil explosives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11340980A JPS5738393A (en) 1980-08-20 1980-08-20 Manufacture of ammonium nitrate forammonium nitrate oil explosives

Publications (2)

Publication Number Publication Date
JPS5738393A JPS5738393A (en) 1982-03-03
JPS6343354B2 true JPS6343354B2 (en) 1988-08-30

Family

ID=14611538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11340980A Granted JPS5738393A (en) 1980-08-20 1980-08-20 Manufacture of ammonium nitrate forammonium nitrate oil explosives

Country Status (1)

Country Link
JP (1) JPS5738393A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166294A (en) * 1984-02-03 1985-08-29 日本セメント株式会社 Manufacture of low vibration low noise an-fo explosive
NL1007664C2 (en) * 1997-12-02 1999-06-03 Tno A method of depriving ammunition of explosives, a method of processing explosives waste, a method of manufacturing training ammunition, and devices for carrying out the aforementioned methods as products obtained directly or indirectly by said methods.

Also Published As

Publication number Publication date
JPS5738393A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
CA1340137C (en) Suspension of water-soluble polymers in aqueous media containing dissolved salts
JPS61138697A (en) Granular adsorbent and its production
US3966641A (en) Sorpitional carrier materials and a process for the preparation thereof
JPH01190691A (en) Production of granule of sucrose fatty acid ester
US5704962A (en) Granular fertilizers
JPS6343354B2 (en)
US4738690A (en) Method of removing entrained particles from flue gas and composition of matter
DE2348926C3 (en) Fire extinguishing composition
CA1129597A (en) Process for the manufacture of a dry mixture for insulating stucco or plaster
GB2128599A (en) Stabilized ammonium nitrate products
EP1965766A1 (en) Method for producing vitamin e-adsorbates
EP0015646B1 (en) Explosive composition and a method for the preparation thereof
RU2143297C1 (en) Fire-distinguishing powder composition and method of preparation thereof
US3527563A (en) Process for preparing silica gel granules
JP2002047088A (en) Granular explosive composition with water resistance
EP0020156B1 (en) Cap-sensitive powdered explosive composition
JPS6251236B2 (en)
JP6466616B1 (en) Coated granular urea and compound fertilizer
JP2002543031A (en) Granular gas charge
JP2002029877A (en) Water resistant granular explosive composition
EP0338024B1 (en) Powder for continuous casting
US4271115A (en) Method of producing a pre-wet, dust-free form of asbestos short fibers
JP3846077B2 (en) Production method of granular ammonium nitrate
JP7148030B2 (en) Method for producing sintered ore and sintered ore
US3704149A (en) Liquid binding agent for bonded arc welding flux