JPS6343321B2 - - Google Patents

Info

Publication number
JPS6343321B2
JPS6343321B2 JP57079753A JP7975382A JPS6343321B2 JP S6343321 B2 JPS6343321 B2 JP S6343321B2 JP 57079753 A JP57079753 A JP 57079753A JP 7975382 A JP7975382 A JP 7975382A JP S6343321 B2 JPS6343321 B2 JP S6343321B2
Authority
JP
Japan
Prior art keywords
fins
metal hydride
hydrogen
tube
porous tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57079753A
Other languages
Japanese (ja)
Other versions
JPS58194702A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Kazuaki Myamoto
Takeshi Yoshida
Katsuhiko Yamaji
Yasushi Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57079753A priority Critical patent/JPS58194702A/en
Publication of JPS58194702A publication Critical patent/JPS58194702A/en
Publication of JPS6343321B2 publication Critical patent/JPS6343321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は金属水素化物反応容器に関する。[Detailed description of the invention] FIELD OF THE INVENTION This invention relates to metal hydride reaction vessels.

ある種の金属や合金が発熱的に水素を吸蔵して
金属水素化物を形成し、また、この金属水素化物
が可逆的に吸熱的に水素を放出することが知られ
ており、近年、このような金属水素化物の特性を
利用したヒートポンプ等、種々の金属水素化物装
置が提案されている。
It is known that certain metals and alloys exothermically absorb hydrogen to form metal hydrides, and that these metal hydrides reversibly and endothermically release hydrogen. Various metal hydride devices have been proposed, such as heat pumps that utilize the characteristics of metal hydrides.

このような金属水素化物装置において、金属水
素化物は密閉した反応容器内に充填されて、水素
の吸蔵放出を行なう。第1図及び第2図はこのよ
うな金属水素化物反応容器の一例を示し、一端に
水素出入口1を有する耐圧容器2は、その水素出
入口に近接して水素を透過しない隔壁3を容器を
横断して有し、この隔壁の内側に、内壁から半径
方向に延びる複数のフイン4を有する内管5が挿
入され、水素を透過するが金属水素化物は透過し
ない多孔質管6が水素通路として上記フイン先端
間の空隙に僅かのクリアランスを有して容器軸方
向に延びて挿入保持されていると共に、その開口
7を有する端部において開口が水素出入口を臨む
ように前記隔壁に固定されている。
In such a metal hydride device, metal hydride is filled in a closed reaction vessel to absorb and release hydrogen. Figures 1 and 2 show an example of such a metal hydride reaction vessel, in which a pressure vessel 2 having a hydrogen inlet/outlet 1 at one end is provided with a hydrogen-impermeable partition wall 3 across the vessel adjacent to the hydrogen inlet/outlet. An inner tube 5 having a plurality of fins 4 extending radially from the inner wall is inserted inside this partition wall, and a porous tube 6 that permeates hydrogen but not metal hydrides is used as a hydrogen passage. It is inserted and held in the gap between the tips of the fins, extending in the axial direction of the container with a slight clearance, and is fixed to the partition wall at the end having the opening 7 so that the opening faces the hydrogen inlet/outlet.

金属水素化物は上記内管の内側にフイン間の空
間に充填されていて、水素吸蔵時には、水素はそ
の出入口と多孔質管の開口を経て、主として多孔
質管により容器の軸方向に分配されて、金属水素
化物の充填層内に拡散し、一方、水素放出時には
同様に、金属水素化物から放出された水素は多孔
質管からその開口を経て容器水素出入口から別の
反応容器に導かれる。
The metal hydride is filled in the space between the fins inside the inner tube, and when hydrogen is stored, hydrogen is mainly distributed in the axial direction of the container by the porous tube through its inlet and outlet and the opening of the porous tube. , diffuses into the packed bed of the metal hydride, while during hydrogen release, the hydrogen released from the metal hydride is similarly led from the porous tube through its opening from the hydrogen inlet/outlet of the vessel to another reaction vessel.

ここに、多孔質管は水素のみを透過するように
40〜80%の気孔率を有して数μの濾過性能を備え
ると共に、金属水素化物の水素吸蔵放出時の体積
変化を吸収し、耐圧容器への応力を緩和し得るよ
うに、弾性を備えたポリエチレン、ポリプロピレ
ン、ポリテトラフルオロエチレン等の合成樹脂よ
り製作されている。
Here, the porous tube allows only hydrogen to pass through.
It has a porosity of 40 to 80% and has a filtration performance of several microns, and also has elasticity so that it can absorb the volume change when metal hydride absorbs and releases hydrogen, and relieves stress on the pressure vessel. It is made from synthetic resins such as polyethylene, polypropylene, and polytetrafluoroethylene.

しかし、このような反応容器によれば、特に金
属水素化物が水素を吸蔵する際にその体積を膨張
することと、これにより金属水素化物が容器の水
素出入口側において圧密化することとが主要な原
因となつて、水素の吸蔵放出が繰返されるにつれ
て、多孔質管はその弾性復元力にかかわらず、容
器の水素出入口側の端部で圧しつぶされ、水素通
路として機能しなくなる。このため、多孔質管の
弾性力を高めるために気孔率を小さくすれば、水
素の流通時の圧損が大きくなる。また、多孔質管
とフイン先端間のクリアランスが僅かであつて
も、反応が繰返される間に金属水素化物が容器内
を移動して偏在化し、圧密化することもある。
However, with such a reaction vessel, the main problems are that the volume of the metal hydride expands when it absorbs hydrogen, and that the metal hydride is compacted at the hydrogen inlet and outlet sides of the vessel. As a result, as hydrogen storage and release is repeated, the porous tube is crushed at the end of the container on the hydrogen inlet and outlet side, regardless of its elastic restoring force, and ceases to function as a hydrogen passage. Therefore, if the porosity of the porous tube is reduced in order to increase its elasticity, the pressure loss during hydrogen flow will increase. Further, even if the clearance between the porous tube and the tip of the fin is small, the metal hydride may move within the container while the reaction is repeated, becoming unevenly distributed and compacted.

本発明は上記した問題を解決するためになされ
たものであつて、多孔質管の気孔率を小さくする
ことなく、その断面形状を異形に形成することに
より、金属水素化物の膨張時の応力によく耐え、
金属水素化物が水素の吸蔵放出反応を繰返して
も、圧しつぶされない金属水素化物反応容器を提
供することを目的とする。
The present invention was made in order to solve the above-mentioned problem, and by forming the cross-sectional shape of the porous tube into an irregular shape without reducing the porosity of the porous tube, it is possible to reduce the stress caused by the expansion of the metal hydride. Endure well;
It is an object of the present invention to provide a metal hydride reaction container that is not crushed even if the metal hydride repeatedly undergoes hydrogen absorption and release reactions.

本発明の金属水素化物反応容器は、内壁から半
径方向に延びる複数のフインを備えた内管が、水
素出入口を有する管状の耐圧容器の内面に圧接さ
れ、上記フインの先端間の空隙に水素を透過する
が金属水素化物を透過しない多孔質管が挿入固定
されており、該多孔質管の管壁は隣接するフイン
の間において外方に湾曲して断面異形に形成され
ており、上記内壁、フイン及び多孔質管で形成さ
れる空間に金属水素化物が充填されていることを
特徴とするものである。
In the metal hydride reaction container of the present invention, an inner tube equipped with a plurality of fins extending radially from the inner wall is pressed against the inner surface of a tubular pressure-resistant container having a hydrogen inlet/outlet, and hydrogen is introduced into the gap between the tips of the fins. A porous tube that permeates the metal hydride but does not permeate the metal hydride is inserted and fixed, and the wall of the porous tube is curved outward between adjacent fins to have an irregular cross-section, and the inner wall, It is characterized in that the space formed by the fins and the porous tube is filled with a metal hydride.

第3図は第2図に対応する本発明の金属水素化
物反応容器の実施例の断面図を示し、前図と同じ
部材は同じ参照番号を付してある。
FIG. 3 shows a cross-sectional view of an embodiment of the metal hydride reactor vessel of the invention corresponding to FIG. 2, in which the same parts as in the previous figure have been given the same reference numerals.

管状の耐圧容器2は、金属水素化物の水素の吸
蔵放出に際しての体積変化や水素圧に耐えると共
に、耐水素脆性を有すれば特に制限されないが、
普通、銅やステンレス鋼からなり、前記したよう
に、その前端に水素出入口を有し、この出入口に
近接して容器を横断する隔壁を有すると共に、内
壁から半径方向に延びる複数のフイン4を備えた
内管5が上記耐圧管内面に圧接固定されている。
本発明においては、このフイン先端間の空隙に上
記したような樹脂製の多孔質管6が水素通路とし
て挿入され、フイン先端に圧接固定されていると
共に、その管壁は隣接するフイン間において外方
に、即ち、フイン間の空隙に膨張して湾曲され、
かくして断面が異形に形成されている。なお、内
管は例えばアルミニウム等の金属材料によりフイ
ンを一体に有するように押出成形により製作され
ている。
The tubular pressure-resistant container 2 is not particularly limited as long as it can withstand volume changes and hydrogen pressure when metal hydride absorbs and releases hydrogen, and has hydrogen embrittlement resistance.
It is usually made of copper or stainless steel, and, as mentioned above, has a hydrogen inlet/outlet at its front end, a bulkhead extending across the container in proximity to the inlet/outlet, and a plurality of fins 4 extending radially from the inner wall. An inner tube 5 is press-fitted to the inner surface of the pressure tube.
In the present invention, the above-mentioned porous resin tube 6 is inserted into the gap between the tips of the fins as a hydrogen passage, and is fixed to the tips of the fins under pressure, and the tube wall is external between the adjacent fins. in the direction, that is, expands and curves into the gap between the fins,
In this way, the cross section is formed into an irregular shape. Note that the inner tube is manufactured by extrusion molding from a metal material such as aluminum so as to integrally have fins.

上記のように多孔質管を断面異形にして、複数
のフイン先端間に圧接固定するには、多孔質管を
予め第3図に示す異形断面に形成するほか、例え
ば、多孔質管の外径に対して極めて僅かのクリア
ランスを有するように内管のフインを形成し、こ
れらフインの先端間の空隙に多孔質管を挿入し、
次に内管を絞り加工して外径を減少させる。これ
により、フイン先端が多孔質管の管壁を押すと共
に、隣接するフインの間の管壁が外方に脹らんで
湾曲する。また、上記のように多孔質管をフイン
間に挿入保持させ、この内管を耐圧管に挿入した
後、耐圧管を絞り加工して内管に圧接すると同時
に内管の外径を絞ることによつても、上記のよう
に多孔質管を断面異形にフイン先端間に固定させ
ることができる。
In order to make the porous tube have an irregular cross section and fix it under pressure between the tips of a plurality of fins as described above, in addition to forming the porous tube in advance to the irregular cross section shown in FIG. The fins of the inner tube are formed so as to have an extremely small clearance with respect to the inner tube, and a porous tube is inserted into the gap between the tips of these fins.
Next, the inner tube is drawn to reduce its outer diameter. As a result, the tips of the fins press against the wall of the porous tube, and the wall between adjacent fins swells outward and curves. In addition, as described above, a porous tube is inserted and held between the fins, and after this inner tube is inserted into a pressure tube, the pressure tube is drawn and pressed against the inner tube, and at the same time the outer diameter of the inner tube is reduced. Even so, the porous tube can be fixed between the tips of the fins with an irregular cross-section as described above.

従つて、従来の反応容器によれば、多孔質管は
単にフイン先端間の空隙に挿入固定されているに
すぎないので、金属水素化物が膨張する際の応力
はすべて管壁に垂直に作用し、比較的小さい応力
によつても多孔質管がその弾性復元力にかかわら
ずに容易に偏平に圧しつぶされるのに対して、本
発明の金属水素化物反応容器によれば、以上のよ
うに、多孔質管をフイン先端間の空隙に圧接固定
すると共に、隣接するフイン間において多孔質管
が外方に湾曲する断面異形に形成されているの
で、金属水素化物の水素吸蔵時の体積膨張による
応力は、管壁の垂直方向と管壁に沿う2方向に分
散され、その結果、管壁に垂直の応力成分が軽減
されるので、多孔質管は金属水素化物の体積膨張
時にも圧しつぶされることがない。また、フイン
間の空間は多孔質管の管壁によつて密閉されてい
るので、金属水素化物は容器内を移動せず、従つ
て、偏在化、圧密化を起さない。
Therefore, according to the conventional reaction vessel, the porous tube is simply inserted and fixed into the gap between the tips of the fins, so that all the stress when the metal hydride expands acts perpendicularly to the tube wall. Although a porous tube is easily flattened by a relatively small stress regardless of its elastic restoring force, according to the metal hydride reaction vessel of the present invention, as described above, The porous tube is fixed by pressure in the gap between the tips of the fins, and the porous tube is formed with an irregular cross-section that curves outward between adjacent fins, so that stress caused by volumetric expansion when metal hydride absorbs hydrogen is reduced. is distributed in two directions, one perpendicular to the tube wall and one along the tube wall, and as a result, the stress component perpendicular to the tube wall is reduced, so that the porous tube is not crushed even when the metal hydride volume expands. There is no. Furthermore, since the space between the fins is sealed by the wall of the porous tube, the metal hydride does not move within the container, and therefore does not become unevenly distributed or compacted.

なお、本発明においては、耐圧容器の両端に水
素出入口を設け、これら出入口にそれぞれ近接し
て隔壁を設けて、これら隔壁の間に内管を圧接す
ると共に、そのフインの先端間に多孔質管を固定
し、その両端の開口を各水素出入口に臨ませて各
壁に固定してもよい。
In addition, in the present invention, hydrogen inlets and outlets are provided at both ends of the pressure-resistant container, partition walls are provided in proximity to these inlets and outlets, and an inner pipe is pressed between these partition walls, and a porous pipe is placed between the tips of the fins. may be fixed to each wall with the openings at both ends facing each hydrogen inlet/outlet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の金属水素化物反応容器を示す断
面図、第2図は第1図において―線に沿う断
面図、第3図は第2図に対応する本発明の金属水
素化物反応容器を示す断面図である。 1…水素出入口、2…耐圧容器、3…隔壁、4
…フイン、5…内管、6…多孔質管、7…開口。
FIG. 1 is a sectional view showing a conventional metal hydride reaction vessel, FIG. 2 is a sectional view taken along the line - in FIG. FIG. 1... Hydrogen inlet/outlet, 2... Pressure resistant container, 3... Partition wall, 4
...Fin, 5...Inner tube, 6...Porous tube, 7...Opening.

Claims (1)

【特許請求の範囲】[Claims] 1 内壁から半径方向に延びる複数のフインを備
えた内管が、水素出入口を有する管状の耐熱容器
の内面に圧接され、上記フインの先端間の空〓
に、水素を透過するが金属水素化物を透過しない
多孔質管が挿入固定されており、該多孔質管の管
壁は隣接するフインの間において多方に湾曲して
断面異形に形成されており、上記内壁、フイン及
び多孔質管で形成される空間に金属水素化物が充
填されていることを特徴とする金属水素化物反応
容器。
1. An inner tube equipped with a plurality of fins extending radially from the inner wall is pressed against the inner surface of a tubular heat-resistant container having a hydrogen inlet/outlet, and the space between the tips of the fins is
A porous tube that permeates hydrogen but does not permeate metal hydride is inserted and fixed in the porous tube, and the wall of the porous tube is curved in many directions between adjacent fins to have an irregular cross-sectional shape. A metal hydride reaction vessel characterized in that a space formed by the inner wall, fins, and porous tube is filled with a metal hydride.
JP57079753A 1982-05-11 1982-05-11 Reactor for metal hydride Granted JPS58194702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57079753A JPS58194702A (en) 1982-05-11 1982-05-11 Reactor for metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079753A JPS58194702A (en) 1982-05-11 1982-05-11 Reactor for metal hydride

Publications (2)

Publication Number Publication Date
JPS58194702A JPS58194702A (en) 1983-11-12
JPS6343321B2 true JPS6343321B2 (en) 1988-08-30

Family

ID=13698979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079753A Granted JPS58194702A (en) 1982-05-11 1982-05-11 Reactor for metal hydride

Country Status (1)

Country Link
JP (1) JPS58194702A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281105A (en) * 2007-05-10 2008-11-20 Toyota Industries Corp Hydrogen gas storage device
JP2008303956A (en) 2007-06-06 2008-12-18 Toyota Industries Corp Hydrogen storage tank

Also Published As

Publication number Publication date
JPS58194702A (en) 1983-11-12

Similar Documents

Publication Publication Date Title
JP2655182B2 (en) Pressure vessel for storage of hydrogen in hydride form
KR910019657A (en) Catalytic distillation structure
JPS6343321B2 (en)
JPH0436081B2 (en)
JPS6257561B2 (en)
US4351363A (en) Hydro-pneumatic pressure vessel
JPS58194701A (en) Preparation of reactor for metal hydride
JPS58194703A (en) Reactor for metal hydride
JPS5925956B2 (en) metal hydride container
JPS6366761B2 (en)
JPS59146901A (en) Metallic hydride reaction vessel and its manufacture
JPS6313922B2 (en)
JPS59141403A (en) Metal hydride reactor vessel
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPS6176887A (en) Vessel for accommodating metallic hydrides
JPS6118004Y2 (en)
JPS6334487A (en) Hydrogenated metal heat exchanger
JPH048361B2 (en)
JPH0235781Y2 (en)
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS6335561B2 (en)
JPS6118003Y2 (en)
JPS60137801A (en) Reactor for metal hydride
JP2008069800A (en) Unit for storing hydrogen occlusion alloy and hydrogen-storing tank provided with it
JPS5974081A (en) Partition wall type aerosol vessel