JPS6342920B2 - - Google Patents

Info

Publication number
JPS6342920B2
JPS6342920B2 JP1886780A JP1886780A JPS6342920B2 JP S6342920 B2 JPS6342920 B2 JP S6342920B2 JP 1886780 A JP1886780 A JP 1886780A JP 1886780 A JP1886780 A JP 1886780A JP S6342920 B2 JPS6342920 B2 JP S6342920B2
Authority
JP
Japan
Prior art keywords
time
station
master station
slave
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1886780A
Other languages
Japanese (ja)
Other versions
JPS56116199A (en
Inventor
Takeo Yamanaka
Tadahiko Nagarego
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1886780A priority Critical patent/JPS56116199A/en
Publication of JPS56116199A publication Critical patent/JPS56116199A/en
Publication of JPS6342920B2 publication Critical patent/JPS6342920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Electromechanical Clocks (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)
  • Electric Clocks (AREA)

Description

【発明の詳細な説明】 この発明は遠方監視制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a remote monitoring and control device.

遠方監視制御装置は遠方にある設備を少数の信
号伝送路を介して監視制御する装置であり、この
ため監視制御のデータを符号化し、予め規定され
た速度で伝送する。従つてデータ伝送には通常数
百ミリ秒〜数秒の時間遅れが生ずるが、遠方の設
備側に反射神経的に動作する保護装置があるため
親局〜子局間での高速な信号伝送は不要であり、
この伝送時間遅れは通常は問題とならない。
A remote monitoring and control device is a device that monitors and controls distant equipment via a small number of signal transmission paths, and therefore encodes monitoring and control data and transmits it at a predefined rate. Therefore, there is usually a time delay of several hundred milliseconds to several seconds in data transmission, but there is no need for high-speed signal transmission between the master station and slave stations because there is a protective device that operates reflexively on the distant equipment side. and
This transmission time delay usually does not pose a problem.

しかるに最近遠方監視制御システムの高度化、
広域化に伴ない、各遠方設備の保護は従来通り各
場所設置の保護装置により行なうとしても、それ
らの動作時刻、動作順序を正確に記録、解析する
必要性が生じたり、また計測データの収集に際し
ても異なる子局のデータの収集時点が一致してい
なければならないという問題が生じてきた。
However, recently, remote monitoring and control systems have become more sophisticated.
As the area expands, even if each remote facility is protected by protective devices installed at each location as before, there is a need to accurately record and analyze their operating times and order, and there is a need to collect measurement data. In this case, a problem has arisen in that the data collection points of different slave stations must be collected at the same time.

これらの問題の解決には、遠方監視制御装置に
時計回路を設け保護装置や機器の動作はこの時刻
の符号と共に伝送し、また予め定めた時刻に全子
局一斉に計測を行なつて一旦計測データをメモリ
に収納した後親局に伝送する方法が考えられる。
To solve these problems, a clock circuit is installed in the remote monitoring and control device, and the operation of the protection device and equipment is transmitted along with this time code.Also, all slave stations are measured at the same time at a predetermined time. One possible method is to store the data in memory and then transmit it to the master station.

この場合に重要なことは、親局と子局の時計回
路が実用上差支えない誤差の範囲で同期がとれて
いることである。
What is important in this case is that the clock circuits of the master and slave stations are synchronized within a practically acceptable error range.

電力系統における機器の動作やデータの解析に
は誤差を数ミリ秒以内に押える必要があり、この
ため従来は遠方監視制御用のデータ伝送とは別に
親子の時計回路の同期をとるための専用の信号伝
送路と符号送受信回路を使用する必要があつた。
It is necessary to suppress errors within a few milliseconds when analyzing equipment operations and data in power systems, and for this reason, conventionally, in addition to data transmission for remote monitoring and control, a dedicated system was used to synchronize parent and child clock circuits. It was necessary to use a signal transmission path and a code transmitting/receiving circuit.

この発明は、特に専用の信号伝送路や符号送受
信回路を使用せず通常の遠方監視制御用の信号伝
送路と符号送受信回路のみで親子の時計回路の同
期をとることができる装置を提供するものであ
る。
The present invention provides a device that can synchronize parent and child clock circuits using only a signal transmission path and a code transmission/reception circuit for normal remote monitoring control without using a special signal transmission path or code transmission/reception circuit. It is.

第1図はこの発明による遠方監視制御装置のブ
ロツクダイヤグラムの1例を示す図である。
FIG. 1 is a diagram showing an example of a block diagram of a remote monitoring and control device according to the present invention.

第1図においてOは遠方監視制御装置の親局、
1,2,…は子局である。親局OにおいてGPは
各子局の状態を表示する表示盤、CDは各子局に
制御指令を発するための制御卓、TWは動作やデ
ータの記録を行なうタイプライタ、CPU0は演算
処理回路、DO0は出力回路、DI0は入力回路、TC
はタイプライタ制御回路、CL0は親時計回路、
TR0は符号送受信回路、MD0は変復調回路であ
る。
In FIG. 1, O is the master station of the remote monitoring and control device;
1, 2, . . . are slave stations. In master station O, GP is a display panel that displays the status of each slave station, CD is a control console that issues control commands to each slave station, TW is a typewriter that records operations and data, and CPU 0 is an arithmetic processing circuit. , DO 0 is the output circuit, DI 0 is the input circuit, TC
is the typewriter control circuit, CL 0 is the master clock circuit,
TR 0 is a code transmitting/receiving circuit, and MD 0 is a modulation/demodulation circuit.

また子局1においてCPU1は演算処理回路、
MD1は変復調回路、TR1は符号送受信回路、DI1
は入力回路、DO1は出力回路、CL1は子時計回路
である。
In addition, in slave station 1, CPU 1 is an arithmetic processing circuit,
MD 1 is the modulation/demodulation circuit, TR 1 is the code transmitting/receiving circuit, DI 1
is the input circuit, DO 1 is the output circuit, and CL 1 is the slave clock circuit.

子局2も各回路の符号のサフイツクスが1から
2に変つているのみで同様の構成である。
The slave station 2 has a similar configuration except that the suffix of the code of each circuit is changed from 1 to 2.

L1およびL2は夫々親局Oと子局1および2を
結ぶ信号伝送路である。
L 1 and L 2 are signal transmission paths connecting the master station O and the slave stations 1 and 2, respectively.

次に第1図の動作について、親局〜子局間で送
受信される符号のタイムチヤートを示す第2図、
第3図および第4図を用いて説明する。
Next, regarding the operation of FIG. 1, FIG. 2 shows a time chart of codes transmitted and received between the master station and the slave station.
This will be explained using FIGS. 3 and 4.

第2図は通常の遠方監視制御を行なう際に送受
信される符号のタイムチヤートを示す図、第3図
は子時計回路を親時計回路に同期させる際に送受
信する符号のタイムチヤートを示す図、第4図は
子時計回路を親時計回路に同期させ、その結果の
良否を親局に返信する場合に送受信する符号のタ
イムチヤートを示す図である。
FIG. 2 is a diagram showing a time chart of codes sent and received when performing normal remote monitoring control, FIG. 3 is a diagram showing a time chart of codes sent and received when synchronizing the slave clock circuit with the master clock circuit, FIG. 4 is a diagram showing a time chart of codes transmitted and received when synchronizing the slave clock circuit with the master clock circuit and sending back the quality of the result to the master station.

まず通常の遠方監視制御を行なう際の動作につ
いて説明する。
First, the operation when performing normal remote monitoring control will be explained.

第1図において子局1および2の演算処理回路
CPU1およびCPU2は常時各局の入力回路DI1およ
びDI2に入力されている被監視機器の状態を走査
し、その最新の状態を記憶している。親局0の演
算処理回路CPU0は周期的に各子局に対するデー
タ要求の符号を作成し、符号送受信回路TR0に与
える。与えられる符号は各ビツトが並列に存在す
る、いわゆる並列符号であり符号送受信回路TR0
はこれを時間的に順次送出していわゆる直列符号
に変換し、変復調回路MD0に与える。変復調回
路MD0はこれを信号伝送路に適合し、雑音の影
響も受けにくい形、例えば音声周波帯域の周波数
偏移(Frequency Shift Heying略してFSK)信
号に変調して信号伝送路L1およびL2を介して子
局1および2に伝送する。子局1および2におい
ては夫々変復調回路MD1およびMD2が親局から
到来した信号を復調して符号送受信回路TR1およ
びTR2に伝える。符号送受信回路TR1およびTR2
は到来した直列符号を並列符号に戻して演算処理
回路CPU1およびCPU2に伝える。演算処理回路
CPU1およびCPU2は到来したデータ要求の符号
が自局のものであるか否かを判定し、自局の場合
は記憶している自局の制御機器及び計測値の最新
の状態を符号送受信回路TR1またはTR2に与え
る。以下はデータ要求信号とは逆の方向に符号送
受信回路TR1またはTR2から変復調回路MD1
たはMD2、信号伝送路L1またはL2を介して親局
Oの変復調回路MD0に伝えられ、符号送受信回
路TR0に達する。符号送受信回路TR0は受信した
符号を演算処理回路CPU0に伝え、CPU0はこれ
を記憶するとともに出力回路DO0を介して表示盤
GPに表示を行なわせる。
In Figure 1, the arithmetic processing circuits of slave stations 1 and 2
CPU 1 and CPU 2 constantly scan the status of the monitored equipment input to input circuits DI 1 and DI 2 of each station, and store the latest status. The arithmetic processing circuit CPU0 of the master station 0 periodically creates a code for a data request for each slave station, and provides it to the code transmitting/receiving circuit TR0 . The given code is a so-called parallel code in which each bit exists in parallel, and the code transmitter/receiver circuit TR 0
sends out this signal sequentially in time, converts it into a so-called serial code, and supplies it to the modulation/demodulation circuit MD 0 . The modulation/demodulation circuit MD 0 modulates this into a form that is compatible with the signal transmission path and is less susceptible to noise, such as a frequency shift heying (FSK) signal in the voice frequency band, and transmits it to the signal transmission paths L 1 and L. 2 to slave stations 1 and 2. In slave stations 1 and 2, modulation/demodulation circuits MD 1 and MD 2 respectively demodulate the signal arriving from the master station and transmit it to code transmitting/receiving circuits TR 1 and TR 2 . Code transmitter and receiver circuits TR 1 and TR 2
returns the incoming serial code to parallel code and transmits it to the arithmetic processing circuits CPU 1 and CPU 2 . Arithmetic processing circuit
CPU 1 and CPU 2 determine whether the code of the incoming data request belongs to their own station, and if it is their own station, they send and receive the code of the latest status of their own control equipment and measured values that they have memorized. Give to circuit TR 1 or TR 2 . The following is transmitted in the opposite direction from the data request signal from the code transmitting/receiving circuit TR 1 or TR 2 to the modulation/demodulation circuit MD 0 of the master station O via the modulation/demodulation circuit MD 1 or MD 2 and the signal transmission line L 1 or L 2 . , the code transmitting/receiving circuit TR reaches 0 . The code transmitting/receiving circuit TR 0 transmits the received code to the arithmetic processing circuit CPU 0 , which stores it and displays it on the display panel via the output circuit DO 0 .
Make GP display.

以上の動作で行なわれる符号送受信のタイムチ
ヤートが第2図の前半に示されている。図左端の
0,1,2は夫々第1図における局の番号を示
す。まず親局Oより子局1のデータ要求符号
DRQ1を送信する。斜下へ向う矢印は信号伝送の
状況を表わし、τmsecの時間遅れの後子局1およ
び2に到着することを示している。子局1および
2への信号伝送時間遅れは厳密には異なるが、時
間遅れは主として変復調回路MD0,MD1,MD2
によつて生じ、信号伝送路L1,L2によつて生ず
る遅れは通常の場合前者に比較して無視し得るの
で同一特性の変復調回路を使用する場合子局1お
よび2に信号が到着する時刻はほぼ同じと考える
ことができる。
A time chart of code transmission and reception performed in the above operation is shown in the first half of FIG. 0, 1, and 2 at the left end of the figure indicate the station numbers in FIG. 1, respectively. First, the data request code of slave station 1 is sent from master station O.
Send DRQ 1 . The arrow pointing diagonally downward represents the status of signal transmission, indicating that the signal arrives at slave stations 1 and 2 after a time delay of τmsec. Strictly speaking, the signal transmission time delays to slave stations 1 and 2 are different, but the time delays are mainly caused by the modulation and demodulation circuits MD 0 , MD 1 , MD 2
The delay caused by the signal transmission paths L 1 and L 2 can usually be ignored compared to the former, so when modulation and demodulation circuits with the same characteristics are used, the signals arrive at slave stations 1 and 2. The times can be considered to be almost the same.

子局1の演算処理回路CPU1は到来したデータ
要求の符号が自局のものであることを判定し、最
新状態のデータの送信を行なう。この信号DOT1
も斜上で向う点線の如くτmsecの時間遅れの後親
局Oへ到着する。親局Oの演算処理回路CPU0
前述の如くこれを記憶するとともに出力回路DO0
を介して表示盤GPへ表示させる。続いて演算処
理回路CPU0は子局2に対するデータ要求符号
DRQ2を作成し符号送受信回路TP0に送信させ、
子局1に対する場合と同様な動作が行なわれる。
The arithmetic processing circuit CPU 1 of the slave station 1 determines that the code of the incoming data request is that of its own station, and transmits the latest data. This signal DOT 1
It also arrives at the master station O after a time delay of τmsec, as shown by the dotted line going diagonally upward. The arithmetic processing circuit CPU 0 of the master station O stores this as described above and outputs the output circuit DO 0.
Display it on the display panel GP via . Next, the arithmetic processing circuit CPU 0 is a data request code for slave station 2.
Create DRQ 2 and send it to code transmitting/receiving circuit TP 0 ,
The same operation as for slave station 1 is performed.

次に親局Oより子局1の機器の制御を行なう場
合は、制御卓CDにおいて該当機器の選択および
入切等の制御操作を行なえば、この信号が入力回
路DI0に入力され、演算処理回路CPU0はこれを
受けて該当符号を作成し、符号送受信回路TR0
第2図後半の「子局1機器制御」の符号OPE1
送信させる。子局1および2にこの符号が到着し
夫々の符号送受信回路TR1およびTR2により受信
されると子局1の演算処理回路CPU1は自局に対
する制御符号であることと該当機器を判定し、第
1図の出力回路DO1を介して該当機器に制御指令
を与える。そして入力回路DI1を介して該当機器
の応動を確認し、応答の符号RES1を作成して親
局Oに送信する。親局Oでは子局1からの応答に
より該当機器の応動を確認し表示盤GPへの表示
を行なう。その後演算処理回路CPU0は子局デー
タ要求の動作に戻り、子局2に対しデータ要求符
号DRQ1を作成し送出する。
Next, when controlling the equipment of slave station 1 from master station O, select the relevant equipment on the control console CD, perform control operations such as turning on and off, and this signal will be input to input circuit DI 0 and processed. In response to this, the circuit CPU 0 creates a corresponding code, and causes the code transmitting/receiving circuit TR 0 to transmit the code OPE 1 of "Slave station 1 device control" shown in the second half of FIG. When this code arrives at slave stations 1 and 2 and is received by their respective code transmitting/receiving circuits TR 1 and TR 2 , the arithmetic processing circuit CPU 1 of slave station 1 determines that it is a control code for its own station and the corresponding equipment. , gives a control command to the corresponding device via the output circuit DO 1 shown in FIG. Then, the response of the corresponding device is confirmed via the input circuit DI 1 , and a response code RES 1 is created and transmitted to the master station O. The master station O confirms the response of the corresponding device based on the response from the slave station 1 and displays it on the display panel GP. Thereafter, the arithmetic processing circuit CPU 0 returns to the slave station data request operation, creates and sends a data request code DRQ 1 to the slave station 2.

以上が第2図のタイムチヤートによる通常の遠
方監視制御の動作であるが、従来の遠方監視制御
システムでは上記による監視制御の動作で特に実
用上の問題はなかつた。
The above is the operation of normal remote monitoring and control using the time chart shown in FIG. 2, and in the conventional remote monitoring and control system, there was no particular practical problem with the above-mentioned monitoring and controlling operation.

しかるに最近システムの高度化、広域化に伴な
い、単なる遠方機器の監視制御のみではなく、異
状発生時に異なる場所の機器の動作順序を記録解
析したり、同時点での計測値を収集したりする必
要が生じてきた。
However, as systems have recently become more sophisticated and wider in area, they are not only capable of simply monitoring and controlling distant equipment, but also recording and analyzing the operating order of equipment in different locations when an abnormality occurs, and collecting measurement values at the same time. The need has arisen.

このため親局Oには親時計回路CL0子局1およ
び2には夫々子時計回路CL1およびCL2を設け、
演算処理回路CPU1およびCPU2は異状発生時に
は夫々入力回路DI1およびDI2からの入力信号に
子時計回路CL1およびCL2からの時刻信号を加え
て記憶し、親局Oからのデータ要求に対して時刻
情報も含むデータを送信し、親局Oの演算処理回
路CPU0はそれらを時系列的に編集してタイプラ
イタ制御回路TCを介してタイプライタTWに記
録させたり、子局1および2の演算処理回路
CPU1およびCPU2で予め定めた同一時点の計測
データを記憶して親局Oに送信し親局Oの演算処
理回路CPU0がこれらのデータに基いて監視制御
対象システムの状況を解析することが行なわれる
ようになつた。
For this reason, the master station O is provided with a master clock circuit CL, and the slave stations 1 and 2 are provided with slave clock circuits CL 1 and CL 2 , respectively.
When an abnormality occurs, the arithmetic processing circuits CPU 1 and CPU 2 add and store the time signals from the child clock circuits CL 1 and CL 2 to the input signals from the input circuits DI 1 and DI 2 , respectively, and respond to a data request from the master station O. The arithmetic processing circuit CPU 0 of the master station O edits the data in chronological order and records it on the typewriter TW via the typewriter control circuit TC, or sends data including time information to the slave station 1. and 2 arithmetic processing circuits
CPU 1 and CPU 2 store measurement data at the same time determined in advance and send it to the master station O, and the arithmetic processing circuit CPU 0 of the master station O analyzes the status of the system to be monitored and controlled based on these data. began to be carried out.

この場合重要なことは親局と各子局の時計回路
が実用上差支えない範囲で同期がとれていること
であるが、前述の如くこのために従来は専用の信
号伝送路と符号送受信回路を必要とした。
In this case, what is important is that the clock circuits of the master station and each slave station are synchronized within a practical range, but as mentioned above, in the past, dedicated signal transmission paths and code transmission/reception circuits were used for this purpose. I needed it.

この発明はその欠点をなくしたものであり、第
3図によりその基本的動作を説明する。
This invention eliminates this drawback, and its basic operation will be explained with reference to FIG.

第3図の左端の0,1,2は第2図のそれと同
一であり、最初に子局に対するデータ要求DRQ2
とそれに基くデータ送信DOT2のタイムチヤート
が描かれているがこれは第2図で説明したのと全
く同じ動作である。
0, 1, and 2 at the left end of Fig. 3 are the same as those in Fig. 2, and first the data request DRQ 2 to the slave station is
A time chart of data transmission DOT 2 based on this is drawn, which is exactly the same operation as explained in Fig. 2.

そして時刻設定の時点(例えば1日1回午前0
時)が近付くと、親局Oの演算処理回路CPU0
設定すべき時刻to(例えば午前0時0分0秒0ミ
リ秒)を符号化した時刻設定符号TSEを送信す
る。各子局1および2はこれを受信し演算処理回
路CPU1およびCPU2は設定すべき時刻toを記憶
して次に到来する設定指令信号SETを待機する。
親局Oの演算処理回路CPU0は親時計回路CL0
出力を監視し、toより伝送遅れ時間τmsec前の時
点に設定指令信号SETを発する。設定指令信号
SETはτmsecの遅れの後、即ち時刻toに子局1お
よび2に到着し、この到着により演算処理回路
CPU1およびCPU2は夫々子時計回路CL1および
CL2を時刻toに設定する。
Then, at the time of setting the time (for example, once a day at 0:00 AM)
As the time approaches (time), the arithmetic processing circuit CPU 0 of the master station O transmits a time setting code TSE that encodes the time to (for example, 0:00:00:00:00 milliseconds) to be set. Each slave station 1 and 2 receives this, and the arithmetic processing circuits CPU 1 and CPU 2 memorize the time to to be set and wait for the next arriving setting command signal SET.
The arithmetic processing circuit CPU 0 of the master station O monitors the output of the master clock circuit CL 0 and issues a setting command signal SET at a time point before the transmission delay time τ msec from to. Setting command signal
SET arrives at slave stations 1 and 2 after a delay of τmsec, that is, at time to, and with this arrival, the arithmetic processing circuit
CPU 1 and CPU 2 are child clock circuits CL 1 and
Set CL 2 to time to.

以上により親時計と各子時計の同期が行なわ
れ、以下は第3図後半に図示のように通常のデー
タ要求、送信の動作や必要に応じ制御の動作が行
なわれる。
As described above, the master clock and each slave clock are synchronized, and then, as shown in the second half of FIG. 3, normal data request and transmission operations and control operations as necessary are performed.

上記は単に子時計の時刻設定を行なうのみであ
るが、設定指令信号が雑音等のため正しく伝送さ
れないと正しい時刻の設定が行なわれないので、
これを判定し、結果を親局に返信して必要な場合
は再度時刻設定の動作を行なわせることが必要で
ある。
The above method simply sets the time of the child clock, but if the setting command signal is not transmitted correctly due to noise etc., the correct time will not be set.
It is necessary to determine this, send the result back to the master station, and have it perform the time setting operation again if necessary.

第4図はこの場合の動作を示すこの発明に係わ
るタイムチヤートである。
FIG. 4 is a time chart according to the present invention showing the operation in this case.

時刻設定符号toの送受信迄は第3図と同じであ
るが、設定指令信号BTが単純なパルスではなく
予め定めたビツトパターン(例えば|○|○|○
|)となつている。各子局1および2ではこのビ
ツトパターンの最初のビツトの立上り時点で子時
計回路CL1およびCL2の設定を行なうが、引続き
符号送受信回路TR1およびTR2により受信される
ビツトパターンを演算処理回路CPU1および
CPU2が予め定めたビツトパターンであるか否か
を照合し、判定結果が良好であれば子時計設定の
時点が正しかつたと判定する。続いて親局Oから
各子局1および2に順次設定が良好か否かを照合
する符号OK1?,OK2?を送信し、各子局は判定
結果OK1,OK2を返信する。全て良好であれば第
4図最後のように通常の動作に移り、否の局があ
れば再度設定動作を繰返す。
The transmission and reception of the time setting code to is the same as in Fig. 3, but the setting command signal BT is not a simple pulse but a predetermined bit pattern (for example, |○|○|○
|). Each slave station 1 and 2 sets the slave clock circuits CL 1 and CL 2 at the rising edge of the first bit of this bit pattern, but subsequently performs arithmetic processing on the bit pattern received by the code transmitter/receiver circuits TR 1 and TR 2 . circuit CPU 1 and
The CPU 2 checks whether or not the bit pattern is a predetermined bit pattern, and if the determination result is good, it is determined that the child clock was set at the correct time. Next, the code OK 1 ? is checked from the master station O to each slave station 1 and 2 to see if the settings are correct. , OK 2 ? and each slave station replies with the judgment results OK 1 and OK 2 . If everything is good, the routine goes to normal operation as shown at the end of FIG. 4, and if there is a negative station, the setting operation is repeated again.

第4図の動作を行なわせれば、更に信頼度の高
い装置を得ることができる。
If the operation shown in FIG. 4 is carried out, an even more reliable device can be obtained.

なお、第1図、第2図、第3図および第4図
は、この発明の構成および動作を分り易く説明す
るために挙げた1例であり、子局が2ケ所より多
い場合や、子局のデータ信号を親局からの要求に
よらず常時サイクリツクに送信する方式において
も適用できることは勿論である。
Note that FIGS. 1, 2, 3, and 4 are examples given to explain the configuration and operation of the present invention in an easy-to-understand manner. Of course, the present invention can also be applied to a system in which station data signals are constantly transmitted cyclically regardless of requests from the master station.

また時刻の設定を全局同時に行なわず、各子局
個別に行なうことや、伝送時間遅れが子局により
異なる特殊な場合にも各子局毎に第3図、第4図
のτを変化させて実施しうることも勿論である。
In addition, in special cases where the time is not set on all stations at the same time but on each slave station individually, and in special cases where the transmission time delay varies depending on the slave station, τ in Figures 3 and 4 can be changed for each slave station. Of course, it can be implemented.

さらに第4図の設定指令信号BTはその立りの
時点に情報があるので、逆に時刻設定符号の最後
のビツトを延長してto−τの時点で落す(即ち設
定指令信号の立下り時点で設定する)ようにする
ことも可能である。しかし最後のビツトを延長す
るということは、符号を停止することの裏になり
設定すべき時刻を示す符号を伝えた後暫時有意符
号の送信を停止することに変りはない。
Furthermore, since the setting command signal BT in Fig. 4 has information at the time of its rising edge, conversely, the last bit of the time setting code is extended and dropped at the time of to-τ (i.e., at the falling point of the setting command signal). It is also possible to set the However, extending the last bit is the opposite of stopping the code, and is still the same as stopping the transmission of the temporary significant code after transmitting the code indicating the time to be set.

また、上記実施例では親局から設定時刻toより
伝送遅れ時間τ前に時刻設定信号を子局へ送り、
子局の時計回路を設定時刻toに設定するものとし
ているが、親局から設定toに時刻設定信号を子局
へ送り、子局で上記設定toに伝送遅れ時間τを加
算した時刻に時間設定しても良い。この場合、伝
送遅れ時間τは、各子局毎に夫々異なつた値にす
ることもできる。
In addition, in the above embodiment, the time setting signal is sent from the master station to the slave station before the transmission delay time τ from the set time to,
It is assumed that the clock circuit of the slave station is set to the set time to, but the master station sends a time setting signal to the slave station at the setting to, and the slave station sets the time to the time obtained by adding the transmission delay time τ to the above setting to. You may do so. In this case, the transmission delay time τ can be set to a different value for each slave station.

以上のように、この発明によれば、親局から信
号伝送路を介して所定のパターンの時刻設定信号
を子局へ送信するようにし、上記時刻設定信号に
より、子局の時計回路を上記信号伝送路の伝送遅
れ時間を考慮して時刻設定するとともに上記時刻
設定信号が所定のパターンであるか否かを判別し
て、その結果を上記親局へ送信するものとしたの
で、正確に時刻設定が行なわれたかどうかを割認
でき、信頼度の高い時刻設定ができる。
As described above, according to the present invention, the time setting signal of a predetermined pattern is transmitted from the master station to the slave station via the signal transmission path, and the clock circuit of the slave station is controlled by the time setting signal. The time is set in consideration of the transmission delay time of the transmission line, and it is determined whether or not the time setting signal has a predetermined pattern, and the result is sent to the master station, so the time can be set accurately. It is possible to confirm whether or not the time has been set, and to set the time with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による遠方監視制御装置のブ
ロツクダイヤグラムの1例を示す図、第2図、第
3図および第4図は親局Oおよび子局1,2間で
送受信される符号のタイムチヤートを示す図であ
る。 図において、Oは親局、1,2は子局、L1
L2は信号伝送路、TR0,TR1,TR2は送受信回
路、CL0,CL1,CL2は時間回路、τは伝送遅れ
時間、toは所定時刻、SET,BTは時間設定信
号、OK1,OK2は判別結果の送信信号である。
FIG. 1 is a diagram showing an example of a block diagram of a remote monitoring and control device according to the present invention, and FIGS. It is a diagram showing a chart. In the figure, O is the master station, 1 and 2 are slave stations, L 1 ,
L 2 is a signal transmission path, TR 0 , TR 1 , TR 2 are transmitting/receiving circuits, CL 0 , CL 1 , CL 2 are time circuits, τ is transmission delay time, to is a predetermined time, SET, BT are time setting signals, OK 1 and OK 2 are transmission signals of the determination results.

Claims (1)

【特許請求の範囲】[Claims] 1 子局に設けられた機器を親局から制御および
監視するものにおいて、所定の伝送遅れ時間特性
を有し、親局と子局との間の信号データを伝送す
る信号伝送路、親局および子局にそれぞれ設けら
れ、上記信号伝送路との信号の送受信をおこなう
送受信回路、ならびに親局と子局とを時間的に同
期させるために親局および子局にそれぞれ設けら
れた時間回路を備え、親局の時間回路が所定時間
に達すると親局から上記信号伝送路および上記送
受信回路を介して所定のパターンの時刻設定信号
を子局に送信し、上記時刻設定信号により子局の
時計回路を上記所定の伝送遅れ時間を考慮して時
刻設定するとともに、上記時刻設定信号が所定の
パターンであるか否かを子局で判別し、その結果
を親局に上記信号伝送路および上記送受信回路を
介して送信することを特徴とする遠方監視制御装
置。
1. In devices that control and monitor devices installed in slave stations from a master station, signal transmission paths that have predetermined transmission delay time characteristics and that transmit signal data between the master station and slave stations, the master station, and Each of the slave stations includes a transmitting/receiving circuit for transmitting and receiving signals to and from the signal transmission path, and a time circuit is provided in each of the master station and the slave station to synchronize the master station and the slave stations in terms of time. When the time circuit of the master station reaches a predetermined time, the master station transmits a time setting signal of a predetermined pattern to the slave station via the signal transmission path and the transmitting/receiving circuit, and the clock circuit of the slave station is activated by the time setting signal. The time is set in consideration of the predetermined transmission delay time, the slave station determines whether or not the time setting signal follows a predetermined pattern, and the result is transmitted to the master station through the signal transmission path and the transmitting/receiving circuit. A remote monitoring and control device characterized in that it transmits data via.
JP1886780A 1980-02-18 1980-02-18 Remoteecontrolling controller Granted JPS56116199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1886780A JPS56116199A (en) 1980-02-18 1980-02-18 Remoteecontrolling controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1886780A JPS56116199A (en) 1980-02-18 1980-02-18 Remoteecontrolling controller

Publications (2)

Publication Number Publication Date
JPS56116199A JPS56116199A (en) 1981-09-11
JPS6342920B2 true JPS6342920B2 (en) 1988-08-26

Family

ID=11983482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1886780A Granted JPS56116199A (en) 1980-02-18 1980-02-18 Remoteecontrolling controller

Country Status (1)

Country Link
JP (1) JPS56116199A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769496A (en) * 1980-10-16 1982-04-28 Mitsubishi Electric Corp Remote controller
JPS60129688A (en) * 1983-12-16 1985-07-10 Fujitsu Ltd Main clock distribution system
JPS60208140A (en) * 1984-03-31 1985-10-19 Toshiba Corp Load survey system
JPH06281759A (en) * 1993-03-30 1994-10-07 Rhythm Watch Co Ltd Ornament clock system
JP4664018B2 (en) * 2004-07-13 2011-04-06 セイコープレシジョン株式会社 Wireless time information transmission system

Also Published As

Publication number Publication date
JPS56116199A (en) 1981-09-11

Similar Documents

Publication Publication Date Title
JPS62107542A (en) Radio communication system
US4860001A (en) Remote monitoring and controlling system
US20030139898A1 (en) Method for synchronizing operation across devices
JPS6342920B2 (en)
WO1982001438A1 (en) Remote supervisory control unit
JPS634379B2 (en)
JPH0618364B2 (en) Time synchronization method for data transmission system
JPS5946144B2 (en) data transmission equipment
JPS621337A (en) Method for collecting data of digital protection relay device
JP3136700B2 (en) Reduced wiring terminal equipment with transmission speed switching function
JPS596642A (en) Synchronizing method of mobile communication satellite
JP2001014580A (en) Telemeter observation device and telemeter
JPH065309B2 (en) Time synchronization method
JPS601950A (en) Signal transmitter
SU955167A1 (en) Device for data checking and transmission
JPH0771349B2 (en) Monitoring system status change data discrimination method
JP3024251B2 (en) Signal relay method
JP3170827B2 (en) Polling data collection system
JPS60180244A (en) Cyclic data transmission system
JPH0573092B2 (en)
JPH0624329B2 (en) Data communication method
JP2520772B2 (en) Data link system
JPH03177989A (en) Time recorder system
JPH0715419A (en) Controller for device
JPH0450798B2 (en)