JPS6342764B2 - - Google Patents

Info

Publication number
JPS6342764B2
JPS6342764B2 JP15909282A JP15909282A JPS6342764B2 JP S6342764 B2 JPS6342764 B2 JP S6342764B2 JP 15909282 A JP15909282 A JP 15909282A JP 15909282 A JP15909282 A JP 15909282A JP S6342764 B2 JPS6342764 B2 JP S6342764B2
Authority
JP
Japan
Prior art keywords
region
curve
curvature
lens
principal meridian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15909282A
Other languages
Japanese (ja)
Other versions
JPS5948732A (en
Inventor
Shunei Shinohara
Sakiho Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15909282A priority Critical patent/JPS5948732A/en
Publication of JPS5948732A publication Critical patent/JPS5948732A/en
Publication of JPS6342764B2 publication Critical patent/JPS6342764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Description

【発明の詳細な説明】 本発明は、累進多焦点レンズの屈折面の形状に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the shape of a refractive surface of a progressive multifocal lens.

本発明の目的は、累進多焦点レンズに必然的に
存在する非点収差と像の歪曲を極力押え、その使
用者が種々の状況において使用したときに、最も
満足度の高い累進多焦点レンズを提供することに
ある。
The purpose of the present invention is to minimize astigmatism and image distortion that inevitably exist in progressive multifocal lenses, and to provide a progressive multifocal lens that provides the most satisfaction to its users when used in various situations. It is about providing.

本発明の理解を容易にするために、累進多焦点
レンズの用途と構造および光学的特性について説
明をする。
In order to facilitate understanding of the present invention, the use, structure, and optical characteristics of a progressive multifocal lens will be explained.

累進多焦点レンズは、主として高齢者における
眼の水晶体の調節機能の低下を補正するために、
開発されたものであり、1つのレンズ内に遠くの
ものを見るための領域と、近くのものを見るため
の領域と、更に両領域の間に連続的に変化する度
数を持つた中間距離のものを見る領域を持つてい
る。これら3領域を、それぞれ遠用部領域、近用
部領域、中間部領域と呼ぶ。
Progressive multifocal lenses are mainly used to correct the decline in the accommodative function of the crystalline lens of the eye in elderly people.
This lens has an area for seeing distant objects, an area for seeing near objects, and an intermediate distance lens with continuously changing power between the two areas. It has a field of view. These three areas are called a distance area, a near area, and an intermediate area, respectively.

第1図〜第4図は、一般的な累進多焦点レンズ
の一例であり、第1図は、累進多焦点レンズの一
般的な構造を示したもので、凸状屈折面の斜視図
である。図示されない反対側の凹面は、球面ある
いは円柱曲面とし、遠視、近視および乱視の補正
をしている。図中の1は、レンズの光学中心軸
(以下、光軸と称する。)であり、レンズの幾何学
中心Oを通つている。2は、光軸1を含む垂直な
平面5(以下、主子午面と称する。)とレンズ屈
折面との交線である主子午線曲線である。この主
子午線曲線の曲率の変化を示したものが第2図で
あり、図の縦軸は主子午線曲線に沿つた距離で、
横軸Pは面屈折力(凸状屈折面による屈折効果の
値。凹面を含めたレンズとしての屈折効果の値は
屈折力と称する。)である。主子午線曲線に沿つ
た両屈折力は、A点より上方およびB点より下方
において一定であり、A点からB点にかけて累進
的に増加している。このA点、B点をそれぞれ遠
用中心および近用中心と呼び、その間の両屈折力
の変化量(図中、ADD)は加入度と呼ばれる。
レンズの両屈折力と曲率は比例するから、この図
は曲率の変化とみなすことができ、主子午線曲線
の曲率中心の軌跡は、第1図中、3で示す如くと
なる。また、主子午線曲線上の各点における主子
午線曲線と屈折面上で直交する方向の曲率と、同
曲線に沿つた方向の曲率は等しく、いわゆるヘソ
状曲線であり、主子午線曲線上での非点収差は零
となる。すなわち、主子午線曲線に沿つた部分で
はほぼ球面形状を成す。しかし、曲率の異なる球
面をつないで一つの滑らかな曲面にするため、主
子午線曲線から遠ざかるにつれ非球面とせざるを
得ず、そのため、非点収差が周辺に発生すること
になる。また、屈折面の各部分で像の倍率が異な
るために、像の歪曲も同時に付随する。
Figures 1 to 4 are examples of general progressive multifocal lenses, and Figure 1 shows the general structure of a progressive multifocal lens, and is a perspective view of a convex refractive surface. . The concave surface on the opposite side (not shown) is a spherical or cylindrical curved surface, and is used to correct hyperopia, myopia, and astigmatism. 1 in the figure is the optical center axis (hereinafter referred to as the optical axis) of the lens, which passes through the geometric center O of the lens. Reference numeral 2 denotes a principal meridian curve that is an intersection between a perpendicular plane 5 including the optical axis 1 (hereinafter referred to as the principal meridian plane) and the refractive surface of the lens. Figure 2 shows the change in curvature of this principal meridian curve, and the vertical axis of the figure is the distance along the principal meridian curve.
The horizontal axis P is surface refractive power (value of refractive effect due to a convex refractive surface. Value of refractive effect as a lens including a concave surface is called refractive power). Both refractive powers along the principal meridian curve are constant above point A and below point B, and increase progressively from point A to point B. These points A and B are called the distance center and the near center, respectively, and the amount of change in both refractive powers (ADD in the figure) between them is called the addition power.
Since both refractive powers and curvature of the lens are proportional, this figure can be regarded as a change in curvature, and the locus of the center of curvature of the principal meridian curve is as shown by 3 in FIG. Also, the curvature in the direction orthogonal to the principal meridian curve on the refracting surface at each point on the principal meridian curve is equal to the curvature in the direction along the same curve, which is a so-called navel-shaped curve. The point aberration becomes zero. That is, the portion along the principal meridian curve has a substantially spherical shape. However, in order to connect spherical surfaces with different curvatures to form one smooth curved surface, the surface must become aspherical as it moves away from the principal meridian curve, and astigmatism will therefore occur in the periphery. Furthermore, since the magnification of the image differs in each part of the refractive surface, image distortion also occurs.

第3図は、一般的な累進多焦点レンズの非点収
差の分布の一例を表わす。図中において、ハツチ
ングのピツチが狭いほど収差は大きくなること、
すなわち、像がボケることを意味している。一般
に人が非点収差を知覚し、不快感を持つのは0.5
デイオブトリ(以下、Dと略記する)以上と言わ
れており、図中の無ハツチングの領域は、0.5D
以下の領域である。A点より上方のこの領域を遠
用明視域、B点より下方のこの領域を近用明視
域、A点からB点の間のこの領域を中間明視域と
呼び、それぞれの距離で物がはつきり見えると知
覚される範囲である。
FIG. 3 shows an example of the astigmatism distribution of a general progressive multifocal lens. In the figure, the narrower the hatching pitch, the larger the aberration.
In other words, this means that the image becomes blurred. Generally, people perceive astigmatism and feel discomfort at 0.5
It is said to be more than 1.5D (hereinafter abbreviated as D), and the unhatched area in the figure is 0.5D.
The following areas are covered. This area above point A is called the distance clear vision area, this area below point B is called the near clear vision area, and this area between point A and B is called the intermediate clear vision area. This is the range in which objects are perceived as clearly visible.

第4図は、一般的な累進多焦点レンズを通して
垂直および水平方向に等ピツチで描かれた格子模
様(以下、正方格子と称する。)を見た時の像の
歪曲の一例を示す。格子の像は、倍率の変化によ
り、図の如く垂直線は主子午線曲線を通るもの
(図中で41)を中心に、下向きにふくらみ、水
平線も周辺へゆくに従つて彎曲している。
FIG. 4 shows an example of image distortion when a lattice pattern (hereinafter referred to as a square lattice) drawn at equal pitches in the vertical and horizontal directions is viewed through a general progressive multifocal lens. In the image of the grid, due to the change in magnification, as shown in the figure, the vertical lines bulge downward with the line passing through the principal meridian curve (41 in the figure) as the center, and the horizontal lines also curve towards the periphery.

この像の歪曲は、像の歪曲として知覚されるこ
とはもちろん、使用者が動く物を目で追つたり、
首を動かす等により、視線に対して見える物が相
対的に動くような場合に、像の揺れとして知覚さ
れ、著しい不快感を生ぜしめる。このように動く
物を見るような場合を動的視覚と呼び、それに対
して、本を読んだり、一点を注視するような視線
と物の動きのほとんどない場合を、静的視覚と呼
ぶ。先の説明より明らかなように、静的視覚は主
として非点収差により影響を受ける。すなわち、
非点収差が全体として小さいほど、また、遠用、
近用、中間の各明視域が広いほど、快適な視覚が
得られる。
This image distortion is not only perceived as image distortion, but also when the user follows a moving object with their eyes.
When an object moves relative to the line of sight, such as by moving the head, this is perceived as image shaking, causing significant discomfort. Cases in which we see moving objects in this way are called dynamic vision, whereas cases in which there is almost no movement of the gaze and objects, such as when reading a book or gazing at a single point, are called static vision. As is clear from the above discussion, static vision is primarily affected by astigmatism. That is,
The smaller the astigmatism as a whole, the better distance vision,
The wider the near and intermediate clear vision ranges, the more comfortable vision can be obtained.

一方、動的視覚は、主として像の歪曲に影響さ
れる。すなわち像の歪曲が小さいものほど、像の
揺れの小さい快適な視覚が得られる。この静的視
覚と動的視覚の関係は、独立した関係でなく、良
好な静的視覚を得るために明視域を広くすると、
レンズの側方において像倍率の変化が急激になる
ため、像の歪曲が大きくなり、動的視覚が害さ
れ、逆に、動的視覚を良くすると、遠用部領域お
よび近用部領域の側方における非点収差が大きく
なつて、静的視覚を害するという相反する関係に
ある。
On the other hand, dynamic vision is mainly affected by image distortion. In other words, the smaller the image distortion, the more comfortable vision can be obtained with less image shaking. The relationship between static vision and dynamic vision is not an independent relationship; if you widen the clear visual field to obtain good static vision,
Because the change in image magnification becomes rapid on the sides of the lens, image distortion becomes large and dynamic vision is impaired; There is a contradictory relationship in that the astigmatism increases in both directions, impairing static vision.

このように、累進多焦点レンズに宿命的に存在
する非点収差と像の歪曲を極力押え、種々の静的
視覚条件に対して最良の動的視覚を与えるものと
して、本発明者は、特開昭55−171569号に示され
るような累進多焦点レンズを開発した。
In this way, the present inventor has developed a lens that minimizes astigmatism and image distortion, which are inherent in progressive multifocal lenses, and provides the best dynamic vision under various static vision conditions. Developed a progressive multifocal lens as shown in 1971-171569.

第5,6,7図は、その累進多焦点レンズの屈
折面の構造を説明する図であり、第5図は正面
図、第7図は屈折面の一部を斜視したものであ
る。
5, 6, and 7 are diagrams for explaining the structure of the refractive surface of the progressive multifocal lens, with FIG. 5 being a front view and FIG. 7 being a perspective view of a part of the refractive surface.

第5図において、C1,C2はそれぞれ遠用中
心Aおよび近用中心Bで、主子午線曲線Mと交わ
り、レンズ屈折面を3つに分割する曲線であり、
領域51,52,53をそれぞれ遠用部領域、近
用部領域、中間部領域とする。M1は、主子午面
と平行な平面による断面曲線であり、曲線C1,
C2との交点をそれぞれA1,B1とする。
In FIG. 5, C1 and C2 are distance center A and near center B, respectively, and are curves that intersect with the principal meridian curve M and divide the lens refractive surface into three,
The regions 51, 52, and 53 are respectively defined as a distance region, a near region, and an intermediate region. M1 is a cross-sectional curve on a plane parallel to the principal meridian, and curves C1,
Let the intersections with C2 be A1 and B1, respectively.

第6図は、断面曲線M1上の各点におけるレン
ズ屈折面の法線と主子午面との成す角度の変化を
示したもので、第7図の斜視図により理解が容易
である。
FIG. 6 shows changes in the angle between the normal to the lens refractive surface and the principal meridian at each point on the cross-sectional curve M1, which can be easily understood from the perspective view of FIG.

第7図において、P1,P2,P3は断面曲線
M1上の遠、近、中間の各領域内の点で、各点の
法線T1,T2,T3と主子午面71との成す角
度は、K1,K2,K3で示される。このレンズ
の特徴の一つは、この角度が第6図(縦軸が曲線
M1上の位置、横軸が角度)に示す如く、遠用部
領域(A1より上方の部分)と近用部領域(B1
より下方の部分)では、それぞれの値で一定であ
り、中間部領域(A1からB1の間)では連続的
に滑らかに変化し、かつ、その変化の仕方が、主
子午線曲線上での曲率の変化の法則と同じである
事である。
In FIG. 7, P1, P2, and P3 are points within the far, near, and intermediate regions on the cross-sectional curve M1, and the angle between the normals T1, T2, and T3 of each point and the principal meridian plane 71 is as follows: Indicated by K1, K2, and K3. One of the features of this lens is that this angle is the distance between the distance area (above A1) and the near area, as shown in Figure 6 (the vertical axis is the position on the curve M1, and the horizontal axis is the angle). (B1
In the lower part), each value is constant, and in the middle region (between A1 and B1), it changes continuously and smoothly, and the way it changes depends on the curvature on the principal meridian curve. It is the same as the law of change.

例えば、中間部領域における主子午線曲線の曲
率が直線的に変化している場合は、前述の角度も
第6図に示すように直線的に変化する。これは、
主子午面と平行なすべての断面において満足され
ている。
For example, if the curvature of the principal meridian curve in the intermediate region changes linearly, the above-mentioned angle also changes linearly, as shown in FIG. this is,
It is satisfied in all cross sections parallel to the principal meridian plane.

第8図は、複数の断面における、前述の角度変
化を示した図で、M1,M2,M3,M4の順番
で主子午線曲線から遠ざかる断面での角度変化を
表わしている。この垂直な断面曲線に沿つた角度
の変化は、近似的にその断面曲線に沿つた水平方
向のプリズムの変化と比例するので、第8図は各
断面での垂直線の歪曲と見なすことができる。水
平線の歪曲は垂直線の歪曲と関係し、垂直線に歪
曲が無ければ水平線も歪曲せず、垂直線が歪曲す
る部分では水平線も歪曲する。従つて、遠用部領
域と近用部領域は、正方格子が長方形に変形する
ノーマル歪となり、中間部領域は、正方格子が平
行四辺形状に変形するスキユー歪となる。これに
より遠用部領域と近用部領域の像の揺れを押えら
れる。
FIG. 8 is a diagram showing the above-mentioned angular changes in a plurality of cross sections, and represents the angular changes in the cross sections moving away from the principal meridian curve in the order of M1, M2, M3, and M4. Since the change in angle along this vertical cross-sectional curve is approximately proportional to the horizontal prism change along the cross-sectional curve, Figure 8 can be regarded as a distortion of the vertical line at each cross-section. . Distortion of the horizontal line is related to distortion of the vertical line; if there is no distortion in the vertical line, the horizontal line will not be distorted, and where the vertical line is distorted, the horizontal line will also be distorted. Therefore, the distance region and the near region have normal distortion in which the square lattice is deformed into a rectangular shape, and the intermediate region has skew distortion in which the square lattice is deformed into a parallelogram shape. This suppresses the shaking of the images in the distance vision area and the near vision area.

また中間部領域においては、垂直線の歪曲の仕
方を主子午線曲線上の遠用中心から近用中心の間
での曲率の変化の法則と同じにすることにより、
主子午線曲線上での非点収差を零とするととも
に、周辺の格子が整えられ、非点収差と像の歪曲
を極力押えることができる。
In addition, in the intermediate region, by making the way the vertical line is distorted the same as the law of change of curvature between the distance center and the near center on the principal meridian curve,
Astigmatism on the principal meridian curve is made zero, and the surrounding lattice is arranged, making it possible to suppress astigmatism and image distortion as much as possible.

本発明は、このような基本思想の累進多焦点レ
ンズについて視覚上の改良を施したものである。
The present invention provides visual improvements to the progressive multifocal lens based on such a basic idea.

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第9図は、特願昭55−171569号に示したレンズ
の一例で、図中、Mは主子午線曲線、M1〜M9
は主子午面と平行な平面による断面曲線を示し、
その間隔は等しい。このレンズにおいて、遠用部
領域と中間部領域の境界線C1と近用部領域と中
間部領域の境界線C2は、主子午線曲線からレン
ズ外周まで単調な曲線である。
Fig. 9 is an example of the lens shown in Japanese Patent Application No. 171569/1982. In the figure, M is the principal meridian curve, M1 to M9
indicates a cross-sectional curve by a plane parallel to the principal meridian,
The spacing is equal. In this lens, a boundary line C1 between the distance region and the intermediate region and a boundary line C2 between the near vision region and the intermediate region are monotonous curves from the principal meridian curve to the lens outer periphery.

第10図は、各断面におけるレンズ屈折面の法
線と主子午面とのなす角Kの変化を示す。このレ
ンズにおいて、主子午線曲線に直角な平面とレン
ズ屈折面との交線である横断面曲線(以下、横断
面と称す)の形状は、遠用部領域においては主子
午線曲線から離れるに従つて曲率が増加する形状
であり、近用部領域では主子午線曲線から離れる
に従つて曲率が減少する形状である。MからM9
までの各断面間における角度Kの増加量ΔKはそ
の間の曲率の大きさにほぼ比例するため、第10
図の如く遠用部領域ではMからM9にかけての各
断面間の角度増加量ΔKは徐々に大きくなり(す
なわち間隔が広くなる)、近用部領域では逆にそ
の角度増加量ΔKが徐々に小さくなる(すなわち
間隔が狭くなる)。この曲率と角度増加量の関係
を利用して、この図から中間部領域の横断面の曲
率の変化を知ることができる。すなわち横断面の
曲率変化は、同図のその横断面に対応する位置で
の水平線(たとえばS1−S1′)が、M1〜M
9まで各線を切断していくときの各線間の間隔の
変化にほぼ等しい。
FIG. 10 shows changes in the angle K between the normal to the lens refractive surface and the principal meridian plane in each cross section. In this lens, the shape of the cross-sectional curve (hereinafter referred to as the cross-section), which is the line of intersection between the plane perpendicular to the principal meridian curve and the lens refractive surface, changes as the distance from the principal meridian curve increases in the distance region. It has a shape in which the curvature increases, and in the near region, the curvature decreases as it moves away from the principal meridian curve. M to M9
Since the amount of increase ΔK in the angle K between each section up to is approximately proportional to the size of the curvature between them,
As shown in the figure, in the distance vision region, the angular increase amount ΔK between each section from M to M9 gradually increases (that is, the interval becomes wider), and in the near vision region, on the contrary, the angular increase amount ΔK gradually decreases. (i.e., the interval becomes narrower). By using the relationship between this curvature and the amount of angular increase, it is possible to know the change in the curvature of the cross section of the intermediate region from this figure. In other words, the curvature change of the cross section is such that the horizontal line (for example, S1-S1') at the position corresponding to the cross section in the same figure changes from M1 to M1.
This is approximately equal to the change in the spacing between each line when cutting each line up to 9.

第11図は、第10図のS1−S1′,S2−
S2′,S3−S3′,S4−S4′の各横断面の
曲率の変化を示している。縦軸は曲率ρを表わ
し、横軸は主子午線曲線からの距離xを示してい
る。図から、中間部領域における横断面の形状
は、遠用部領域側では主子午線曲線から離れるに
従つて曲率が単調に増加し(図中のS1−S
1′)、近用部領域側では初め減少した後、増加し
ていることがわかる(図のS4−S4′)。
Figure 11 shows S1-S1', S2- in Figure 10.
It shows the change in curvature of each cross section of S2', S3-S3', and S4-S4'. The vertical axis represents the curvature ρ, and the horizontal axis represents the distance x from the principal meridian curve. From the figure, the shape of the cross section in the intermediate region shows that the curvature increases monotonically as it moves away from the principal meridian curve on the distance vision region side (S1-S in the figure).
1'), it can be seen that on the near vision region side, it first decreases and then increases (S4-S4' in the figure).

第12図は、本発明の実施例であり、遠用部領
域、中間部領域、近用部領域の分割の仕方以外の
レンズ屈折面の形状決定要素は、第9図に示した
従来例と同じである。図には、分割の仕方の違い
を明白にするために、破線で従来例における分割
の仕方を示している。本発明の特徴は、前述の3
領域の境界線である曲線C1と曲線C2が、主子
午線曲線からレンズ外周に至る間に、それぞれ遠
用部領域側および近用部領域側に凸なる部分を有
することである。
FIG. 12 shows an embodiment of the present invention, and the shape determining factors of the lens refractive surface other than how to divide the distance region, intermediate region, and near region are the same as the conventional example shown in FIG. 9. It's the same. In the figure, in order to clearly show the difference in the method of division, the method of division in the conventional example is shown by broken lines. The features of the present invention are the above-mentioned three
The curve C1 and the curve C2, which are the boundary lines of the regions, have portions that are convex toward the distance region and the near region, respectively, from the principal meridian curve to the outer periphery of the lens.

前述の従来例と同様に、MからM9までの各断
面上での角度Kの変化を第13図に示し、中間部
領域での横断面の曲率変化を第14図に示す。第
13図中の破線は、第10図の従来例での角度K
の変化を示しており、これから判るように、本発
明のものは、中間部領域の境界線C1およびC2
が凸形に上方および下方に脹んだ部分の断面M
3,M4,M5,M6の角度Kの変化が、従来の
ものより緩やかになり、その変化率がほぼ等しく
なる。このときの中間部領域の横断面の曲率は、
第14図のように、遠用部領域側では主子午線曲
線から離れるにつれて、一旦増加した後減少し、
その後再び増加する変化を示し(図中S1−S
1′)、近用部領域側では主子午線曲線から離れる
につれて減少した後、増加する変化を示す(図中
S4−S4′)。また、遠用部領域側の横断面の曲
率が一旦増加することにより、主子午線曲線から
レンズ外周までの中間位置に、横断面の曲率の変
化はほぼ等しい部分Wができる。
Similar to the prior art example described above, changes in the angle K on each cross section from M to M9 are shown in FIG. 13, and changes in the curvature of the cross section in the intermediate region are shown in FIG. 14. The broken line in FIG. 13 indicates the angle K in the conventional example in FIG.
As can be seen, in the present invention, the boundary lines C1 and C2 of the intermediate region
Cross section M of the part that bulges upward and downward in a convex shape
3. The angles K of M4, M5, and M6 change more slowly than in the conventional case, and the rates of change are almost equal. The curvature of the cross section of the intermediate region at this time is
As shown in Fig. 14, on the far vision side, as it moves away from the principal meridian curve, it increases once and then decreases;
After that, the change increases again (S1-S in the figure).
1'), on the near region side, the change decreases and then increases as the distance from the principal meridian curve increases (S4-S4' in the figure). Furthermore, once the curvature of the cross section on the distance vision region side increases, a portion W is created at an intermediate position from the principal meridian curve to the outer periphery of the lens, where the change in curvature of the cross section is approximately equal.

これらのことから、本発明の効果が説明され
る。すなわち、レンズを透して見た像の歪曲は、
第13図に示す角度Kの変化とほぼ等しいので、
本発明により中間部領域側方における像の歪曲を
小さくでき、像の揺れが改善される。また、非点
収差も第14図のWで示す部分で平準化され、従
来よりも、よりなだらかな分布となり、中間部領
域側方で急激に像がぼける感じを緩和することが
できる。
These facts explain the effects of the present invention. In other words, the distortion of the image seen through the lens is
Since it is almost equal to the change in angle K shown in Fig. 13,
According to the present invention, image distortion on the sides of the intermediate region can be reduced, and image shaking can be improved. In addition, astigmatism is also leveled out in the area indicated by W in FIG. 14, resulting in a gentler distribution than in the past, and it is possible to alleviate the feeling that the image suddenly blurs on the sides of the intermediate region.

つぎに、第2の実施例を示す。この実施例にお
いて、遠用部、中間部、近用部の各領域の分割の
仕方および主子午線曲線上での曲率変化の法則
は、第9図に示した従来例と同じである。この実
施例において、従来例と異なるところは、遠用部
領域および近用部領域の横断面の曲率の変化の仕
方である。
Next, a second example will be shown. In this embodiment, the method of dividing the distance, intermediate and near regions and the law of curvature change on the principal meridian curve are the same as in the conventional example shown in FIG. This embodiment differs from the conventional example in the manner in which the curvatures of the cross sections of the distance vision region and the near vision region change.

第15図にその違いを示す。図のρ1は遠用部領
域での横断面の曲率変化、ρ2は近用部領域での横
断面の曲率変化を示し、破線は従来例のものであ
る。本実施例の特徴は、この図の如く遠用部領域
での横断面の曲率変化ρ2が単純なものでなく、主
子午線曲線からレンズ外周に至るまでの間に、ρ1
は上方に、ρ2は下方に、凸なる部分をもつことで
ある。これを数学的に表現すれば、それぞれの曲
率変化を主子午線曲線からの距離xの関数ρ1
(x)、ρ2(x)としたとき、主子午線曲線からレ
ンズ外周に至る間にρ1およびρ2のxについての2
回微分値が、それぞれ負および正となる部分を有
するということである。この実施例の角度Kの変
化を第16図に示す。図中の破線は、第10図に
示した従来例のものの角度変化である。この図か
ら、本実施例においても、中間部領域に先の実施
例と同様の改良が為されることは明らかである。
このときの中間部領域の横断面の曲率変化が、第
14図の先の実施例のものと同じ形になることは
説明するまでもない。
Figure 15 shows the difference. In the figure, ρ 1 indicates a change in curvature of the cross section in the distance vision region, ρ 2 indicates a change in curvature of the cross section in the near vision region, and the broken line is that of the conventional example. The feature of this embodiment is that, as shown in this figure, the change in curvature ρ 2 of the cross section in the distance region is not simple, but ρ 1 changes from the principal meridian curve to the outer circumference of the lens.
has a convex portion upward, and ρ 2 has a convex portion downward. Expressing this mathematically, each curvature change can be expressed as a function of the distance x from the principal meridian curve ρ 1
(x), ρ 2 (x), 2 of ρ 1 and ρ 2 for x between the principal meridian curve and the outer circumference of the lens.
This means that the differential values each have negative and positive parts. FIG. 16 shows the change in angle K in this example. The broken line in the figure represents the angle change in the conventional example shown in FIG. From this figure, it is clear that the same improvements as in the previous embodiment are made in the intermediate region in this embodiment as well.
It goes without saying that the change in curvature of the cross section of the intermediate region at this time has the same shape as that of the previous embodiment shown in FIG.

以上の説明の如く本発明によれば、中間部領域
の側方における像の歪曲を小さくし、更に非点収
差の分布をなだらかにするため、動的視覚および
静的視覚が良好な累進多焦点レンズを提供するこ
とができる。
As described above, according to the present invention, the distortion of the image on the sides of the intermediate region is reduced, and the distribution of astigmatism is smoothed, so that the progressive multifocal lens has good dynamic vision and static vision. lenses can be provided.

なお、本発明の2つの実施例で示した改良のた
めの方法の一部を用いた場合、あるいは幾つかを
組み合わせた場合においても、それに見合つた効
果が得られ、その場合でも本発明の範囲を越えな
い。
Note that even if some of the methods for improvement shown in the two embodiments of the present invention are used, or some of them are combined, commensurate effects can be obtained, and even in that case, the scope of the present invention does not fall within the scope of the present invention. not exceed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3,4図は、一般的な累進多焦点レ
ンズの構造、主子午線曲線上の面屈折力の変化、
非点収差分布、格子像の歪曲を説明する図。第
5,6,7,8図は、本発明を説明する図で、そ
れぞれレンズ屈折面の正面図、断面曲線上の法線
と主子午面との成す角度の変化、レンズ屈折面の
一部の斜視図、複数断面曲線上における法線と主
子午面との成す角度の変化を示す図。第9,1
0,11図は、特願昭55−171569号に示された従
来のレンズで、それぞれレンズ屈折面の正面図、
複数断面曲線上の法線と主子午面の成す角度の変
化、中間部領域での横断面の曲率の変化を示す。
第12,13,14図は、本発明の実施例で、そ
れぞれレンズ屈折面の正面図、複数断面曲線上の
法線と主子午面との成す角度の変化、中間部領域
での横断面の曲率の変化を示す。第15図、16
図は、本発明の他の実施例で、それぞれ遠用部領
域と近用部領域での横断面の曲率の変化、および
複数断面曲線上の法線と主子午面との成す角度の
変化を示す。 2,M……主子午線曲線、A……遠用中心、B
……近用中心、C1……遠用部領域と中間部領域
の境界曲線、C2……中間部領域と近用部領域の
境界曲線、M1〜M9……主子午面に平行な断面
曲線。
Figures 1, 2, 3, and 4 show the structure of a general progressive multifocal lens, changes in surface refractive power on the principal meridian curve,
FIG. 3 is a diagram illustrating astigmatism distribution and distortion of a grating image. Figures 5, 6, 7, and 8 are diagrams for explaining the present invention, and are respectively a front view of the lens refractive surface, a change in the angle between the normal on the cross-sectional curve and the principal meridian, and a part of the lens refractive surface. FIG. 2 is a perspective view showing changes in the angle between the normal and the principal meridian on multiple cross-sectional curves. No. 9, 1
Figures 0 and 11 show the conventional lens shown in Japanese Patent Application No. 55-171569, and are respectively a front view of the refractive surface of the lens and
It shows changes in the angle between the normal and the principal meridian on multiple cross-sectional curves, and changes in the curvature of the cross section in the intermediate region.
Figures 12, 13, and 14 show examples of the present invention, respectively, showing a front view of the lens refractive surface, changes in the angle between the normal line on the multi-sectional curve and the principal meridian plane, and a cross-sectional view in the intermediate region. Shows changes in curvature. Figures 15 and 16
The figure shows a change in the curvature of the cross section in the distance region and near vision region, and a change in the angle between the normal line on the multi-section curve and the principal meridian plane, in another embodiment of the present invention. show. 2, M...principal meridian curve, A... distance center, B
... Center for near vision, C1... Boundary curve between the distance vision region and the intermediate region, C2... Boundary curve between the intermediate vision region and the near vision region, M1 to M9... Cross-sectional curves parallel to the principal meridian plane.

Claims (1)

【特許請求の範囲】[Claims] 1 主子午線曲線上で、該主子午線曲線上の遠用
中心から近用中心の間で所定の法則に従つて曲率
が変化し加入度を付与するとともに、前記遠用中
心において前記主子午線曲線と交わるレンズの屈
折面上の曲線C1と、前記近用中心において前記
主子午線曲線と交わる前記レンズの屈折面上の曲
線C2により、前記レンズの屈折面を遠用部領
域、中間部領域、近用部領域の3領域に分割し、
前記主子午線曲線を含む平面に平行な任意の平面
と前記レンズの屈折面との交線である任意の断面
曲線の各々において、該断面曲線上の各点での前
記屈折面の法線と前記主子午線曲線を含む平面と
の成す角度が、前記遠用部領域および近用部領域
ではそれぞれ一定であり、中間部領域では前記主
子午線曲線上の遠用中心と近用中心の間での曲率
の変化の法則と同じ法則に従つて変化する累進多
焦点レンズにおいて、前記主子午線曲線に直角な
平面と前記レンズの屈折面との交線である横断面
曲線が、前記遠用部領域では該領域の側方におい
て増加する曲率を有し、前記近用部領域では該領
域の側方において減少する曲率を有し、前記中間
部領域では該横断面曲線が前記遠用部領域側の場
合は前記主子午線曲線から離れるに従つて一旦増
加した後減少し、その後再び増加する曲率を有
し、該横断面曲線が前記近用部領域側では前記主
子午線から離れるに従つて減少した後増加する曲
率を有することを特徴とする累進多焦点レンズ。
1. On the principal meridian curve, the curvature changes according to a predetermined law between the distance center and the near center on the principal meridian curve, giving addition power, and at the distance center, the curvature changes between the distance center and the near center. A curve C1 on the refractive surface of the lens that intersects with a curve C2 on the refractive surface of the lens that intersects with the principal meridian curve at the center of the near vision center allows the refractive surface of the lens to be divided into a distance region, an intermediate region, and a near vision region. Divide into three areas,
In each arbitrary cross-sectional curve that is an intersection line between an arbitrary plane parallel to the plane containing the principal meridian curve and the refractive surface of the lens, the normal to the refractive surface at each point on the cross-sectional curve and the The angle formed with the plane containing the principal meridian curve is constant in the distance region and the near region, and the curvature between the distance center and the near center on the principal meridian curve is constant in the intermediate region. In a progressive multifocal lens that changes according to the same law as the law of change of a curvature that increases on the side of the region, and a curvature that decreases on the side of the region in the near vision region, and in the intermediate region, when the cross-sectional curve is on the side of the distance vision region; It has a curvature that increases and then decreases as it moves away from the main meridian curve, and then increases again, and the cross-sectional curve decreases and then increases as it moves away from the main meridian on the near region side. A progressive multifocal lens characterized by having a curvature.
JP15909282A 1982-09-13 1982-09-13 Progressive multifocus lens Granted JPS5948732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15909282A JPS5948732A (en) 1982-09-13 1982-09-13 Progressive multifocus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15909282A JPS5948732A (en) 1982-09-13 1982-09-13 Progressive multifocus lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22813187A Division JPS6371825A (en) 1987-09-11 1987-09-11 Gradually progressive multifocus lens

Publications (2)

Publication Number Publication Date
JPS5948732A JPS5948732A (en) 1984-03-21
JPS6342764B2 true JPS6342764B2 (en) 1988-08-25

Family

ID=15686056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15909282A Granted JPS5948732A (en) 1982-09-13 1982-09-13 Progressive multifocus lens

Country Status (1)

Country Link
JP (1) JPS5948732A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011421A1 (en) * 1994-10-06 1996-04-18 Seiko Epson Corporation Gradual multifocus lens and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5948732A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
US4592630A (en) Ophthalmic lenses
US4762408A (en) Progressive multifocal lens and spectacles using same
US4786160A (en) Multi-focal spectacle lens having at least one progressive surface
US2878721A (en) Multifocal ophthalmic lenses
US5000559A (en) Ophthalmic lenses having progressively variable refracting power
AU764867B2 (en) Progressive multifocal ophthalmic lens
GB2090426A (en) Progressive power ophthalmic lenses
GB1580484A (en) Progressive ophthalmic lens
JPH0239768B2 (en)
JP3080295B2 (en) Progressive multifocal spectacle lens
EP0702257B1 (en) Progressive power presbyopia-correcting ophthalmic lenses
EP0408067B1 (en) Progressive power lens
EP2835682A1 (en) Progressive-power lens and method for designing progressive-power lens
JPH11194310A (en) Ocular lens
EP0039544A2 (en) Progressive multi-focal lenses
JPH0239766B2 (en)
US5510860A (en) Progressive multifocal lens
JPS6342764B2 (en)
JP4170093B2 (en) Progressive eyeglass lenses for far and intermediate object distances
JPH07294859A (en) Progressive multi-focus lens
JPH0581886B2 (en)
CN113406737A (en) Combined Fresnel lens and eyewear
JPS6371825A (en) Gradually progressive multifocus lens
JPS6338688B2 (en)
JP2503665B2 (en) Progressive focus lens